-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
436 lines (349 loc) · 14.7 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
from typing import Tuple
import torch
import torch.nn as nn
from torchvision.models import (alexnet,
AlexNet_Weights,
resnet18,
ResNet18_Weights,
ResNet,
resnet101)
############### Blocks
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels, mid_channels=None,
last_activation: nn.Module = nn.ReLU(inplace=True)):
super().__init__()
if mid_channels is None:
mid_channels = out_channels
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, mid_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(mid_channels),
nn.ReLU(inplace=True),
nn.Conv2d(mid_channels, out_channels, kernel_size=3, padding=1, bias=False),
nn.BatchNorm2d(out_channels),
last_activation
)
def forward(self, img: torch.Tensor):
return self.double_conv(img)
class SimpleResidualUpsampleDoubleConv(nn.Module):
def __init__(self, in_channels, out_channels,
mid_channels=None, up_func_name = "upsample",
last_activation = nn.ReLU(inplace = True)):
super().__init__()
if mid_channels is None:
mid_channels = out_channels
self.double_conv = DoubleConv(
in_channels, out_channels, last_activation = nn.Identity())
self.upscale = self.make_upscaler(
in_channels,out_channels, up_func_name)
self.conv_to_match_dims = nn.ConvTranspose2d(
in_channels, out_channels, kernel_size=2, stride=2)
self.last_activation = last_activation
@staticmethod
def make_upscaler(in_channels, out_channels, up_func_name):
if up_func_name == "upsample":
return nn.Upsample(
scale_factor=2,
mode='nearest')
elif up_func_name == "deconv":
return nn.ConvTranspose2d(
in_channels, out_channels, kernel_size=2, stride=2)
else:
raise ValueError(f"unknown upscaler {up_func_name}")
def forward(self, x):
skip_connection = self.conv_to_match_dims(x)
out = self.upscale(x)
out = self.double_conv(out)
out = out + skip_connection
out = self.last_activation(out)
return out
class SimpleResidualUpsampleDoubleConv_ABS(nn.Module):
def __init__(self, in_channels, out_channels,
mid_channels=None, up_func_name = "upsample",
last_activation: nn.Module = nn.ReLU(inplace = True)):
super().__init__()
if mid_channels is None:
mid_channels = out_channels
self.double_conv = DoubleConv(
in_channels, out_channels, last_activation = last_activation)
self.upscale = self.make_upscaler(
in_channels,out_channels, up_func_name)
self.conv_to_match_dims = nn.ConvTranspose2d(
in_channels, out_channels, kernel_size=2, stride=2)
@staticmethod
def make_upscaler(in_channels, out_channels, up_func_name):
if up_func_name == "upsample":
return nn.Upsample(
scale_factor=2,
mode='nearest')
elif up_func_name == "deconv":
return nn.ConvTranspose2d(
in_channels, out_channels, kernel_size=2, stride=2)
else:
raise ValueError(f"unknown upscaler {up_func_name}")
def forward(self, x):
skip_connection = self.conv_to_match_dims(x)
out = self.upscale(x)
out = self.double_conv(out)
out = out + skip_connection
return out
############### Decoders
class SequentialDecoder32x(nn.Module):
def __init__(self, in_channels, up_func_name = "deconv",
last_activation: nn.Module = nn.Sigmoid()):
super().__init__()
out_chan_nums = [512, 256, 128, 64, 3]
self.in_channels = in_channels
decoder_modules = []
for out_channels in out_chan_nums[:-1]:
# мб было бы красивее здесь создавать upscaler
decoder_modules.append(
nn.Sequential(
self.make_upscaler(in_channels, in_channels, up_func_name),
DoubleConv(in_channels=in_channels, out_channels=out_channels),
)
)
in_channels = out_channels
decoder_modules.append(
nn.Sequential(
self.make_upscaler(in_channels, in_channels, up_func_name),
DoubleConv(in_channels=in_channels,
out_channels=out_chan_nums[-1],
last_activation=last_activation),
)
)
self.decoder = nn.Sequential(*decoder_modules)
@staticmethod
def make_upscaler(in_channels, out_channels, up_func_name):
if up_func_name == "upsample":
return nn.Upsample(
scale_factor=2,
mode='nearest'
)
elif up_func_name == "deconv":
return nn.ConvTranspose2d(
in_channels, out_channels, kernel_size=2, stride=2)
else:
raise ValueError(f"unknown upscaler {up_func_name}")
def forward(self, img: torch.Tensor):
return self.decoder(img)
class SimpleResidualDecoder32x(nn.Module):
def __init__(self, in_channels, up_func_name = "upsample",
last_activation: nn.Module = nn.Sigmoid()):
super().__init__()
out_chan_nums = [512, 256, 128, 64, 3]
self.in_channels = in_channels
decoder_modules = []
for out_channels in out_chan_nums[:-1]:
# мб было бы красивее здесь создавать upscaler
decoder_modules.append(
SimpleResidualUpsampleDoubleConv(
in_channels=in_channels,
out_channels=out_channels,
up_func_name=up_func_name)
)
in_channels = out_channels
decoder_modules.append(
SimpleResidualUpsampleDoubleConv(
in_channels=in_channels,
out_channels=out_chan_nums[-1],
up_func_name=up_func_name,
last_activation=last_activation)
)
self.decoder = nn.Sequential(*decoder_modules)
def forward(self, img: torch.Tensor):
return self.decoder(img)
class SimpleResidualDecoder32x_ABS(nn.Module):
def __init__(self, in_channels, up_func_name = "upsample",
last_activation: nn.Module = nn.Sigmoid()):
super().__init__()
self.in_channels = in_channels
out_chan_nums = [512, 256, 128, 64, 3]
decoder_modules = []
for out_channels in out_chan_nums[:-1]:
# мб было бы красивее здесь создавать upscaler
decoder_modules.append(
SimpleResidualUpsampleDoubleConv_ABS(
in_channels=in_channels,
out_channels=out_channels,
up_func_name=up_func_name)
)
in_channels = out_channels
decoder_modules.append(
SimpleResidualUpsampleDoubleConv_ABS(
in_channels=in_channels,
out_channels=out_chan_nums[-1],
up_func_name=up_func_name,
last_activation=last_activation)
)
self.decoder = nn.Sequential(*decoder_modules)
def forward(self, img: torch.Tensor):
return self.decoder(img)
# def simple_decoder_32x_upsample_constructor(in_chan_num):
# out_chan_nums = [512, 256, 128, 64, 3]
# decoder_modules = []
# for out_chan_num in out_chan_nums:
# decoder_modules.append(
# nn.Sequential(
# nn.Upsample(
# scale_factor=2,
# mode='nearest'
# ),
# nn.Conv2d(in_channels=in_chan_num,
# out_channels=out_chan_num,
# kernel_size=3, stride=1, padding=1),
# nn.ReLU()
# )
# )
# in_chan_num = out_chan_num
# return nn.Sequential(*decoder_modules)
############ Encoder backbones
def create_resnet_encoder_backbone(resnet: ResNet):
return nn.Sequential(
resnet.conv1,
resnet.bn1,
resnet.relu,
resnet.maxpool,
resnet.layer1,
resnet.layer2,
resnet.layer3,
resnet.layer4)
############# Encoders
class Encoder(nn.Module):
def __init__(self,
backbone: nn.Module,
feature_extraction: nn.Module,
normalising_activation: nn.Module = nn.Sigmoid(),
freeze_backbone = False
):
super().__init__()
self.backbone = backbone
self.feature_extraction = feature_extraction
self.normalising_activation = normalising_activation
if freeze_backbone:
self.freeze_backbone()
def freeze_backbone(self):
for param in self.backbone.parameters():
param.requires_grad = False
def unfreeze_backbone(self):
for param in self.backbone.parameters():
param.requires_grad = True
def forward(self, x):
out = self.backbone(x)
out = self.feature_extraction(out)
out = self.normalising_activation(out)
return out
def create_resnet_encoder(
resnet: ResNet,
feature_extraction = nn.Identity(),
normalising_activation: nn.Module = nn.Sigmoid()):
return Encoder(
backbone = create_resnet_encoder_backbone(resnet),
feature_extraction = feature_extraction,
normalising_activation = normalising_activation
)
############# NeuralImageCompressors (Autoencoders)
class NeuralImageCompressor(nn.Module):
def __init__(self,
encoder: Encoder,
decoder: nn.Module,
B: int = 1):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.B = B
def _get_quantization_error(self, shape: Tuple[int, ...]):
mean = torch.full(shape, -0.5)
std = torch.full(shape, 0.5)
quan_err = 0.5**self.B * torch.normal(mean = mean, std = std)
return quan_err
def forward(self, x):
out = self.encoder(x)
quant_err = self._get_quantization_error(out.shape).to(out.device)
out = out + quant_err
out = self.decoder(out)
return out
class NeuralImageCompressorUniformNoise(nn.Module):
def __init__(self,
encoder: Encoder,
decoder: nn.Module,
B: int = 1):
super().__init__()
self.encoder = encoder
self.decoder = decoder
self.B = B
@staticmethod
def _get_quantization_error(B: int, shape: Tuple[int, ...]):
min_noise = -1
max_noise = 1
quan_err = 0.5**B * (max_noise - min_noise) * (torch.rand(shape)) + min_noise
return quan_err
def forward(self, x):
out = self.encoder(x)
quant_err = self._get_quantization_error(self.B, out.shape).to(out.device)
out = out + quant_err
out = self.decoder(out)
return out
def create_resnet_autoencoder(resnet: ResNet, enc_feat_extract: nn.Module = nn.Identity(),
decoder = None, decoder_in_channels: int = 512,
normalising_activation: nn.Module = nn.Sigmoid(), B: int = 16,
up_func_name = "upsample", last_decoder_activation = nn.Sigmoid()):
resnet_encoder = create_resnet_encoder(
resnet, enc_feat_extract, normalising_activation)
if decoder is None:
decoder = SimpleResidualDecoder32x(
decoder_in_channels,
up_func_name = up_func_name,
last_activation=last_decoder_activation)
resnet_autoencoder = NeuralImageCompressor(resnet_encoder, decoder, B)
return resnet_autoencoder
def create_resnet_autoencoder_abs(resnet: ResNet, enc_feat_extract: nn.Module = nn.Identity(),
decoder = None, decoder_in_channels: int = 512,
normalising_activation: nn.Module = nn.Sigmoid(), B: int = 16,
up_func_name = "upsample", last_decoder_activation = nn.ReLU()):
resnet_encoder = create_resnet_encoder(
resnet, enc_feat_extract, normalising_activation)
if decoder is None:
decoder = SimpleResidualDecoder32x_ABS(
decoder_in_channels,
up_func_name = up_func_name,
last_activation=last_decoder_activation)
resnet_autoencoder = NeuralImageCompressor(resnet_encoder, decoder, B)
return resnet_autoencoder
## AutoencoderAlexNet was not used
# class AutoencoderAlexNet(NeuralImageCompressor):
# def __init__(self, B: int = 1, normalising_activation: nn.Module = nn.Sigmoid()):
# encoder = alexnet(weights=AlexNet_Weights.DEFAULT).features
# decoder = self._get_decoder(encoder)
# super().__init__(encoder, decoder, normalising_activation, B)
# @staticmethod
# def _get_decoder(encoder: nn.Sequential):
# decoder_modules = []
# for module in reversed(encoder):
# if isinstance(module, nn.Conv2d):
# trans_conv = nn.ConvTranspose2d(
# in_channels=module.out_channels,
# out_channels=module.in_channels,
# kernel_size=module.kernel_size,
# stride=module.stride,
# padding=module.padding
# )
# decoder_modules.append(trans_conv)
# elif isinstance(module, nn.ReLU):
# decoder_modules.append(nn.ReLU(inplace=True))
# elif isinstance(module, nn.MaxPool2d):
# # We can use MaxUnpool if we're going to save MaxPool indicies
# # unpool = nn.MaxUnpool2d(
# # kernel_size=module.kernel_size,
# # stride=module.stride,
# # padding=module.padding
# # )
# upsample = nn.Upsample(
# scale_factor=2,
# mode='nearest'
# )
# decoder_modules.append(upsample)
# else:
# raise ValueError(f"unexpected module {module}")
# decoder = nn.Sequential(*decoder_modules)
# return decoder