-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmatrix.js
562 lines (522 loc) · 17 KB
/
matrix.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
// 4x4 matrix class.
//
// The convention here is post-multiplication by a column vector.
// ie. x = Ab, where x and b are column vectors.
//
// Please note that in cases where a matrix is pre-multiplied by a
// vector, we then assume that the vector is a row vector.
// This operation is then equivalent to post multiplying the column
// vector by the transpose of the actual matrix.
//
// If you wish to think of this matrix in terms of basis vectors,
// then by convention, the rows of this matrix form the set of
// basis vectors.
//
// When composing matrix transforms A * B * C * D, note that the
// actual order of operations as visible in the resultant matrix
// is D, C, B, A. Alternatively, you can view transforms as changing
// coordinate system, then the coordinate systems are changed
// in order A, B, C, D.
function Matrix() {
var args = Array.prototype.slice.call(arguments);
// construct a matrix from three basis vectors.
// the x,y,z values from each of these basis vectors map to rows in the 3x3 sub matrix.
// note: the rest of the matrix (row 4 and column 4 are set to identity)
// ax ay az 0
// bx by bz 0
// cx cy cz 0
// 0 0 0 1
if (args.length == 3) {
this.m11 = args[0].x;
this.m12 = args[0].y;
this.m13 = args[0].z;
this.m14 = 0;
this.m21 = args[1].x;
this.m22 = args[1].y;
this.m23 = args[1].z;
this.m24 = 0;
this.m31 = args[2].x;
this.m32 = args[2].y;
this.m33 = args[2].z;
this.m34 = 0;
this.m41 = 0;
this.m42 = 0;
this.m43 = 0;
this.m44 = 1;
}
// construct a matrix from explicit values for the 3x3 sub matrix.
// note: the rest of the matrix (row 4 and column 4 are set to identity)
else if (args.length == 9) {
var m11 = args[0];
var m12 = args[1];
var m13 = args[2];
var m21 = args[3];
var m22 = args[4];
var m23 = args[5];
var m31 = args[6];
var m32 = args[7];
var m33 = args[8];
this.m11 = m11;
this.m12 = m12;
this.m13 = m13;
this.m14 = 0;
this.m21 = m21;
this.m22 = m22;
this.m23 = m23;
this.m24 = 0;
this.m31 = m31;
this.m32 = m32;
this.m33 = m33;
this.m34 = 0;
this.m41 = 0;
this.m42 = 0;
this.m43 = 0;
this.m44 = 1;
}
// construct a matrix from explicit entry values for the whole 4x4 matrix.
else if (args.length == 16){
this.m11 = args[0];
this.m12 = args[1];
this.m13 = args[2];
this.m14 = args[3];
this.m21 = args[4];
this.m22 = args[5];
this.m23 = args[6];
this.m24 = args[7];
this.m31 = args[8];
this.m32 = args[9];
this.m33 = args[10];
this.m34 = args[11];
this.m41 = args[12];
this.m42 = args[13];
this.m43 = args[14];
this.m44 = args[15];
}
// load matrix from raw float array.
// data is assumed to be stored linearly in memory in row order, from left to right, top to bottom.
else if (args.length == 0 && args[0] instanceof Array && args[0].length == 16) {
this.m11 = args[0][0];
this.m12 = args[0][1];
this.m13 = args[0][2];
this.m14 = args[0][3];
this.m21 = args[0][4];
this.m22 = args[0][5];
this.m23 = args[0][6];
this.m24 = args[0][7];
this.m31 = args[0][8];
this.m32 = args[0][9];
this.m33 = args[0][10];
this.m34 = args[0][11];
this.m41 = args[0][12];
this.m42 = args[0][13];
this.m43 = args[0][14];
this.m44 = args[0][15];
}
//
else {
this.m11 = 0;
this.m12 = 0;
this.m13 = 0;
this.m14 = 0;
this.m21 = 0;
this.m22 = 0;
this.m23 = 0;
this.m24 = 0;
this.m31 = 0;
this.m32 = 0;
this.m33 = 0;
this.m34 = 0;
this.m41 = 0;
this.m42 = 0;
this.m43 = 0;
this.m44 = 0;
}
}
Matrix.epsilon = 0.00001; // floating point epsilon for single precision.
Matrix.epsilonSquared = Matrix.epsilon * Matrix.epsilon;
Matrix.prototype.toString = function toString(singleLine) {
singleLine = singleLine || false;
if (singleLine) {
return "Matrix(" + this.m11 + ", " + this.m12 + ", " + this.m13 + ", " + this.m14 + ", " + this.m21 + ", " + this.m22 + ", " + this.m23 + ", " + this.m24 + ", " + this.m31 + ", " + this.m32 + ", " + this.m33 + ", " + this.m34 + ", " + this.m41 + ", " + this.m42 + ", " + this.m43 + ", " + this.m44 + ")";
} else {
return "Matrix: " + this.m11 + ", " + this.m12 + ", " + this.m13 + ", " + this.m14 + "\n " + this.m21 + ", " + this.m22 + ", " + this.m23 + ", " + this.m24 + "\n " + this.m31 + ", " + this.m32 + ", " + this.m33 + ", " + this.m34 + "\n " + this.m41 + ", " + this.m42 + ", " + this.m43 + ", " + this.m44;
}
}
// get a zero, or null, Matrix
Matrix.zero = new Matrix(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0);
Matrix.prototype.zero = function zero() {
return Matrix.zero;
}
// get an identity Maxtrix
Matrix.identity = new Matrix(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
Matrix.prototype.identity = function identity() {
return Matrix.identity;
}
// set to a translation matrix.
// 1 0 0 x
// 0 1 0 y
// 0 0 1 z
// 0 0 0 1
Matrix.translate = function translate() {
var args = Array.prototype.slice.call(arguments);
// float x, float y, float z
if (args.length == 3) {
return new Matrix(1, 0, 0, args[0], 0, 1, 0, args[1], 0, 0, 1, args[2], 0, 0, 0, 1);
} else if (args.length == 1 && args[0] instanceof Vector) {
return new Matrix(1, 0, 0, args[0].x, 0, 1, 0, args[0].y, 0, 0, 1, args[0].z, 0, 0, 0, 1);
}
return Matrix.identity;
}
Matrix.prototype.translate = Matrix.translate;
// set to a scale matrix.
Matrix.scale = function scale(s) {
return new Matrix(s, 0, 0, 0, 0, s, 0, 0, 0, 0, s, 0, 0, 0, 0, 1);
}
Matrix.prototype.scale = Matrix.scale;
// set to a diagonal matrix.
Matrix.diagonal = function diagonal(a, b, c, d) {
// d defaults to 1
d = isNaN(d) ? 1 : d;
return new Matrix(a, 0, 0, 0, 0, b, 0, 0, 0, 0, c, 0, 0, 0, 0, d);
}
Matrix.prototype.diagonal = Matrix.diagonal;
// set to a rotation matrix about a specified (float) axis / (Vector) angle.
Matrix.rotate = function rotate(angle, axis) {
// note: adapted from david eberly's code with permission
if (axis.lengthSquared() < Matrix.epsilonSquared)
{
return this.identity();
}
else
{
var normalizedAxis = axis.normalize();
var fCos = Math.cos(angle);
var fSin = Math.sin(angle);
var fOneMinusCos = 1.0 - fCos;
var fX2 = normalizedAxis.x * normalizedAxis.x;
var fY2 = normalizedAxis.y * normalizedAxis.y;
var fZ2 = normalizedAxis.z * normalizedAxis.z;
var fXYM = normalizedAxis.x * normalizedAxis.y * fOneMinusCos;
var fXZM = normalizedAxis.x * normalizedAxis.z * fOneMinusCos;
var fYZM = normalizedAxis.y * normalizedAxis.z * fOneMinusCos;
var fXSin = normalizedAxis.x * fSin;
var fYSin = normalizedAxis.y * fSin;
var fZSin = normalizedAxis.z * fSin;
return new Matrix(
fX2 * fOneMinusCos + fCos,
fXYM - fZSin,
fXZM + fYSin,
0,
fXYM + fZSin,
fY2 * fOneMinusCos + fCos,
fYZM - fXSin,
0,
fXZM - fYSin,
fYZM + fXSin,
fZ2 * fOneMinusCos + fCos,
0,
0,
0,
0,
1
);
}
}
Matrix.prototype.rotate = Matrix.rotate;
// set to a look at matrix.
// takes three Vectors as parameters
Matrix.lookat = function lookat(eye, at, up) {
// left handed
var z_axis = at.subtract(eye);
var x_axis = up.cross(z_axis);
var y_axis = z_axis.cross(x_axis);
var newX = x_axis.normalize();
var newY = y_axis.normalize();
var newZ = z_axis.normalize();
return new Matrix(
x_axis.x,
x_axis.y,
x_axis.z,
- x_axis.dot(eye),
y_axis.x,
y_axis.y,
y_axis.z,
- y_axis.dot(eye),
z_axis.x,
z_axis.y,
z_axis.z,
- z_axis.dot(eye),
0,
0,
0,
1
);
}
Matrix.prototype.lookat = Matrix.lookat;
// set to an orthographic projection matrix.
// takes 6 floats
Matrix.orthographic = function orthographic(l, r, b, t, n, f) {
var sx = 1 / (r - l);
var sy = 1 / (t - b);
var sz = 1 / (f - n);
return new Matrix(
2 * sx,
0,
0,
- (r + l) * sx,
0,
2 * sy,
0,
- (t + b) * sy,
0,
0,
-2 * sz,
- (n + f) * sz,
0,
0,
0,
1
);
}
Matrix.prototype.orthographic = Matrix.orthographic;
// set to a perspective projection matrix.
Matrix.perspective = function perspective() {
var args = Array.prototype.slice.call(arguments);
// function perspective(float l, float r, float t, float b, float n, float f)
if (args.length == 6) {
return new Matrix(
2 * args[4] / (args[1] - args[0]),
0,
0,
0,
0,
2 * args[4] / (args[2] - args[3]),
0,
0,
0,
0,
args[5] / (args[5] - args[4]),
args[4] * args[5] / (args[4] - args[5]),
0,
0,
1,
0
);
}
// set to a perspective projection matrix specified in terms of field of view and aspect ratio.
// float fov, float aspect, float n, float f
else if (args.length == 4) {
var t = Math.tan(args[0] * 0.5) * args[2];
var b = -t;
var l = args[1] * b;
var r = args[1] * t;
return Math.perspective(l, r, t, b, args[2], args[3]);
}
}
Matrix.prototype.perspective = Matrix.perspective;
// calculate determinant of 3x3 sub matrix.
Matrix.prototype.determinant = function determinant() {
return -this.m13 * this.m22 * this.m31 + this.m12 * this.m23 * this.m31 + this.m13 * this.m21 * this.m32 - this.m11 * this.m23 * this.m32 - this.m12 * this.m21 * this.m33 + this.m11 * this.m22 * this.m33;
}
// determine if matrix is invertible.
// note: currently only checks 3x3 sub matrix determinant.
Matrix.prototype.invertible = function invertible() {
return (this.determinant() != 0);
}
// calculate inverse of matrix and write result to parameter matrix.
Matrix.prototype.inverse = function inverse() {
var determinant = this.determinant();
if (determinant == 0) {
throw "Cannot calculate the inverse of the matrix because its determinant is 0.";
}
var k = 1.0 / determinant;
var newM11 = (this.m22 * this.m33 - this.m32 * this.m23) * k;
var newM12 = (this.m32 * this.m13 - this.m12 * this.m33) * k;
var newM13 = (this.m12 * this.m23 - this.m22 * this.m13) * k;
var newM21 = (this.m23 * this.m31 - this.m33 * this.m21) * k;
var newM22 = (this.m33 * this.m11 - this.m13 * this.m31) * k;
var newM23 = (this.m13 * this.m21 - this.m23 * this.m11) * k;
var newM31 = (this.m21 * this.m32 - this.m31 * this.m22) * k;
var newM32 = (this.m31 * this.m12 - this.m11 * this.m32) * k;
var newM33 = (this.m11 * this.m22 - this.m21 * this.m12) * k;
var newM14 = -(newM11 * this.m14 + newM12 * this.m24 + newM13 * this.m34);
var newM24 = -(newM21 * this.m14 + newM22 * this.m24 + newM23 * this.m34);
var newM34 = -(newM31 * this.m14 + newM32 * this.m24 + newM33 * this.m34);
var newM41 = this.m41;
var newM42 = this.m42;
var newM43 = this.m43;
var newM44 = this.m44;
return new Matrix(newM11, newM12, newM13, newM14, newM21, newM22, newM23, newM24, newM31, newM32, newM33, newM34, newM41, newM42, newM43, newM44);
}
// calculate transpose of matrix.
// NOTE: No transpose() method because our Matrices are immutable
// transform a vector by this matrix, return new Vector
// the convention used is post-multiplication by a column vector: x=Ab.
// NOTE: It may make sense to have this as a method on Vector but Glenn Fielder put it here and it avoids circular dependencies between Vector and Matrix
Matrix.prototype.transform = function transform(vector) {
var x = vector.x * this.m11 + vector.y * this.m12 + vector.z * this.m13 + this.m14;
var y = vector.x * this.m21 + vector.y * this.m22 + vector.z * this.m23 + this.m24;
var z = vector.x * this.m31 + vector.y * this.m32 + vector.z * this.m33 + this.m34;
return new Vector(x, y, z);
}
// transform a vector by this matrix using only the 3x3 rotation submatrix.
// the convention used is post-multiplication by a column vector: x=Ab.
Matrix.prototype.transform3x3 = function transform3x3(vector) {
var x = vector.x * this.m11 + vector.y * this.m12 + vector.z * this.m13;
var y = vector.x * this.m21 + vector.y * this.m22 + vector.z * this.m23;
var z = vector.x * this.m31 + vector.y * this.m32 + vector.z * this.m33;
return new Vector(x, y, z);
}
// add another matrix to this matrix.
Matrix.prototype.add = function add(matrix) {
return new Matrix(
this.m11 + matrix.m11,
this.m12 + matrix.m12,
this.m13 + matrix.m13,
this.m14 + matrix.m14,
this.m21 + matrix.m21,
this.m22 + matrix.m22,
this.m23 + matrix.m23,
this.m24 + matrix.m24,
this.m31 + matrix.m31,
this.m32 + matrix.m32,
this.m33 + matrix.m33,
this.m34 + matrix.m34,
this.m41 + matrix.m41,
this.m42 + matrix.m42,
this.m43 + matrix.m43,
this.m44 + matrix.m44
);
}
// subtract a matrix from this matrix.
Matrix.prototype.subtract = function subtract(matrix) {
return new Matrix(
this.m11 - matrix.m11,
this.m12 - matrix.m12,
this.m13 - matrix.m13,
this.m14 - matrix.m14,
this.m21 - matrix.m21,
this.m22 - matrix.m22,
this.m23 - matrix.m23,
this.m24 - matrix.m24,
this.m31 - matrix.m31,
this.m32 - matrix.m32,
this.m33 - matrix.m33,
this.m34 - matrix.m34,
this.m41 - matrix.m41,
this.m42 - matrix.m42,
this.m43 - matrix.m43,
this.m44 - matrix.m44
);
}
// multiply this matrix by a value
Matrix.prototype.multiply = function multiply(arg) {
// multiply two matrices.
if (arg instanceof Matrix) {
return new Matrix(
this.m11 * arg.m11 + this.m12 * arg.m21 + this.m13 * arg.m31 + this.m14 * arg.m41,
this.m11 * arg.m12 + this.m12 * arg.m22 + this.m13 * arg.m32 + this.m14 * arg.m42,
this.m11 * arg.m13 + this.m12 * arg.m23 + this.m13 * arg.m33 + this.m14 * arg.m43,
this.m11 * arg.m14 + this.m12 * arg.m24 + this.m13 * arg.m34 + this.m14 * arg.m44,
this.m21 * arg.m11 + this.m22 * arg.m21 + this.m23 * arg.m31 + this.m24 * arg.m41,
this.m21 * arg.m12 + this.m22 * arg.m22 + this.m23 * arg.m32 + this.m24 * arg.m42,
this.m21 * arg.m13 + this.m22 * arg.m23 + this.m23 * arg.m33 + this.m24 * arg.m43,
this.m21 * arg.m14 + this.m22 * arg.m24 + this.m23 * arg.m34 + this.m24 * arg.m44,
this.m31 * arg.m11 + this.m32 * arg.m21 + this.m33 * arg.m31 + this.m34 * arg.m41,
this.m31 * arg.m12 + this.m32 * arg.m22 + this.m33 * arg.m32 + this.m34 * arg.m42,
this.m31 * arg.m13 + this.m32 * arg.m23 + this.m33 * arg.m33 + this.m34 * arg.m43,
this.m31 * arg.m14 + this.m32 * arg.m24 + this.m33 * arg.m34 + this.m34 * arg.m44,
this.m41 * arg.m11 + this.m42 * arg.m21 + this.m43 * arg.m31 + this.m44 * arg.m41,
this.m41 * arg.m12 + this.m42 * arg.m22 + this.m43 * arg.m32 + this.m44 * arg.m42,
this.m41 * arg.m13 + this.m42 * arg.m23 + this.m43 * arg.m33 + this.m44 * arg.m43,
this.m41 * arg.m14 + this.m42 * arg.m24 + this.m43 * arg.m34 + this.m44 * arg.m44
);
}
// multiply this matrix by a scalar.
else {
return new Matrix(
this.m11 * arg,
this.m12 * arg,
this.m13 * arg,
this.m14 * arg,
this.m21 * arg,
this.m22 * arg,
this.m23 * arg,
this.m24 * arg,
this.m31 * arg,
this.m32 * arg,
this.m33 * arg,
this.m34 * arg,
this.m41 * arg,
this.m42 * arg,
this.m43 * arg,
this.m44 * arg
);
}
}
// equals operator
Matrix.prototype.equals = function equals(other) {
return (
(this.m11 == other.m11) &&
(this.m12 == other.m12) &&
(this.m13 == other.m13) &&
(this.m14 == other.m14) &&
(this.m21 == other.m21) &&
(this.m22 == other.m22) &&
(this.m23 == other.m23) &&
(this.m24 == other.m24) &&
(this.m31 == other.m31) &&
(this.m32 == other.m32) &&
(this.m33 == other.m33) &&
(this.m34 == other.m34) &&
(this.m41 == other.m41) &&
(this.m42 == other.m42) &&
(this.m43 == other.m43) &&
(this.m44 == other.m44)
);
}
// not equals operator
Matrix.prototype.notEquals = function notEquals(other) {
return !this.equals(other);
}
/*
// cute access to matrix elements via overloaded () operator.
// use it like this: Matrix matrix; float element = matrix(row, column);
float& operator()(int i, int j)
{
assert(i>=0);
assert(i<=3);
assert(j>=0);
assert(j<=3);
float *data = &m11;
return data[(i<<2) + j];
}
// const version of element access above.
const float& operator()(int i, int j) const
{
assert(i>=0);
assert(i<=3);
assert(j>=0);
assert(j<=3);
const float *data = &m11;
return data[(i<<2) + j];
}
*/
// we could do the above with fancy stuff like making the Matrix constructor return a function but for now this is easier:
Matrix.prototype.get = function get(x, y) {
if (x < 1 || x > 4 || y < 1 || y > 4) {
throw "Coordinates out of bounds.";
}
return this["m" + x + y];
}
// data accessor for easy conversion to float for OpenGL
Matrix.prototype.data = function data() {
return this.m11;
}
Matrix.prototype.divide = function divide(s) {
if (s == 0) {
throw "You cannot divide a matrix by 0.";
}
var inv = 1.0 / s;
return this.multiply(inv);
}