Skip to content

Latest commit

 

History

History
87 lines (57 loc) · 2.24 KB

README.md

File metadata and controls

87 lines (57 loc) · 2.24 KB

Easy Histogram

This is a very small python package used to make histograms in python, and optionally plot them with matplotlib. The underlying histogramming tool is from numpy. This provides a very handy wrappers around them to easily make common histograms in 1d and 2d and plot with nice labels.

Installation

$ pip install easyhist

Usage

You can import the library and make histograms and plot them(optionally)

import numpy as np
import matplotlib.pyplot as plt
import easyhist as eh


# initialize data
x = np.random.normal(0,1,10000)
h = eh.Hist1D(x,bins='auto')

The returned histogram object has a handy plot method which uses matplotlib to plot the histogram.

fig,ax = plt.subplots(1,1,figsize=(12,6))

h.plot(ax)

The histogram comes by default with error bars. Different keyword parameters can be passed to customise the histogram.

fig,ax= plt.subplots(1,1,figsize=(12,6))
h.plot(ax,steps=True,ebar=False,filled=True)

Axes labels and titles can be passed to the plot function.

fig,ax= plt.subplots(1,1,figsize=(12,6))
h.plot(ax,steps=True,ebar=False,filled=True,xlabel='x (unit)',ylabel='y(unit)',title='Test')

Many times we have to fit gaussian to the histogram. An easy fit_normal method is provided with fits normal_distribution to the dateset.

h_fited = h.fit_normal()

Since the fitted object is an instance of Hist1D we can use the plot method as above to plot.

fig,ax= plt.subplots(1,1,figsize=(12,6))
h_fited.plot(ax,steps=True,ebar=False,filled=True,xlabel='x (unit)',ylabel='y(unit)',title='Test')

2D Histogram

The library naturally has Hist2D class for 2D histogram.

y = np.random.normal(2,3,10000)
h2d = eh.Hist2D((x,y),bins=200)

We can similarly plot the histogram.

fig,ax= plt.subplots(1,1,figsize=(12,6))
h2d.plot(ax,steps=True,ebar=False,filled=True,xlabel='x (unit)',ylabel='y(unit)',title='Test',cbarlabel='Colorbar',aspect='auto',cmin=1)

There are a lot of othe nice useful features which can be found in the documentation.