diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index dbe1aa0..30a08bb 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -34,3 +34,17 @@ jobs: pip install . - name: Run tests run: pytest tests + doctest: + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + - uses: actions/setup-python@v5 + with: + python-version: "3.10" + - name: Install dependencies + run: | + pip install pytest + pip install torch==2.0 --extra-index-url https://download.pytorch.org/whl/cpu + pip install . + - name: Run doctests + run: pytest zuko --doctest-modules diff --git a/CONTRIBUTING.md b/CONTRIBUTING.md index 43893ff..a02a18e 100644 --- a/CONTRIBUTING.md +++ b/CONTRIBUTING.md @@ -40,6 +40,12 @@ We use [pytest](https://docs.pytest.org) to test our code base. If your contribu pytest tests ``` +Additionally, examples in the documentation are tested with + +``` +pytest zuko --doctest-modules +``` + When you submit a pull request, tests are automatically (upon approval) executed for several versions of Python and PyTorch. ### Code conventions diff --git a/pyproject.toml b/pyproject.toml index 2a54d9c..b6af6e4 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -63,6 +63,9 @@ exclude = ["*.ipynb"] preview = true quote-style = "preserve" +[tool.setuptools] +packages = ["zuko"] + [tool.setuptools.dynamic] dependencies = {file = "requirements.txt"} version = {attr = "zuko.__version__"} diff --git a/tests/conftest.py b/tests/conftest.py new file mode 100644 index 0000000..39830d7 --- /dev/null +++ b/tests/conftest.py @@ -0,0 +1,12 @@ +r"""Tests configuration.""" + +import pytest +import torch + + +@pytest.fixture(autouse=True, scope='module') +def torch_float64(): + try: + yield torch.set_default_dtype(torch.float64) + finally: + torch.set_default_dtype(torch.float32) diff --git a/tests/test_flows.py b/tests/test_flows.py index b59469a..4d7d44d 100644 --- a/tests/test_flows.py +++ b/tests/test_flows.py @@ -8,8 +8,6 @@ from torch import randn from zuko.flows import * -torch.set_default_dtype(torch.float64) - @pytest.mark.parametrize('F', [GMM, NICE, MAF, NSF, SOSPF, NAF, UNAF, CNF, GF, BPF]) def test_flows(tmp_path: Path, F: callable): diff --git a/tests/test_transforms.py b/tests/test_transforms.py index 53e777f..16f7bd4 100644 --- a/tests/test_transforms.py +++ b/tests/test_transforms.py @@ -7,8 +7,6 @@ from torch.distributions import * from zuko.transforms import * -torch.set_default_dtype(torch.float64) - @pytest.mark.parametrize('batched', [False, True]) def test_univariate_transforms(batched: bool): diff --git a/tests/test_utils.py b/tests/test_utils.py index 0d4eabd..9c6b417 100644 --- a/tests/test_utils.py +++ b/tests/test_utils.py @@ -6,8 +6,6 @@ from torch import randn from zuko.utils import * -torch.set_default_dtype(torch.float64) - def test_bisection(): alpha = torch.tensor(1.0, requires_grad=True) diff --git a/zuko/conftest.py b/zuko/conftest.py new file mode 100644 index 0000000..4ba4a97 --- /dev/null +++ b/zuko/conftest.py @@ -0,0 +1,17 @@ +r"""Doctests configuration.""" + +import pytest +import torch +import zuko + + +@pytest.fixture(autouse=True, scope='module') +def doctest_imports(doctest_namespace): + doctest_namespace['torch'] = torch + doctest_namespace['zuko'] = zuko + + +@pytest.fixture(autouse=True) +def torch_seed(): + with torch.random.fork_rng(): + yield torch.random.manual_seed(0) diff --git a/zuko/distributions.py b/zuko/distributions.py index 6744861..40cf2d8 100644 --- a/zuko/distributions.py +++ b/zuko/distributions.py @@ -65,7 +65,7 @@ class NormalizingFlow(Distribution): Example: >>> d = NormalizingFlow(ExpTransform(), Gamma(2.0, 1.0)) >>> d.sample() - tensor(1.1316) + tensor(1.5157) """ has_rsample = True @@ -153,7 +153,7 @@ class Joint(Distribution): >>> d.event_shape torch.Size([2]) >>> d.sample() - tensor([ 0.8969, -2.6717]) + tensor([0.4963, 0.2072]) """ has_rsample = True @@ -231,7 +231,7 @@ class Mixture(Distribution): >>> d.event_shape torch.Size([]) >>> d.sample() - tensor(2.8732) + tensor(-1.6920) """ has_rsample = False @@ -301,7 +301,7 @@ class GeneralizedNormal(Distribution): Example: >>> d = GeneralizedNormal(2.0) >>> d.sample() - tensor(0.7480) + tensor(-0.0281) """ arg_constraints = {'beta': constraints.positive} @@ -350,7 +350,7 @@ class DiagNormal(Independent): >>> d.event_shape torch.Size([3]) >>> d.sample() - tensor([ 0.7304, -0.1976, -1.7591]) + tensor([ 1.5410, -0.2934, -2.1788]) """ def __init__(self, loc: Tensor, scale: Tensor, ndims: int = 1): @@ -383,7 +383,7 @@ class BoxUniform(Independent): >>> d.event_shape torch.Size([3]) >>> d.sample() - tensor([ 0.1859, -0.9698, 0.0665]) + tensor([-0.0075, 0.5364, -0.8230]) """ def __init__(self, lower: Tensor, upper: Tensor, ndims: int = 1): @@ -416,7 +416,7 @@ class TransformedUniform(NormalizingFlow): Example: >>> d = TransformedUniform(ExpTransform(), -1.0, 1.0) >>> d.sample() - tensor(0.5594) + tensor(0.4281) """ def __init__(self, f: Transform, lower: Tensor, upper: Tensor): @@ -445,7 +445,7 @@ class Truncated(Distribution): Example: >>> d = Truncated(Normal(0.0, 1.0), 1.0, 2.0) >>> d.sample() - tensor(1.2573) + tensor(1.3333) """ has_rsample = True @@ -509,7 +509,7 @@ class Sort(Distribution): >>> d.event_shape torch.Size([3]) >>> d.sample() - tensor([-1.4434, -0.3861, 0.2439]) + tensor([-2.1788, -0.2934, 1.5410]) """ def __init__( @@ -590,7 +590,7 @@ class TopK(Sort): >>> d.event_shape torch.Size([2]) >>> d.sample() - tensor([-0.2167, 0.6739]) + tensor([-2.1788, -0.2934]) """ def __init__( @@ -646,7 +646,7 @@ class Minimum(TopK): >>> d.event_shape torch.Size([]) >>> d.sample() - tensor(-1.7552) + tensor(-2.1788) """ def __init__(self, base: Distribution, n: int = 2): @@ -687,7 +687,7 @@ class Maximum(Minimum): >>> d.event_shape torch.Size([]) >>> d.sample() - tensor(1.1644) + tensor(1.5410) """ def __init__(self, base: Distribution, n: int = 2): diff --git a/zuko/flows/autoregressive.py b/zuko/flows/autoregressive.py index 2146dbf..b807771 100644 --- a/zuko/flows/autoregressive.py +++ b/zuko/flows/autoregressive.py @@ -59,11 +59,11 @@ class MaskedAutoregressiveTransform(LazyTransform): ) >>> x = torch.randn(3) >>> x - tensor([-0.9485, 1.5290, 0.2018]) + tensor([ 1.7428, -1.6483, -0.9920]) >>> c = torch.randn(4) >>> y = t(c)(x) >>> t(c).inv(y) - tensor([-0.9485, 1.5290, 0.2018]) + tensor([ 1.7428, -1.6483, -0.9920], grad_fn=) """ def __new__( @@ -205,9 +205,9 @@ class MAF(Flow): >>> c = torch.randn(4) >>> x = flow(c).sample() >>> x - tensor([-1.7154, -0.4401, 0.7505]) + tensor([-0.5005, -1.6303, 0.3805]) >>> flow(c).log_prob(x) - tensor(-4.4630, grad_fn=) + tensor(-3.7514, grad_fn=) """ def __init__( diff --git a/zuko/flows/continuous.py b/zuko/flows/continuous.py index fe9c2e1..db103eb 100644 --- a/zuko/flows/continuous.py +++ b/zuko/flows/continuous.py @@ -55,11 +55,12 @@ class FFJTransform(LazyTransform): ) >>> x = torch.randn(3) >>> x - tensor([ 0.1777, 1.0139, -1.0370]) + tensor([ 0.6365, -0.3181, 1.1519]) >>> c = torch.randn(4) >>> y = t(c)(x) >>> t(c).inv(y) - tensor([ 0.1777, 1.0139, -1.0370]) + tensor([ 0.6364, -0.3181, 1.1519], + grad_fn=) """ def __init__( diff --git a/zuko/flows/core.py b/zuko/flows/core.py index 7bc838f..b32ccbe 100644 --- a/zuko/flows/core.py +++ b/zuko/flows/core.py @@ -181,19 +181,20 @@ class Unconditional(nn.Module): kwargs: The keyword arguments passed to `meta`. Examples: + >>> f = zuko.distributions.DiagNormal >>> mu, sigma = torch.zeros(3), torch.ones(3) - >>> d = Unconditional(DiagNormal, mu, sigma, buffer=True) + >>> d = Unconditional(f, mu, sigma, buffer=True) >>> d() DiagNormal(loc: torch.Size([3]), scale: torch.Size([3])) >>> d().sample() - tensor([-0.6687, -0.9690, 1.7461]) + tensor([ 1.5410, -0.2934, -2.1788]) - >>> t = Unconditional(ExpTransform) + >>> t = Unconditional(zuko.transforms.ExpTransform) >>> t() ExpTransform() >>> x = torch.randn(3) >>> t()(x) - tensor([0.5523, 0.7997, 0.9189]) + tensor([1.7655, 0.3381, 0.2469]) """ def __init__( diff --git a/zuko/flows/coupling.py b/zuko/flows/coupling.py index 3d8a0c9..538cfab 100644 --- a/zuko/flows/coupling.py +++ b/zuko/flows/coupling.py @@ -56,11 +56,11 @@ class GeneralCouplingTransform(LazyTransform): ) >>> x = torch.randn(3) >>> x - tensor([-0.8743, 0.6232, 1.2439]) + tensor([-0.7900, -0.3259, -1.3184]) >>> c = torch.randn(4) >>> y = t(c)(x) >>> t(c).inv(y) - tensor([-0.8743, 0.6232, 1.2439]) + tensor([-0.7900, -0.3259, -1.3184], grad_fn=) """ def __new__( diff --git a/zuko/flows/gaussianization.py b/zuko/flows/gaussianization.py index 6665e69..2ff8f51 100644 --- a/zuko/flows/gaussianization.py +++ b/zuko/flows/gaussianization.py @@ -51,11 +51,11 @@ class ElementWiseTransform(LazyTransform): ) >>> x = torch.randn(3) >>> x - tensor([2.1983, -1.3182, 0.0329]) + tensor([ 0.0303, 0.3644, -1.1831]) >>> c = torch.randn(4) >>> y = t(c)(x) >>> t(c).inv(y) - tensor([2.1983, -1.3182, 0.0329]) + tensor([ 0.0303, 0.3644, -1.1831], grad_fn=) """ def __init__( diff --git a/zuko/nn.py b/zuko/nn.py index 2aaa681..db96dbd 100644 --- a/zuko/nn.py +++ b/zuko/nn.py @@ -233,10 +233,10 @@ class MaskedMLP(nn.Sequential): Example: >>> adjacency = torch.randn(4, 3) < 0 >>> adjacency - tensor([[False, True, False], - [ True, False, True], - [False, True, False], - [False, True, True]]) + tensor([[False, True, True], + [False, True, True], + [False, False, True], + [ True, True, False]]) >>> net = MaskedMLP(adjacency, [16, 32], activation=nn.ELU) >>> net MaskedMLP( @@ -248,10 +248,10 @@ class MaskedMLP(nn.Sequential): ) >>> x = torch.randn(3) >>> torch.autograd.functional.jacobian(net, x) - tensor([[ 0.0000, 0.0031, 0.0000], - [-0.0323, 0.0000, -0.0547], - [ 0.0000, -0.0245, 0.0000], - [ 0.0000, 0.0060, -0.0063]]) + tensor([[ 0.0000, -0.0065, 0.1158], + [ 0.0000, -0.0089, 0.0072], + [ 0.0000, 0.0000, 0.0089], + [-0.0146, -0.0128, 0.0000]]) """ def __init__( @@ -374,10 +374,10 @@ class MonotonicMLP(MLP): ) >>> x = torch.randn(3) >>> torch.autograd.functional.jacobian(net, x) - tensor([[0.8742, 0.9439, 0.9759], - [0.8969, 0.9716, 0.9866], - [1.0780, 1.1651, 1.2056], - [0.8596, 0.9400, 0.9502]]) + tensor([[1.0492, 1.3094, 1.1711], + [1.1201, 1.3825, 1.2711], + [0.9397, 1.1915, 1.0787], + [1.1049, 1.3635, 1.2592]]) """ def __init__(self, *args, **kwargs): diff --git a/zuko/utils.py b/zuko/utils.py index 1b55cf9..74d910f 100644 --- a/zuko/utils.py +++ b/zuko/utils.py @@ -302,7 +302,7 @@ def odeint( >>> x0 = torch.randn(3) >>> x1 = odeint(f, x0, 0.0, 1.0) >>> x1 - tensor([-3.7454, -0.4140, 0.2677]) + tensor([-1.4596, 0.5008, 1.5828]) """ settings = (atol, rtol, torch.is_grad_enabled())