Skip to content

Latest commit

 

History

History
104 lines (73 loc) · 3.09 KB

fastai.md

File metadata and controls

104 lines (73 loc) · 3.09 KB
description
wandb.fastai

Fast.ai Reference

source

This module hooks fast.ai Learners to Weights & Biases through a callback. Requested logged data can be configured through the callback constructor.

Examples:

WandbCallback can be used when initializing the Learner::

from wandb.fastai import WandbCallback
[...]
learn = Learner(data, ..., callback_fns=WandbCallback)
learn.fit(epochs)

Custom parameters can be given using functools.partial::

from wandb.fastai import WandbCallback
from functools import partial
[...]
learn = Learner(data, ..., callback_fns=partial(WandbCallback, ...))
learn.fit(epochs)

Finally, it is possible to use WandbCallback only when starting training. In this case it must be instantiated::

learn.fit(..., callbacks=WandbCallback(learn))

or, with custom parameters::

learn.fit(..., callbacks=WandbCallback(learn, ...))

WandbCallback

source

WandbCallback(self,
              learn,
              log='gradients',
              save_model=True,
              monitor=None,
              mode='auto',
              input_type=None,
              validation_data=None,
              predictions=36,
              seed=12345)

Automatically saves model topology, losses & metrics. Optionally logs weights, gradients, sample predictions and best trained model.

Arguments:

  • learn fastai.basic_train.Learner - the fast.ai learner to hook.
  • log str - "gradients", "parameters", "all", or None. Losses & metrics are always logged.
  • save_model bool - save model at the end of each epoch. It will also load best model at the end of training.
  • monitor str - metric to monitor for saving best model. None uses default TrackerCallback monitor value.
  • mode str - "auto", "min" or "max" to compare "monitor" values and define best model.
  • input_type str - "images" or None. Used to display sample predictions.
  • validation_data list - data used for sample predictions if input_type is set.
  • predictions int - number of predictions to make if input_type is set and validation_data is None.
  • seed int - initialize random generator for sample predictions if input_type is set and validation_data is None.

WandbCallback.on_train_begin

source

WandbCallback.on_train_begin(self, **kwargs)

Call watch method to log model topology, gradients & weights

WandbCallback.on_epoch_end

source

WandbCallback.on_epoch_end(self, epoch, smooth_loss, last_metrics, **kwargs)

Logs training loss, validation loss and custom metrics & log prediction samples & save model

WandbCallback.on_train_end

source

WandbCallback.on_train_end(self, **kwargs)

Load the best model.