Skip to content

Commit ecb2ff2

Browse files
committed
fixed indexing error for taz totals
1 parent 737da32 commit ecb2ff2

File tree

1 file changed

+16
-98
lines changed

1 file changed

+16
-98
lines changed

4k/join_landuse_variables_to_trip_data_daysim.ipynb

+16-98
Original file line numberDiff line numberDiff line change
@@ -2,7 +2,7 @@
22
"cells": [
33
{
44
"cell_type": "code",
5-
"execution_count": 30,
5+
"execution_count": 1,
66
"metadata": {
77
"collapsed": true
88
},
@@ -14,7 +14,7 @@
1414
},
1515
{
1616
"cell_type": "code",
17-
"execution_count": 31,
17+
"execution_count": 2,
1818
"metadata": {
1919
"collapsed": true
2020
},
@@ -39,7 +39,7 @@
3939
},
4040
{
4141
"cell_type": "code",
42-
"execution_count": 32,
42+
"execution_count": 3,
4343
"metadata": {
4444
"collapsed": true
4545
},
@@ -52,7 +52,7 @@
5252
},
5353
{
5454
"cell_type": "code",
55-
"execution_count": 33,
55+
"execution_count": 23,
5656
"metadata": {
5757
"collapsed": true
5858
},
@@ -64,12 +64,12 @@
6464
" u'empfoo_p', u'empgov_p', u'empind_p', u'empmed_p', u'empofc_p',\n",
6565
" u'empret_p', u'empsvc_p', u'empoth_p', u'emptot_p']]\n",
6666
"totals_by_taz.columns = [i.split('_p')[0]+'_taz_tot' for i in totals_by_taz.columns]\n",
67-
"totals_by_taz = totals_by_taz.reset_index()\n"
67+
"# totals_by_taz = totals_by_taz.reset_index()\n"
6868
]
6969
},
7070
{
7171
"cell_type": "code",
72-
"execution_count": 34,
72+
"execution_count": 25,
7373
"metadata": {
7474
"collapsed": true
7575
},
@@ -89,7 +89,7 @@
8989
},
9090
{
9191
"cell_type": "code",
92-
"execution_count": 35,
92+
"execution_count": 26,
9393
"metadata": {
9494
"collapsed": true
9595
},
@@ -136,7 +136,7 @@
136136
},
137137
{
138138
"cell_type": "code",
139-
"execution_count": 36,
139+
"execution_count": 27,
140140
"metadata": {},
141141
"outputs": [
142142
{
@@ -193,7 +193,7 @@
193193
},
194194
{
195195
"cell_type": "code",
196-
"execution_count": 37,
196+
"execution_count": 34,
197197
"metadata": {
198198
"collapsed": true
199199
},
@@ -209,7 +209,7 @@
209209
},
210210
{
211211
"cell_type": "code",
212-
"execution_count": 38,
212+
"execution_count": 35,
213213
"metadata": {
214214
"collapsed": true
215215
},
@@ -221,7 +221,7 @@
221221
},
222222
{
223223
"cell_type": "code",
224-
"execution_count": 39,
224+
"execution_count": 37,
225225
"metadata": {
226226
"collapsed": true
227227
},
@@ -234,20 +234,19 @@
234234
},
235235
{
236236
"cell_type": "code",
237-
"execution_count": 40,
238-
"metadata": {
239-
"collapsed": true
240-
},
237+
"execution_count": 47,
238+
"metadata": {},
241239
"outputs": [],
242240
"source": [
241+
"totals_by_taz['taz_p'] = totals_by_taz.index\n",
243242
"df = pd.merge(trip, totals_by_taz, left_on='otaz', right_on='taz_p', how='left')\n",
244243
"df = pd.merge(df, totals_by_taz, left_on='dtaz', right_on='taz_p', how='left', suffixes=['_o','_d'])\n",
245244
"df = df.fillna(0)"
246245
]
247246
},
248247
{
249248
"cell_type": "code",
250-
"execution_count": 41,
249+
"execution_count": 48,
251250
"metadata": {
252251
"collapsed": true
253252
},
@@ -262,7 +261,7 @@
262261
},
263262
{
264263
"cell_type": "code",
265-
"execution_count": 42,
264+
"execution_count": 49,
266265
"metadata": {
267266
"collapsed": true
268267
},
@@ -271,87 +270,6 @@
271270
"df.to_csv(r'R:\\4K\\2014\\Trip Generation\\Trip Rates\\2014-new-adjusted\\trip_2014_adjusted_lu_vars_daysim.csv', index=False)"
272271
]
273272
},
274-
{
275-
"cell_type": "code",
276-
"execution_count": 54,
277-
"metadata": {},
278-
"outputs": [
279-
{
280-
"data": {
281-
"text/plain": [
282-
"0 770.630597\n",
283-
"1 872.866342\n",
284-
"2 2082.066967\n",
285-
"3 2082.066967\n",
286-
"4 593.976919\n",
287-
"5 2082.066967\n",
288-
"6 1270.330933\n",
289-
"7 2082.066967\n",
290-
"8 720.596986\n",
291-
"9 2082.066967\n",
292-
"10 720.596986\n",
293-
"11 2082.066967\n",
294-
"12 0.000000\n",
295-
"13 2545.428413\n",
296-
"14 2675.414779\n",
297-
"15 3545.072811\n",
298-
"16 3545.072811\n",
299-
"17 3545.072811\n",
300-
"18 3545.072811\n",
301-
"19 2545.428413\n",
302-
"20 2675.414779\n",
303-
"21 4504.563965\n",
304-
"22 3473.618015\n",
305-
"23 5968.881247\n",
306-
"24 230.247400\n",
307-
"25 5968.881247\n",
308-
"26 0.000000\n",
309-
"27 0.000000\n",
310-
"28 1616.981250\n",
311-
"29 0.000000\n",
312-
" ... \n",
313-
"45582 560.464175\n",
314-
"45583 78.626192\n",
315-
"45584 280.040496\n",
316-
"45585 225.182650\n",
317-
"45586 505.310601\n",
318-
"45587 35.500530\n",
319-
"45588 280.040496\n",
320-
"45589 700.526351\n",
321-
"45590 958.491807\n",
322-
"45591 35.090765\n",
323-
"45592 700.526351\n",
324-
"45593 958.491807\n",
325-
"45594 35.090765\n",
326-
"45595 700.526351\n",
327-
"45596 958.491807\n",
328-
"45597 35.090765\n",
329-
"45598 0.000000\n",
330-
"45599 0.000000\n",
331-
"45600 0.000000\n",
332-
"45601 0.000000\n",
333-
"45602 1015.153238\n",
334-
"45603 207.615448\n",
335-
"45604 0.000000\n",
336-
"45605 0.000000\n",
337-
"45606 2729.573730\n",
338-
"45607 0.000000\n",
339-
"45608 1748.560117\n",
340-
"45609 2027.026855\n",
341-
"45610 474.176848\n",
342-
"45611 0.000000\n",
343-
"Name: hh_hh_wt1_avg_d, Length: 45612, dtype: float64"
344-
]
345-
},
346-
"execution_count": 54,
347-
"metadata": {},
348-
"output_type": "execute_result"
349-
}
350-
],
351-
"source": [
352-
"df['hh_hh_wt1_avg_d']"
353-
]
354-
},
355273
{
356274
"cell_type": "code",
357275
"execution_count": null,

0 commit comments

Comments
 (0)