-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchapter-10.py
35 lines (34 loc) · 1.52 KB
/
chapter-10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import cv2,sys
import numpy as np
class DenseDetector(object):
def __init__(self, step_size=20, feature_scale=40, img_bound=20):
# Create a dense feature detector
self.detector = cv2.FeatureDetector_create("Dense")
# Initialize it with all the required parameters
self.detector.setInt("initXyStep", step_size)
self.detector.setInt("initFeatureScale", feature_scale)
self.detector.setInt("initImgBound", img_bound)
def detect(self, img):
# Run feature detector on the input image
return self.detector.detect(img)
if __name__=='__main__':
input_image = cv2.imread(sys.argv[1])
input_image_sift = np.copy(input_image)
# Convert to grayscale
gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)
keypoints = DenseDetector(20,20,5).detect(input_image)
# Draw keypoints on top of the input image
input_image = cv2.drawKeypoints(input_image, keypoints, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# Display the output image
cv2.imshow('Dense feature detector', input_image)
# Initialize SIFT object
sift = cv2.SIFT()
# Detect keypoints using SIFT
keypoints = sift.detect(gray_image, None)
# Draw SIFT keypoints on the input image
input_image_sift = cv2.drawKeypoints(input_image_sift,
keypoints, flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# Display the output image
cv2.imshow('SIFT detector', input_image_sift)
# Wait until user presses a key
cv2.waitKey()