-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchapter-4.py
269 lines (260 loc) · 10.9 KB
/
chapter-4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
import cv2
import numpy as np
#Detecting and tracking faces
folder_path='C:/Users/HP/Anaconda3/envs/cameo/Library/etc/haarcascades'
face_path=folder_path+'/haarcascade_frontalface_alt.xml'
eye_path=folder_path+'/haarcascade_eye.xml'
img_folder_path='C:/Users/HP/Downloads/opencv-computer_vision/images'
'''
face_cascade =cv2.CascadeClassifier(face_path)
cap = cv2.VideoCapture(0)
scaling_factor = 0.5
while True:
ret, frame = cap.read()
frame = cv2.resize(frame, None, fx=scaling_factor, fy=scaling_factor,interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
face_rects = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in face_rects:
cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)
cv2.imshow('Face Detector', frame)
c = cv2.waitKey(1)
if c == 27:
break
cap.release()
cv2.destroyAllWindows()
'''
#Fun with faces
'''
face_cascade =cv2.CascadeClassifier(face_path)
face_mask = cv2.imread('mask_hannibal.png')
h_mask, w_mask = face_mask.shape[:2]
if face_cascade.empty():
raise IOError('Unable to load the face cascade classifier xml file')
cap = cv2.VideoCapture(0)
scaling_factor = 0.5
while True:
ret, frame = cap.read()
frame = cv2.resize(frame, None, fx=scaling_factor, fy=scaling_factor,interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
face_rects = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in face_rects:
if h > 0 and w > 0:
# Adjust the height and weight parameters depending on the sizes and the locations. You need to play around with these to make sure you get it right.
h, w = int(1.4*h), int(1.0*w)
y -= 0.1*h
# Extract the region of interest from the image
frame_roi = frame[y:y+h, x:x+w]
face_mask_small = cv2.resize(face_mask, (w, h),interpolation=cv2.INTER_AREA)
# Convert color image to grayscale and threshold it
gray_mask = cv2.cvtColor(face_mask_small, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(gray_mask, 180, 255,cv2.THRESH_BINARY_INV)
# Create an inverse mask
mask_inv = cv2.bitwise_not(mask)
# Use the mask to extract the face mask region of interest
masked_face = cv2.bitwise_and(face_mask_small, face_mask_small,mask=mask)
# Use the inverse mask to get the remaining part of the image
masked_frame = cv2.bitwise_and(frame_roi, frame_roi,mask=mask_inv)
# add the two images to get the final output
frame[y:y+h, x:x+w] = cv2.add(masked_face, masked_frame)
cv2.imshow('Face Detector', frame)
c = cv2.waitKey(1)
if c == 27:break
cap.release()
cv2.destroyAllWindows()
'''
#Detecting eyes
'''
face_cascade =cv2.CascadeClassifier(face_path)
eye_cascade = cv2.CascadeClassifier(eye_path)
if face_cascade.empty():
raise IOError('Unable to load the face cascade classifier xml file')
if eye_cascade.empty():
raise IOError('Unable to load the eye cascade classifier xml file')
cap = cv2.VideoCapture(0)
ds_factor = 0.5
while True:
ret, frame = cap.read()
frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor,interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
roi_gray = gray[y:y+h, x:x+w]
roi_color = frame[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (x_eye,y_eye,w_eye,h_eye) in eyes:
center = (int(x_eye + 0.5*w_eye), int(y_eye + 0.5*h_eye))
radius = int(0.3 * (w_eye + h_eye))
color = (0, 255, 0)
thickness = 3
cv2.circle(roi_color, center, radius, color, thickness)
cv2.imshow('Eye Detector', frame)
c = cv2.waitKey(1)
if c == 27:
break
cap.release()
cv2.destroyAllWindows()
'''
#Fun with eyes
'''
face_cascade =cv2.CascadeClassifier(face_path)
eye_cascade = cv2.CascadeClassifier(eye_path)
if face_cascade.empty():
raise IOError('Unable to load the face cascade classifier xml file')
if eye_cascade.empty():
raise IOError('Unable to load the eye cascade classifier xml file')
img_folder_path='C:/Users/HP/Downloads/opencv-computer_vision/images'
img = cv2.imread(img_folder_path+'/input.jpg')
sunglasses_img = cv2.imread(img_folder_path+'/sunglasses.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
centers = []
faces = face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
roi_gray = gray[y:y+h, x:x+w]
roi_color = img[y:y+h, x:x+w]
eyes = eye_cascade.detectMultiScale(roi_gray)
for (x_eye,y_eye,w_eye,h_eye) in eyes:
centers.append((x + int(x_eye + 0.5*w_eye), y + int(y_eye +0.5*h_eye)))
if len(centers) > 0:
# Overlay sunglasses; the factor 2.12 is customizable depending on the size of the face
sunglasses_width = 2.12 * abs(centers[1][0] - centers[0][0])
overlay_img = np.ones(img.shape, np.uint8) * 255
h, w = sunglasses_img.shape[:2]
scaling_factor = sunglasses_width / w
overlay_sunglasses = cv2.resize(sunglasses_img, None,fx=scaling_factor,fy=scaling_factor, interpolation=cv2.INTER_AREA)
x = centers[0][0] if centers[0][0] < centers[1][0] else centers[1][0]
# customizable X and Y locations; depends on the size of the face
x -= 0.26*overlay_sunglasses.shape[1]
y += 0.85*overlay_sunglasses.shape[0]
h, w = overlay_sunglasses.shape[:2]
overlay_img[y:y+h, x:x+w] = overlay_sunglasses
# Create mask
gray_sunglasses = cv2.cvtColor(overlay_img, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(gray_sunglasses, 110, 255, cv2.THRESH_BINARY)
mask_inv = cv2.bitwise_not(mask)
temp = cv2.bitwise_and(img, img, mask=mask)
temp2 = cv2.bitwise_and(overlay_img, overlay_img, mask=mask_inv)
final_img = cv2.add(temp, temp2)
cv2.imshow('Eye Detector', img)
cv2.imshow('Sunglasses', final_img)
cv2.waitKey()
cv2.destroyAllWindows()
'''
#Detecting ears
'''
left_ear_cascade = cv2.CascadeClassifier(folder_path+'/haarcascade_mcs_leftear.xml')
right_ear_cascade = cv2.CascadeClassifier(folder_path+'/haarcascade_mcs_rightear.xml')
if left_ear_cascade.empty():
raise IOError('Unable to load the left ear cascade classifier xml file')
if right_ear_cascade.empty():
raise IOError('Unable to load the right ear cascade classifier xml file')
img = cv2.imread(img_folder_path+'/input.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
left_ear = left_ear_cascade.detectMultiScale(gray, 1.3, 5)
print(left_ear)
right_ear = right_ear_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in left_ear:
cv2.rectangle(img, (x,y), (x+w,y+h), (0,255,0), 3)
for (x,y,w,h) in right_ear:
cv2.rectangle(img, (x,y), (x+w,y+h), (255,0,0), 3)
cv2.imshow('Ear Detector', img)
cv2.waitKey()
cv2.destroyAllWindows()
'''
#Detecting a mouth
'''
mouth_cascade =cv2.CascadeClassifier(folder_path+'/haarcascade_mcs_mouth.xml')
if mouth_cascade.empty():
raise IOError('Unable to load the mouth cascade classifier xml file')
cap = cv2.VideoCapture(0)
ds_factor = 0.5
while True:
ret, frame = cap.read()
frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor,interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
mouth_rects = mouth_cascade.detectMultiScale(gray, 1.7, 11)
for (x,y,w,h) in mouth_rects:
y = int(y - 0.15*h)
cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)
break
cv2.imshow('Mouth Detector', frame)
c = cv2.waitKey(1)
if c == 27:break
cap.release()
cv2.destroyAllWindows()
'''
#It’s time for a moustache
'''
mouth_cascade = cv2.CascadeClassifier(folder_path+'/haarcascade_mcs_mouth.xml')
moustache_mask = cv2.imread(img_folder_path+'/moustache.png')
h_mask, w_mask = moustache_mask.shape[:2]
if mouth_cascade.empty():raise IOError('Unable to load the mouth cascade classifier xml file')
cap = cv2.VideoCapture(0)
scaling_factor = 0.5
while True:
ret, frame = cap.read()
frame = cv2.resize(frame, None, fx=scaling_factor, fy=scaling_factor,interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
mouth_rects = mouth_cascade.detectMultiScale(gray, 1.3, 5)
if len(mouth_rects) > 0:
(x,y,w,h) = mouth_rects[0]
h, w = int(0.6*h), int(1.2*w)
x -= 0.05*w
y -= 0.55*h
frame_roi = frame[y:y+h, x:x+w]
moustache_mask_small = cv2.resize(moustache_mask, (w, h),
interpolation=cv2.INTER_AREA)
gray_mask = cv2.cvtColor(moustache_mask_small, cv2.COLOR_BGR2GRAY)
ret, mask = cv2.threshold(gray_mask, 50, 255,cv2.THRESH_BINARY_INV)
mask_inv = cv2.bitwise_not(mask)
masked_mouth = cv2.bitwise_and(moustache_mask_small,moustache_mask_small, mask=mask)
masked_frame = cv2.bitwise_and(frame_roi, frame_roi, mask=mask_inv)
frame[y:y+h, x:x+w] = cv2.add(masked_mouth, masked_frame)
cv2.imshow('Moustache', frame)
c = cv2.waitKey(1)
if c == 27:
break
cap.release()
cv2.destroyAllWindows()
'''
#Detecting a nose
'''
nose_cascade =cv2.CascadeClassifier(folder_path+'/haarcascade_mcs_nose.xml')
if nose_cascade.empty():raise IOError('Unable to load the nose cascade classifier xml file')
cap = cv2.VideoCapture(0)
ds_factor = 0.5
while True:
ret, frame = cap.read()
frame = cv2.resize(frame, None, fx=ds_factor, fy=ds_factor, interpolation=cv2.INTER_AREA)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
nose_rects = nose_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in nose_rects:
cv2.rectangle(frame, (x,y), (x+w,y+h), (0,255,0), 3)
break
cv2.imshow('Nose Detector', frame)
c = cv2.waitKey(1)
if c == 27:break
cap.release()
cv2.destroyAllWindows()
'''
#Detecting pupils
import math
img = cv2.imread(img_folder_path+'/input.jpg')
scaling_factor = 0.7
img = cv2.resize(img, None, fx=scaling_factor, fy=scaling_factor,interpolation=cv2.INTER_AREA)
cv2.imshow('Input', img)
gray = cv2.cvtColor(~img, cv2.COLOR_BGR2GRAY)
ret, thresh_gray = cv2.threshold(gray, 220, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh_gray, cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE)
for contour in contours:
area = cv2.contourArea(contour)
rect = cv2.boundingRect(contour)
x, y, width, height = rect
radius = 0.25 * (width + height)
area_condition = (100 <= area <= 200)
symmetry_condition = (abs(1 - float(width)/float(height)) <= 0.2)
fill_condition = (abs(1 - (area / (math.pi * math.pow(radius, 2.0))))<= 0.3)
if area_condition and symmetry_condition and fill_condition:
cv2.circle(img, (int(x + radius), int(y + radius)),int(1.3*radius), (0,180,0), -1)
cv2.imshow('Pupil Detector', img)
c = cv2.waitKey()
cv2.destroyAllWindows()