-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathAssignment_2_3.m
116 lines (92 loc) · 2.62 KB
/
Assignment_2_3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
clc;clear all;close all;
data = xlsread('dataset.xlsx');
%Input normalization
data(:,1:end-1) = (data(:,1:end-1)-mean(data(:,1:end-1)))./std(data(:,1:end-1));
X = data(:,1:end-1); %Inputs
Y = data(:,end); %Target outputs
for i=1:length(Y)
if Y(i)==1
z(i,:) = [1 0];
else
z(i,:) = [0 1];
end
end
%Randomly divide the dataset into training (70%) and testing (30%) set
%p = randperm(length(Y));
C = cvpartition(Y,'HoldOut',0.3);
tr = C.training;
te = C.test;
xTrain = X(tr,:);
xTest = X(te,:);
yTrain = z(tr,:);
yTest = z(te,:);
X=X';
Y=Y';
xTrain=xTrain';
yTrain=yTrain';
xTest=xTest';
yTest=yTest';
hiddenSize1 = 100;
autoenc1 = trainAutoencoder(xTrain,hiddenSize1, ...
'MaxEpochs',400, ...
'L2WeightRegularization',0.004, ...
'SparsityRegularization',4, ...
'SparsityProportion',0.15, ...
'ScaleData', false,...
'DecoderTransferFunction','logsig',...
'EncoderTransferFunction','logsig');
feat1 = encode(autoenc1,xTrain);
hiddenSize2 = 50;
autoenc2 = trainAutoencoder(feat1,hiddenSize2, ...
'MaxEpochs',400, ...
'L2WeightRegularization',0.002, ...
'SparsityRegularization',4, ...
'SparsityProportion',0.1, ...
'ScaleData', false,...
'DecoderTransferFunction','logsig',...
'EncoderTransferFunction','logsig');
feat2 = encode(autoenc2,feat1);
hiddenSize3 = 25;
autoenc3= trainAutoencoder(feat2,hiddenSize3,...
'MaxEpochs',400,...
'L2WeightRegularization',0.002, ...
'SparsityRegularization',4, ...
'SparsityProportion',0.1, ...
'ScaleData', false,...
'DecoderTransferFunction','logsig',...
'EncoderTransferFunction','logsig');%purelin
feat3 = encode(autoenc3,feat2);
softnet = trainSoftmaxLayer(feat3,yTrain,'MaxEpochs',400);
%view(autoenc1);
%view(autoenc2);
%view(softnet);
stackednet = stack(autoenc1,autoenc2,autoenc3,softnet);
%stackednet.trainFcn='trainlm';'trainscg'
%stackednet.trainParam.epochs=10;
stackednet = train(stackednet,xTrain,yTrain);
%view(stackednet);
w = stackednet(xTest);
%plotconfusion(yTest,w);
w=w';
yTest=yTest';
for i=1:size(yTest,1)
[~, lp(:,i)]=max(w(i,:));
[~, lt(:,i)]=max(yTest(i,:));
end
[cmt,order]=confusionmat(lp,lt);
test_acc=(cmt(1,1)+cmt(2,2)/sum(cmt(:)))*100;
test_sen=(cmt(1,1)/(cmt(1,1)+cmt(1,2)))*100;
test_spe=(cmt(2,2)/(cmt(2,2)+cmt(2,1)))*100;
display(test_acc);
display(test_sen);
display(test_spe);
IA=zeros(1,size(cmt,1));
OA=0;
for i=1:size(cmt,1)
IA(i)=cmt(i,i)/sum(cmt(i,:));
OA=OA+cmt(i,i);
end
OA=OA/sum(cmt(:));
display(cmt);
display(IA);
display(OA);