forked from medgift/PROCESS_L1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_xml.py
117 lines (101 loc) · 3.97 KB
/
extract_xml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from xml.etree.ElementTree import parse
from os import listdir
from os.path import join, isfile, exists, splitext
import numpy as np
from openslide import OpenSlide
import collections
def make_list_of_contour_from_xml(fn_xml,downsample):
"""
make the list of contour from xml(annotation file)
input:
fn_xml = file name of xml file
downsample = disired resolution
var:
li_li_point = list of tumors
li_point = the coordinates([x,y]) of a tumor
return list of list (2D array list)
"""
li_li_point = []
tree = parse(fn_xml)
for parent in tree.getiterator():
for i_1, child1 in enumerate(parent):
for i_2, child2 in enumerate(child1):
for i_3, child3 in enumerate(child2):
li_point=[]
for i_4, child4 in enumerate(child3):
x_0 = float(child4.attrib['X'])
y_0 = float(child4.attrib['Y'])
x_s = x_0/downsample
y_s = y_0/downsample
li_point.append([x_s,y_s])
if len(li_point):
li_li_point.append(li_point)
return li_li_point
def convert_list_of_contour_2_opencv_contours(li_li_point):
"""
conver list of contour(2D list array) to opencv contours
that list of nparray (not 2-d nparray !)
input:
li_li_point = list of contours
var:
countours = list of contours
contour = nparray with x,y coordinate
return opencv contours
"""
contours=[]
for li_point in li_li_point:
li_point_int = [[int(round(point[0])), int(round(point[1]))] for point in li_point]
contour = np.array(li_point_int,dtype = np.int32)
contours.append(contour)
return contours
def get_opencv_contours_from_xml(fn_xml,downsample):
""""
get opencv contours( list of nparrays) from xml annotation file
input:
fn_xml = xml file name
downsample = disired downsample
return list of contours
"""
li_li_point = make_list_of_contour_from_xml(fn_xml,downsample)
l_contours = convert_list_of_contour_2_opencv_contours(li_li_point)
return l_contours
def convert_contour_coordinate_resolution(l_contours,downsample):
"""
convert contours coordinate to downsample resolution
input:
l_contours : list of contours coordinate(x,y) in level 0 resolution
downsample : disired resolution
return coverted contour list
"""
cvted_l_contours =[]
for contour in l_contours:
print ('shape: ', contour.shape)
downsample_coor = contour / downsample
downsample_coor = (downsample_coor).astype(int)
downsample_coor = np.unique(downsample_coor,axis=0)
cvted_l_contours.append(downsample_coor)
return cvted_l_contours
def get_mask_from_opencv_contours(l_contours,slide,level) :
"""
get binary image map in certain level(resolution)
input:
l_contour = list of nparray that contain coordinate(x,y)
slide = to obtain dimension of mask
level = desired level
return tumor mask image (binary image 0-1)
"""
slid_lev_w, slid_lev_h = slide.level_dimensions[level]
mask_image = np.zeros((slid_lev_h,slid_lev_w))
print "mask_image dimension : ", mask_image.shape
downsample = slide.level_downsamples[level]
print "downsample: {0}".format(downsample)
#convert coordinate to the level resolution from level=0
for i,npary in enumerate(l_contours):
print "tummor number : {0}".format(i)
#check 1 in the tummor region
li_xy = npary.flatten()
import pdb; pdb.set_trace()
d_x, d_y = li_xy[::2],li_xy[1::2]
mask_image[d_x,d_y] = 255.0
print "put {0} tummor".format(i)
return mask_image