Skip to content
This repository was archived by the owner on May 30, 2019. It is now read-only.

Commit 8e0e5f2

Browse files
committed
Improve tslint with tslint-eslint-rules.
1 parent 2f282a5 commit 8e0e5f2

26 files changed

+138
-134
lines changed

src/api_test.ts

+49-48
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@
1212
See the License for the specific language governing permissions and
1313
limitations under the License.
1414
*/
15+
// tslint:disable:no-multi-spaces
1516
import { test } from "../tools/tester";
1617
import { concat, fill, grad, linspace, listDevices, multigrad,
1718
ones, Params, randn, range, stack, tensor, Tensor,
@@ -342,9 +343,9 @@ test(async function api_reverse() {
342343
assertAllEqual(tensor([1, 2, 3, 4]).reverse(), [4, 3, 2, 1]);
343344

344345
const t = tensor([[
345-
[[ 0, 1, 2, 3],
346-
[ 4, 5, 6, 7],
347-
[ 8, 9, 10, 11]],
346+
[[0, 1, 2, 3],
347+
[4, 5, 6, 7],
348+
[8, 9, 10, 11]],
348349
[[12, 13, 14, 15],
349350
[16, 17, 18, 19],
350351
[20, 21, 22, 23]]
@@ -354,16 +355,16 @@ test(async function api_reverse() {
354355
[[12, 13, 14, 15],
355356
[16, 17, 18, 19],
356357
[20, 21, 22, 23]],
357-
[[ 0, 1, 2, 3],
358-
[ 4, 5, 6, 7],
359-
[ 8, 9, 10, 11]]
358+
[[0, 1, 2, 3],
359+
[4, 5, 6, 7],
360+
[8, 9, 10, 11]]
360361
]]);
361362
assertAllEqual(t.reverse([1]), tR1);
362363
assertAllEqual(t.reverse([-3]), tR1);
363364
const tR2 = tensor([[
364-
[[ 8, 9, 10, 11],
365-
[ 4, 5, 6, 7],
366-
[ 0, 1, 2, 3]],
365+
[[8, 9, 10, 11],
366+
[4, 5, 6, 7],
367+
[0, 1, 2, 3]],
367368
[[20, 21, 22, 23],
368369
[16, 17, 18, 19],
369370
[12, 13, 14, 15]]
@@ -527,8 +528,8 @@ testDevices(async function api_onesAndZerosLike(tensor, device) {
527528
const zeros = a.zerosLike();
528529
assertEqual(ones.device, device);
529530
assertEqual(zeros.device, device);
530-
assertAllEqual(ones, [ [1, 1, 1], [1, 1, 1] ]);
531-
assertAllEqual(zeros, [ [0, 0, 0], [0, 0, 0] ]);
531+
assertAllEqual(ones, [[1, 1, 1], [1, 1, 1]]);
532+
assertAllEqual(zeros, [[0, 0, 0], [0, 0, 0]]);
532533
});
533534

534535
test(async function api_equal() {
@@ -543,14 +544,14 @@ test(async function api_equal() {
543544
const r = a.equal(b);
544545
assertEqual(r.dtype, "bool");
545546
// TODO Allow assertAllEqual to handle boolean.
546-
assertAllEqual(r, [ [1, 0, 1], [0, 1, 0] ]);
547+
assertAllEqual(r, [[1, 0, 1], [0, 1, 0]]);
547548

548549
// equal isn't differentiable but it should have the same behavior as
549550
// autograd does.
550551
const f = (x, y) => tensor(x).equal(y);
551552
const g = multigrad(f, [0, 1]);
552-
assertAllEqual(g(a, b)[0], [ [0, 0, 0], [0, 0, 0] ]);
553-
assertAllEqual(g(a, b)[1], [ [0, 0, 0], [0, 0, 0] ]);
553+
assertAllEqual(g(a, b)[0], [[0, 0, 0], [0, 0, 0]]);
554+
assertAllEqual(g(a, b)[1], [[0, 0, 0], [0, 0, 0]]);
554555
});
555556

556557
test(async function api_greater() {
@@ -565,13 +566,13 @@ test(async function api_greater() {
565566
const r = a.greater(b);
566567
assertEqual(r.dtype, "bool");
567568
// TODO Allow assertAllEqual to handle boolean.
568-
assertAllEqual(r, [ [0, 1, 0], [1, 0, 0] ]);
569+
assertAllEqual(r, [[0, 1, 0], [1, 0, 0]]);
569570
// greater isn't differentiable but it should have the same behavior as
570571
// autograd does.
571572
const f = (x, y) => tensor(x).greater(y);
572573
const g = multigrad(f, [0, 1]);
573-
assertAllEqual(g(a, b)[0], [ [0, 0, 0], [0, 0, 0] ]);
574-
assertAllEqual(g(a, b)[1], [ [0, 0, 0], [0, 0, 0] ]);
574+
assertAllEqual(g(a, b)[0], [[0, 0, 0], [0, 0, 0]]);
575+
assertAllEqual(g(a, b)[1], [[0, 0, 0], [0, 0, 0]]);
575576
});
576577

577578
test(async function api_greaterEqual() {
@@ -586,13 +587,13 @@ test(async function api_greaterEqual() {
586587
const r = a.greaterEqual(b);
587588
assertEqual(r.dtype, "bool");
588589
// TODO Allow assertAllEqual to handle boolean.
589-
assertAllEqual(r, [ [1, 1, 1], [1, 1, 0] ]);
590+
assertAllEqual(r, [[1, 1, 1], [1, 1, 0]]);
590591
// greaterEqual isn't differentiable but it should have the same behavior as
591592
// autograd does.
592593
const f = (x, y) => tensor(x).greaterEqual(y);
593594
const g = multigrad(f, [0, 1]);
594-
assertAllEqual(g(a, b)[0], [ [0, 0, 0], [0, 0, 0] ]);
595-
assertAllEqual(g(a, b)[1], [ [0, 0, 0], [0, 0, 0] ]);
595+
assertAllEqual(g(a, b)[0], [[0, 0, 0], [0, 0, 0]]);
596+
assertAllEqual(g(a, b)[1], [[0, 0, 0], [0, 0, 0]]);
596597
});
597598

598599
test(async function api_less() {
@@ -607,13 +608,13 @@ test(async function api_less() {
607608
const r = a.less(b);
608609
assertEqual(r.dtype, "bool");
609610
// TODO Allow assertAllEqual to handle boolean.
610-
assertAllEqual(r, [ [0, 0, 0], [0, 0, 1] ]);
611+
assertAllEqual(r, [[0, 0, 0], [0, 0, 1]]);
611612
// less isn't differentiable but it should have the same behavior as
612613
// autograd does.
613614
const f = (x, y) => tensor(x).less(y);
614615
const g = multigrad(f, [0, 1]);
615-
assertAllEqual(g(a, b)[0], [ [0, 0, 0], [0, 0, 0] ]);
616-
assertAllEqual(g(a, b)[1], [ [0, 0, 0], [0, 0, 0] ]);
616+
assertAllEqual(g(a, b)[0], [[0, 0, 0], [0, 0, 0]]);
617+
assertAllEqual(g(a, b)[1], [[0, 0, 0], [0, 0, 0]]);
617618
});
618619

619620
test(async function api_lessEqual() {
@@ -628,13 +629,13 @@ test(async function api_lessEqual() {
628629
const r = a.lessEqual(b);
629630
assertEqual(r.dtype, "bool");
630631
// TODO Allow assertAllEqual to handle boolean.
631-
assertAllEqual(r, [ [1, 0, 1], [0, 1, 1] ]);
632+
assertAllEqual(r, [[1, 0, 1], [0, 1, 1]]);
632633
// lessEqual isn't differentiable but it should have the same behavior as
633634
// autograd does.
634635
const f = (x, y) => tensor(x).lessEqual(y);
635636
const g = multigrad(f, [0, 1]);
636-
assertAllEqual(g(a, b)[0], [ [0, 0, 0], [0, 0, 0] ]);
637-
assertAllEqual(g(a, b)[1], [ [0, 0, 0], [0, 0, 0] ]);
637+
assertAllEqual(g(a, b)[0], [[0, 0, 0], [0, 0, 0]]);
638+
assertAllEqual(g(a, b)[1], [[0, 0, 0], [0, 0, 0]]);
638639
});
639640

640641
test(async function api_select() {
@@ -643,7 +644,7 @@ test(async function api_select() {
643644
[4, 5, 6],
644645
]);
645646
const f = tensor([
646-
[ 7, 8, 9],
647+
[7, 8, 9],
647648
[10, 11, 12],
648649
]);
649650
// TODO Use false/true literals instead of 0 and 1 in cond.
@@ -653,12 +654,12 @@ test(async function api_select() {
653654
], {dtype: "bool"});
654655
const r = cond.select(t, f);
655656
assertAllEqual(r, [
656-
[ 1, 8, 3],
657+
[1, 8, 3],
657658
[10, 5, 12],
658659
]);
659660
// select isn't differentiable.
660661
const g = grad((c) => c.select(t, f));
661-
assertAllEqual(g(cond), [ [0, 0, 0], [0, 0, 0] ]);
662+
assertAllEqual(g(cond), [[0, 0, 0], [0, 0, 0]]);
662663

663664
function f2(x) {
664665
x = tensor(x);
@@ -715,8 +716,8 @@ testDevices(async function api_pad(tensor, device) {
715716
const padded2 = d2.pad([[1, 2], [0, 0]], 42);
716717
assertAllEqual(padded2, [
717718
[42, 42, 42],
718-
[ 9, 5, 7],
719-
[ 6, 8, 4],
719+
[9, 5, 7],
720+
[6, 8, 4],
720721
[42, 42, 42],
721722
[42, 42, 42],
722723
]);
@@ -1002,8 +1003,8 @@ testDevices(async function api_gather(tensor, device) {
10021003
[1, 2, 3, 4],
10031004
]);
10041005
assertAllEqual(t.gather([2, 0], 1), [
1005-
[ 3, 1],
1006-
[ 7, 5],
1006+
[3, 1],
1007+
[7, 5],
10071008
[11, 9]
10081009
]);
10091010
});
@@ -1068,7 +1069,7 @@ testDevices(async function api_oneHot(tensor, device) {
10681069

10691070
const b = tensor([0, 1, 3, 4], {dtype: "int32"});
10701071
assertAllEqual(b.oneHot(5, 0.5, -0.5), [
1071-
[ 0.5, -0.5, -0.5, -0.5, -0.5],
1072+
[0.5, -0.5, -0.5, -0.5, -0.5],
10721073
[-0.5, 0.5, -0.5, -0.5, -0.5],
10731074
[-0.5, -0.5, -0.5, 0.5, -0.5],
10741075
[-0.5, -0.5, -0.5, -0.5, 0.5],
@@ -1094,9 +1095,9 @@ test(async function api_softmaxCE() {
10941095
assertAllClose(ce, [12.00034142, 8.00034142, 3.6003418]);
10951096
const g = grad(f);
10961097
assertAllClose(g(logits), [
1097-
[ -9.99993861e-01, 3.35348042e-04, 9.99658465e-01],
1098-
[ 6.14211376e-06, -9.99664664e-01, 9.99658465e-01],
1099-
[ -2.99993873e-01, 3.35348042e-04, 2.99658477e-01]
1098+
[-9.99993861e-01, 3.35348042e-04, 9.99658465e-01],
1099+
[6.14211376e-06, -9.99664664e-01, 9.99658465e-01],
1100+
[-2.99993873e-01, 3.35348042e-04, 2.99658477e-01]
11001101
]);
11011102
});
11021103

@@ -1129,7 +1130,7 @@ testDevices(async function api_neuralNet(tensor, device) {
11291130
const inference = (params: Params, images: Tensor) => {
11301131
let inputs = images.cast("float32").div(255).reshape([-1, 28 * 28]);
11311132
let outputs;
1132-
const layerSizes = [ 28 * 28, 64, 10 ];
1133+
const layerSizes = [28 * 28, 64, 10];
11331134
for (let i = 0; i < layerSizes.length - 1; ++i) {
11341135
const m = layerSizes[i];
11351136
const n = layerSizes[i + 1];
@@ -1258,10 +1259,10 @@ test(async function api_conv2d() {
12581259
assertShapesEqual(g_[0].shape, img.shape);
12591260
assertShapesEqual(g_[1].shape, filter.shape);
12601261
assertAllEqual(g_[0].squeeze(), [
1261-
[ 0, 1, 1, 1 ],
1262-
[ 2, 6, 6, 4 ],
1263-
[ 2, 6, 6, 4 ],
1264-
[ 2, 5, 5, 3 ],
1262+
[0, 1, 1, 1],
1263+
[2, 6, 6, 4],
1264+
[2, 6, 6, 4],
1265+
[2, 5, 5, 3],
12651266
]);
12661267
assertAllEqual(g_[1].squeeze(), [[45, 54], [81, 90]]);
12671268
});
@@ -1279,10 +1280,10 @@ test(async function api_maxPool() {
12791280
const gx = g(x);
12801281
assertShapesEqual(gx.shape, x.shape);
12811282
assertAllEqual(gx.squeeze(), [
1282-
[ 0, 0, 0, 0 ],
1283-
[ 0, 1, 0, 1 ],
1284-
[ 0, 0, 0, 0 ],
1285-
[ 0, 1, 0, 1 ],
1283+
[0, 0, 0, 0],
1284+
[0, 1, 0, 1],
1285+
[0, 0, 0, 0],
1286+
[0, 1, 0, 1],
12861287
]);
12871288
});
12881289

@@ -1329,8 +1330,8 @@ test(async function api_size() {
13291330

13301331
test(async function api_stopGradientSwallowedErr() {
13311332
function loss(params) {
1332-
const a = api.zeros([ 5 ]);
1333-
const b = api.zeros([ 11 ]);
1333+
const a = api.zeros([5]);
1334+
const b = api.zeros([11]);
13341335
b.stopGradient();
13351336
assert(!shapesEqual(a.shape, b.shape));
13361337
// Because the shapes aren't equal, they should throw error when added

src/backend_test.ts

+4-4
Original file line numberDiff line numberDiff line change
@@ -51,16 +51,16 @@ test(async function backend_cosh() {
5151
const actual = bo.cosh(a);
5252
assertAllEqual(actual.shape, [2, 2]);
5353
const expected = [
54-
[ 1.54308063, 3.76219569],
55-
[ 10.067662 , 27.30823284],
54+
[1.54308063, 3.76219569],
55+
[10.067662, 27.30823284],
5656
];
5757
assertAllClose(actual, expected);
5858
});
5959

6060
test(async function backend_reluGrad() {
6161
const grad = tensor([[-1, 42], [-3, 4]]);
62-
const ans = tensor([[-7, 4], [ 0.1, -9 ]]);
62+
const ans = tensor([[-7, 4], [0.1, -9]]);
6363
const actual = bo.reluGrad(grad, ans);
6464
assertAllEqual(actual.shape, [2, 2]);
65-
assertAllClose(actual, [[0, 42], [-3, 0]]);
65+
assertAllClose(actual, [[0, 42], [-3, 0]]);
6666
});

0 commit comments

Comments
 (0)