-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathtrainer.py
189 lines (155 loc) · 7.97 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import argparse
import os
import numpy as np
import cupy as cp
import chainer
from chainer import training
from chainer.training import extensions
from chainer.dataset import convert
from chainer import cuda, Variable
import dataset
import image
from nets.models import Generator, Discriminator, padding
from dataset import WaveDataset, PreEncodedDataset
from updater import Updater
from gla.gla_util import GLA
def init_gene(gpu):
n = Generator()
n.to_gpu()
o = chainer.optimizers.Adam(5e-4, beta1=0.0, beta2=0.9)
o.setup(n)
o.add_hook(chainer.optimizer.GradientClipping(10))
o.add_hook(chainer.optimizer.WeightDecay(1e-4))
return n, o
def init_disc(gpu):
n = Discriminator()
n.to_gpu()
o = chainer.optimizers.Adam(5e-4, beta1=0.0, beta2=0.9)
o.setup(n)
o.add_hook(chainer.optimizer.GradientClipping(10))
o.add_hook(chainer.optimizer.WeightDecay(1e-4))
return n, o
def init_dataset(path, length, is_test, batchsize):
if path[-4:] == '.npy':
ds = PreEncodedDataset(path, length, is_test)
elif path[-4:] == '.wav':
ds = WaveDataset(path, length, is_test)
else:
raise Exception('file format is missing')
return chainer.iterators.SerialIterator(ds, batchsize, shuffle=False)
def resume(args, trainer, generator_ab, generator_ba, discriminator_a, discriminator_b):
if args.resume:
chainer.serializers.load_npz(args.resume, trainer)
if args.gene_ab:
chainer.serializers.load_npz(args.gene_ab, generator_ab)
if args.gene_ba:
chainer.serializers.load_npz(args.gene_ba, generator_ba)
if args.disc_a:
chainer.serializers.load_npz(args.disc_a, discriminator_a)
if args.disc_b:
chainer.serializers.load_npz(args.disc_b, discriminator_b)
if args.folder:
folder = args.folder
chainer.serializers.load_npz(folder+'/generator_ab.npz', generator_ab)
chainer.serializers.load_npz(folder+'/generator_ba.npz', generator_ba)
chainer.serializers.load_npz(folder+'/discriminator_a.npz', discriminator_a)
chainer.serializers.load_npz(folder+'/discriminator_b.npz', discriminator_b)
def preview_convert(iterator_a, iterator_b, g_a, g_b, device, gla, dst):
@chainer.training.make_extension()
def make_preview(trainer):
with chainer.using_config('train', False):
with chainer.no_backprop_mode():
x_a = iterator_a.next()
x_a = convert.concat_examples(x_a, device)
x_a = chainer.Variable(x_a)
x_b = iterator_b.next()
x_b = convert.concat_examples(x_b, device)
x_b = chainer.Variable(x_b)
x_ab = g_a(x_a)
x_ba = g_b(x_b)
x_bab = g_a(x_ba)
x_aba = g_b(x_ab)
preview_dir = '{}/preview'.format(dst)
if not os.path.exists(preview_dir):
os.makedirs(preview_dir)
image_dir = '{}/image'.format(dst)
if not os.path.exists(image_dir):
os.makedirs(image_dir)
names = ['a', 'ab', 'aba', 'b', 'ba', 'bab']
images = [x_a, x_ab, x_aba, x_b, x_ba, x_bab]
for n, i in zip(names, images):
i = cp.asnumpy(i.data)[:,:,padding:-padding,:].reshape(1, -1, 128)
image.save(image_dir+'/{}{}.jpg'.format(trainer.updater.epoch,n), i)
w = np.concatenate([gla.inverse(_i) for _i in dataset.reverse(i)])
dataset.save(preview_dir+'/{}{}.wav'.format(trainer.updater.epoch,n), 16000, w)
return make_preview
def main():
parser = argparse.ArgumentParser(description='Deep_VoiceChanger')
parser.add_argument('--batchsize', '-b', type=int, default=32,
help='Number of images in each mini-batch')
parser.add_argument('--iteration', '-i', type=int, default=100000,
help='Number of to train iteration')
parser.add_argument('--gpu', '-g', type=int, default=0,
help='GPU ID')
parser.add_argument('--out', '-o', default='results',
help='Directory to output the result')
parser.add_argument('--resume', '-r', default='',
help='Resume the training from snapshot')
parser.add_argument('--gene_ab', '-j', default='',
help='Resume generator a2b from file')
parser.add_argument('--gene_ba', '-k', default='',
help='Resume generator b2a from file')
parser.add_argument('--disc_a', '-m', default='',
help='Resume discriminator a from file')
parser.add_argument('--disc_b', '-l', default='',
help='Resume discriminator b from file')
parser.add_argument('--folder', '-f', default='',
help='Resume all model from foledr')
parser.add_argument('--voice_a', '-v', default='../src/KizunaAI_long.wav',
help='Path of train wave file of voice a')
parser.add_argument('--voice_b', '-w', default='../src/nekomasu_long.wav',
help='Path of train wave file of voice b')
parser.add_argument('--test_a', '-s', default='../src/KizunaAI_short.wav',
help='Path of test wave file of voice a')
parser.add_argument('--test_b', '-u', default='../src/nekomasu_short.wav',
help='Path of test wave file of voice b')
args = parser.parse_args()
chainer.cuda.set_max_workspace_size(256*1024*1024)
chainer.config.type_check = False
chainer.config.autotune = True
if args.gpu < 0:
print('sorry, but CPU is not recommended')
quit()
cp.cuda.Device(args.gpu).use()
if args.test_a == '':
args.test_a = args.voice_a
if args.test_b == '':
args.test_b = args.voice_b
generator_ab, opt_g_a = init_gene(args.gpu)
generator_ba, opt_g_b = init_gene(args.gpu)
discriminator_a, opt_d_a = init_disc(args.gpu)
discriminator_b, opt_d_b = init_disc(args.gpu)
gla = GLA()
train_iter_a = init_dataset(args.voice_a, 20000, False, args.batchsize)
train_iter_b = init_dataset(args.voice_b, 20000, False, args.batchsize)
test_iter_a = init_dataset(args.test_a, -1, True, 16)
test_iter_b = init_dataset(args.test_b, -1, True, 16)
updater = Updater(train_iter_a, train_iter_b, opt_g_a, opt_g_b, opt_d_a, opt_d_b, device=args.gpu)
trainer = training.Trainer(updater, (args.iteration, 'iteration'), out=args.out)
trainer.extend(extensions.snapshot(filename='snapshot.npz'), trigger=(10, 'epoch'))
trainer.extend(extensions.snapshot_object(generator_ab, 'generator_ab.npz'), trigger=(10, 'epoch'))
trainer.extend(extensions.snapshot_object(generator_ba, 'generator_ba.npz'), trigger=(10, 'epoch'))
trainer.extend(extensions.snapshot_object(discriminator_a, 'discriminator_a.npz'), trigger=(10, 'epoch'))
trainer.extend(extensions.snapshot_object(discriminator_b, 'discriminator_b.npz'), trigger=(10, 'epoch'))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(['epoch', 'loss/g/recon', 'loss/g/ident', 'loss/g/gene', 'loss/d/disc', 'elapsed_time']))
trainer.extend(extensions.ProgressBar(update_interval=5))
trainer.extend(extensions.ExponentialShift("alpha", 0.1, optimizer=opt_g_a), trigger=(25000, 'iteration'))
trainer.extend(extensions.ExponentialShift("alpha", 0.1, optimizer=opt_g_b), trigger=(25000, 'iteration'))
trainer.extend(extensions.ExponentialShift("alpha", 0.1, optimizer=opt_d_a), trigger=(25000, 'iteration'))
trainer.extend(extensions.ExponentialShift("alpha", 0.1, optimizer=opt_d_b), trigger=(25000, 'iteration'))
trainer.extend(preview_convert(test_iter_a, test_iter_b, generator_ab, generator_ba, args.gpu, gla, args.out), trigger=(1, 'epoch'))
resume(args, trainer, generator_ab, generator_ba, discriminator_a, discriminator_b)
trainer.run()
if __name__ == '__main__':
main()