-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathchapter-5.py
126 lines (103 loc) · 3.9 KB
/
chapter-5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import cv2
import numpy as np
img_folder_path='C:/Users/HP/Downloads/opencv-computer_vision/images'
#Detecting the corners
'''
img = cv2.imread(img_folder_path+'/box.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
dst = cv2.cornerHarris(gray, 4,5, 0.04) # to detect only sharp corners
#dst = cv2.cornerHarris(gray, 14, 5, 0.04) # to detect soft corners
# Result is dilated for marking the corners
dst = cv2.dilate(dst,None)
# Threshold for an optimal value, it may vary depending on the image.
img[dst > 0.01*dst.max()] = [0,0,0]
cv2.imshow('Harris Corners',img)
cv2.waitKey()
'''
#Good Features to track
'''
img = cv2.imread(img_folder_path+'/box.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
corners = cv2.goodFeaturesToTrack(gray, 7, 0.05, 25)
corners = np.float32(corners)
for item in corners:
x, y = item[0]
cv2.circle(img, (x,y), 5, 255, -1)
cv2.imshow("Top 'k' features", img)
cv2.waitKey()
'''
#Scale Invariant Feature Transform (SIFT)
'''
input_image = cv2.imread(img_folder_path+'/box.jpg')
gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)
sift = cv2.SIFT()
keypoints = sift.detect(gray_image, None)
input_image = cv2.drawKeypoints(input_image, keypoints,outImage=None,flags=cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
cv2.imshow('SIFT features', input_image)
cv2.waitKey()
'''
#Speeded Up Robust Features (SURF)
'''
img = cv2.imread(img_folder_path+'/box.jpg')
gray= cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
surf = cv2.SURF()
# This threshold controls the number of keypoints
surf.hessianThreshold = 15000
kp, des = surf.detectAndCompute(gray, None)
img = cv2.drawKeypoints(img, kp, None, (0,255,0), 4)
cv2.imshow('SURF features', img)
cv2.waitKey()
'''
#Features from Accelerated Segment Test(FAST)
'''
gray_image = cv2.imread(img_folder_path+'/wrench.png', 0)
cv2.imshow("Gray image",gray_image)
fast = cv2.FastFeatureDetector()
# Detect keypoints
keypoints = fast.detect(gray_image, None)
print("Number of keypoints with non max suppression:", len(keypoints))
# Draw keypoints on top of the input image
img_keypoints_with_nonmax = cv2.drawKeypoints(gray_image, keypoints, color=(0,255,0))
cv2.imshow('FAST keypoints - with non max suppression',img_keypoints_with_nonmax)
# Disable nonmaxSuppression
fast.setBool('nonmaxSuppression', False)
# Detect keypoints again
keypoints = fast.detect(gray_image, None)
print("Total Keypoints without non max suppression:", len(keypoints))
# Draw keypoints on top of the input image
img_keypoints_without_nonmax = cv2.drawKeypoints(gray_image, keypoints,color=(0,255,0))
cv2.imshow('FAST keypoints - without non max suppression',img_keypoints_without_nonmax)
cv2.waitKey()
cv2.destroyAllWindows()
'''
#Binary Robust Independent Elementary Features (BRIEF)
'''
gray_image = cv2.imread(img_folder_path+'/wrench.png', 0)
# Initiate FAST detector
fast = cv2.FastFeatureDetector()
# Initiate BRIEF extractor
brief = cv2.DescriptorExtractor_create("BRIEF")
# find the keypoints with STAR
keypoints = fast.detect(gray_image, None)
# compute the descriptors with BRIEF
keypoints, descriptors = brief.compute(gray_image, keypoints)
gray_keypoints = cv2.drawKeypoints(gray_image, keypoints, None,color=(0,255,0))
cv2.imshow('BRIEF keypoints', gray_keypoints)
cv2.waitKey()
'''
#Oriented FAST and Rotated BRIEF (ORB)
'''
input_image = cv2.imread(img_folder_path+'/input.jpg')
gray_image = cv2.cvtColor(input_image, cv2.COLOR_BGR2GRAY)
# Initiate ORB object
orb = cv2.ORB()
# find the keypoints with ORB
keypoints = orb.detect(gray_image, None)
# compute the descriptors with ORB
keypoints, descriptors = orb.compute(gray_image, keypoints)
# draw only the location of the keypoints without size or orientation
final_keypoints = cv2.drawKeypoints(input_image, keypoints,None, color=(0,255,0), flags=0)
cv2.imshow('ORB keypoints', final_keypoints)
cv2.waitKey()
'''