-
Notifications
You must be signed in to change notification settings - Fork 9
/
hyper_supervise_validation.py
421 lines (381 loc) · 17 KB
/
hyper_supervise_validation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
from __future__ import print_function, absolute_import
import os
import sys
import time
import datetime
import argparse
import os.path as osp
import numpy as np
import torch.backends.cudnn as cudnn
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torchvision.transforms as transforms
# from tools import *
import models
from loss import CrossEntropyLabelSmooth, TripletLoss , CenterLoss , OSM_CAA_Loss
from tools.transforms2 import *
# from tools.transforms2 import RandomErasing
from tools.scheduler import WarmupMultiStepLR
from tools.utils import AverageMeter, Logger, save_checkpoint
from tools.samplers import RandomIdentitySampler
from tools.video_loader import VideoDataset
import tools.data_manager as data_manager
from tools.eval_metrics import evaluate , re_ranking
from ax.plot.trace import optimization_trace_single_method
from ax.service.managed_loop import optimize
import ax
from typing import Dict, List, Tuple
parser = argparse.ArgumentParser(description='Train video model with cross entropy loss')
parser.add_argument('-d', '--dataset', type=str, default='mars_subset2',
choices=data_manager.get_names())
parser.add_argument('-j', '--workers', default=4, type=int,
help="number of data loading workers (default: 4)")
parser.add_argument('--height', type=int, default=224,
help="height of an image (default: 224)")
parser.add_argument('--width', type=int, default=112,
help="width of an image (default: 112)")
parser.add_argument('--seq-len', type=int, default=4, help="number of images to sample in a tracklet")
# Optimization options
parser.add_argument('--max-epoch', default=800, type=int,
help="maximum epochs to run")
parser.add_argument('--start-epoch', default=0, type=int,
help="manual epoch number (useful on restarts)")
parser.add_argument('--train-batch', default=32, type=int,
help="train batch size")
parser.add_argument('--test-batch', default=1, type=int, help="has to be 1")
parser.add_argument('--lr', '--learning-rate', default=0.0003, type=float,
help="initial learning rate, use 0.0001 for rnn, use 0.0003 for pooling and attention")
parser.add_argument('--stepsize', default=200, type=int,
help="stepsize to decay learning rate (>0 means this is enabled)")
parser.add_argument('--gamma', default=0.1, type=float,
help="learning rate decay")
parser.add_argument('--weight-decay', default=5e-04, type=float,
help="weight decay (default: 5e-04)")
parser.add_argument('--margin', type=float, default=0.3, help="margin for triplet loss")
parser.add_argument('--num-instances', type=int, default=4,
help="number of instances per identity")
# Architecture
parser.add_argument('-a', '--arch', type=str, default='resnet50tp', help="resnet503d, resnet50tp, resnet50ta, resnetrnn")
parser.add_argument('--pool', type=str, default='avg', choices=['avg', 'max'])
# Miscs
parser.add_argument('--print-freq', type=int, default=40, help="print frequency")
parser.add_argument('--seed', type=int, default=1, help="manual seed")
parser.add_argument('--evaluate', action='store_true', help="evaluation only")
parser.add_argument('--save-dir', type=str, default='log')
parser.add_argument('--epochs-eval', default=[99,199,299,399,499,599,699,799], type=list)
parser.add_argument('--gpu-devices', default='0,1,2', type=str, help='gpu device ids for CUDA_VISIBLE_DEVICES')
parser.add_argument('-f', '--focus', type=str, default='map', help="map,rerank_map")
parser.add_argument('-s', '--sampling', type=str, default='random', help="random,intille")
args = parser.parse_args()
def train_model(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu , optimizer_center , criterion_center_loss, criterion_osm_caa, beta_ratio):
model.train()
losses = AverageMeter()
cetner_loss_weight = 0.0005
for batch_idx, (imgs, pids, _) in enumerate(trainloader):
if use_gpu:
imgs, pids = imgs.cuda(), pids.cuda()
imgs, pids = Variable(imgs), Variable(pids)
outputs, features = model(imgs)
ide_loss = criterion_xent(outputs , pids)
triplet_loss = criterion_htri(features, features, features, pids, pids, pids)
center_loss = criterion_center_loss(features, pids)
# hosm_loss = criterion_osm_caa(features, pids , model.module.classifier.classifier.weight.t())
hosm_loss = criterion_osm_caa(features, pids , criterion_center_loss.centers.t() )
loss = ide_loss + (1-beta_ratio )* triplet_loss + center_loss * cetner_loss_weight + beta_ratio * hosm_loss
optimizer.zero_grad()
optimizer_center.zero_grad()
loss.backward()
optimizer.step()
for param in criterion_center_loss.parameters():
param.grad.data *= (1./cetner_loss_weight)
optimizer_center.step()
losses.update(loss.data.item(), pids.size(0))
return (losses.avg , ide_loss.item() , triplet_loss.item() , hosm_loss.item())
def train(parameters: Dict[str, float]) -> nn.Module:
global args
print("====", args.focus, "=====")
torch.manual_seed(args.seed)
# args.gpu_devices = "0,1"
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_devices
use_gpu = torch.cuda.is_available()
cudnn.benchmark = True
torch.cuda.manual_seed_all(args.seed)
dataset = data_manager.init_dataset(name=args.dataset, sampling= args.sampling)
transform_test = transforms.Compose([
transforms.Resize((args.height, args.width), interpolation=3),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
pin_memory = True if use_gpu else False
transform_train = transforms.Compose([
transforms.Resize((args.height, args.width), interpolation=3),
transforms.RandomHorizontalFlip(p=0.5),
transforms.Pad(10),
Random2DTranslation(args.height, args.width),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
batch_size = int(round(parameters.get("batch_size", 32) ))
base_learning_rate = 0.00035
# weight_decay = 0.0005
alpha = parameters.get("alpha", 1.2)
sigma = parameters.get("sigma", 0.8)
l = parameters.get("l", 0.5)
beta_ratio = parameters.get("beta_ratio", 0.5)
gamma = parameters.get("gamma", 0.1)
margin = parameters.get("margin", 0.3)
weight_decay = parameters.get("weight_decay", 0.0005)
lamb = 0.3
num_instances = 4
pin_memory = True
trainloader = DataLoader(
VideoDataset(dataset.train, seq_len=args.seq_len, sample='random',transform=transform_train),
sampler=RandomIdentitySampler(dataset.train, num_instances=args.num_instances),
batch_size=batch_size, num_workers=args.workers,
pin_memory=pin_memory, drop_last=True,
)
if args.dataset == 'mars_subset' :
validation_loader = DataLoader(
VideoDataset(dataset.val, seq_len=8, sample='random', transform=transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
else:
queryloader = DataLoader(
VideoDataset(dataset.val_query, seq_len=args.seq_len, sample='dense_subset', transform=transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
galleryloader = DataLoader(
VideoDataset(dataset.val_gallery, seq_len=args.seq_len, sample='dense_subset', transform=transform_test),
batch_size=args.test_batch, shuffle=False, num_workers=args.workers,
pin_memory=pin_memory, drop_last=False,
)
criterion_htri = TripletLoss(margin, 'cosine')
criterion_xent = CrossEntropyLabelSmooth(dataset.num_train_pids)
criterion_center_loss = CenterLoss(use_gpu=1)
criterion_osm_caa = OSM_CAA_Loss(alpha=alpha , l=l , osm_sigma=sigma )
args.arch = "ResNet50ta_bt"
model = models.init_model(name=args.arch, num_classes=dataset.num_train_pids, loss={'xent', 'htri'})
if use_gpu:
model = nn.DataParallel(model).cuda()
params = []
for key, value in model.named_parameters():
if not value.requires_grad:
continue
lr = base_learning_rate
weight_decay = weight_decay
params += [{"params": [value], "lr": lr, "weight_decay": weight_decay}]
optimizer = torch.optim.Adam(params)
scheduler = WarmupMultiStepLR(optimizer, milestones=[40, 70], gamma=gamma, warmup_factor=0.01, warmup_iters=10)
optimizer_center = torch.optim.SGD(criterion_center_loss.parameters(), lr=0.5)
start_epoch = args.start_epoch
best_rank1 = -np.inf
num_epochs = 121
if 'mars' not in args.dataset :
num_epochs = 121
# test_rerank(model, queryloader, galleryloader, args.pool, use_gpu, lamb=lamb , parameters=parameters)
for epoch in range (num_epochs):
vals = train_model(model, criterion_xent, criterion_htri, optimizer, trainloader, use_gpu , optimizer_center , criterion_center_loss, criterion_osm_caa, beta_ratio)
if math.isnan(vals[0]):
return 0
scheduler.step()
if epoch % 40 ==0 :
print("TripletLoss {:.6f} OSM Loss {:.6f} Cross_entropy {:.6f} Total Loss {:.6f} ".format(vals[1] , vals[3] , vals[1] , vals[0]))
if args.dataset == 'mars_subset' :
result1 = test_validation(model, validation_loader, args.pool, use_gpu, parameters=parameters)
del validation_loader
else:
result1= test_rerank(model, queryloader, galleryloader, args.pool, use_gpu, lamb=lamb , parameters=parameters)
del queryloader
del galleryloader
del trainloader
del model
del criterion_htri
del criterion_xent
del criterion_center_loss
del criterion_osm_caa
del optimizer
del optimizer_center
del scheduler
return result1
def test_validation(model, validation_loader, pool, use_gpu, ranks=[1, 5, 10, 20], lamb=0.3, parameters=None):
model.eval()
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(validation_loader):
if use_gpu:
imgs = imgs.cuda()
imgs = Variable(imgs, volatile=True)
b, s, c, h, w = imgs.size()
assert(b==1)
n = b * s // 4
imgs = imgs.view(n , 4, c, h, w)
features = model(imgs)
features = features.view(n, -1)
features = torch.mean(features, 0)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.stack(qf)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(validation_loader):
if use_gpu:
imgs = imgs.cuda()
imgs = Variable(imgs, volatile=True)
b, s, c, h, w = imgs.size()
n = b*s//4
imgs = imgs.view(n, 4 , c, h, w)
assert(b==1)
features = model(imgs)
features = features.view(n, -1)
if pool == 'avg':
features = torch.mean(features, 0)
else:
features, _ = torch.max(features, 0)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.stack(gf)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
print("Computing distance matrix")
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
gf = gf.numpy()
qf = qf.numpy()
distmat_rerank = re_ranking(qf,gf , lambda_value=lamb)
print("Original Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids)
print("Rerank Computing CMC and mAP")
re_rank_cmc, re_rank_mAP = evaluate(distmat_rerank, q_pids, g_pids, q_camids, g_camids)
# print("Results ---------- {:.1%} ".format(distmat_rerank))
print (parameters)
print("Results ---------- ")
if 'mars' in args.dataset :
print("mAP: {:.1%} vs {:.1%}".format(mAP, re_rank_mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%} vs {:.1%}".format(r, cmc[r-1], re_rank_cmc[r-1]))
print("------------------")
del qf, q_pids, q_camids
del gf, g_pids, g_camids
del distmat , distmat_rerank
if 'mars' not in args.dataset :
print("Dataset not MARS : instead", args.dataset)
return cmc[0]
else:
if args.focus == "map":
print("returning map")
return mAP
else:
print("returning re-rank")
return re_rank_mAP
def test_rerank(model, queryloader, galleryloader, pool, use_gpu, ranks=[1, 5, 10, 20], lamb=0.3, parameters=None):
model.eval()
qf, q_pids, q_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(queryloader):
if use_gpu:
imgs = imgs.cuda()
imgs = Variable(imgs, volatile=True)
b, n, s, c, h, w = imgs.size()
assert(b==1)
imgs = imgs.view(b*n, s, c, h, w)
features = model(imgs)
features = features.view(n, -1)
features = torch.mean(features, 0)
features = features.data.cpu()
qf.append(features)
q_pids.extend(pids)
q_camids.extend(camids)
qf = torch.stack(qf)
q_pids = np.asarray(q_pids)
q_camids = np.asarray(q_camids)
print("Extracted features for query set, obtained {}-by-{} matrix".format(qf.size(0), qf.size(1)))
gf, g_pids, g_camids = [], [], []
for batch_idx, (imgs, pids, camids) in enumerate(galleryloader):
if use_gpu:
imgs = imgs.cuda()
imgs = Variable(imgs, volatile=True)
b, n, s, c, h, w = imgs.size()
imgs = imgs.view(b*n, s , c, h, w)
assert(b==1)
features = model(imgs)
features = features.view(n, -1)
if pool == 'avg':
features = torch.mean(features, 0)
else:
features, _ = torch.max(features, 0)
features = features.data.cpu()
gf.append(features)
g_pids.extend(pids)
g_camids.extend(camids)
gf = torch.stack(gf)
g_pids = np.asarray(g_pids)
g_camids = np.asarray(g_camids)
print("Extracted features for gallery set, obtained {}-by-{} matrix".format(gf.size(0), gf.size(1)))
print("Computing distance matrix")
m, n = qf.size(0), gf.size(0)
distmat = torch.pow(qf, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gf, 2).sum(dim=1, keepdim=True).expand(n, m).t()
distmat.addmm_(1, -2, qf, gf.t())
distmat = distmat.numpy()
gf = gf.numpy()
qf = qf.numpy()
distmat_rerank = re_ranking(qf,gf , lambda_value=lamb)
print("Original Computing CMC and mAP")
cmc, mAP = evaluate(distmat, q_pids, g_pids, q_camids, g_camids)
print("Rerank Computing CMC and mAP")
re_rank_cmc, re_rank_mAP = evaluate(distmat_rerank, q_pids, g_pids, q_camids, g_camids)
# print("Results ---------- {:.1%} ".format(distmat_rerank))
print (parameters)
print("Results ---------- ")
if 'mars' in args.dataset :
print("mAP: {:.1%} vs {:.1%}".format(mAP, re_rank_mAP))
print("CMC curve")
for r in ranks:
print("Rank-{:<3}: {:.1%} vs {:.1%}".format(r, cmc[r-1], re_rank_cmc[r-1]))
print("------------------")
del qf, q_pids, q_camids
del gf, g_pids, g_camids
del distmat , distmat_rerank
if 'mars' not in args.dataset :
print("Dataset not MARS : instead", args.dataset)
return cmc[0]
else:
if args.focus == "map":
print("returning map")
return mAP
else:
print("returning re-rank")
return re_rank_mAP
best_parameters, values, experiment, model = optimize(
parameters=[
{"name": "sigma", "type": "range", "bounds": [1e-1, 1.0]},
{"name": "alpha", "type": "range", "bounds": [0.5, 3.0]},
{"name": "l", "type": "range", "bounds": [1e-1, 1.0]},
{"name": "margin", "type": "range", "bounds": [1e-6, 1.0], "log_scale": True},
{"name": "beta_ratio", "type": "range", "bounds": [1e-6, 1.0]},
{"name": "gamma", "type": "range", "bounds": [1e-6, 1.0]},
{"name": "weight_decay", "type": "range", "bounds": [1e-6, 1.0]},
# {"name": "batch_size", "type": "range", "bounds": [10, 80]},
],
evaluation_function=train,
objective_name='ranking',
minimize=False,
total_trials = 60,
)
print("===========")
print(best_parameters)
print("===========")
print(values)