|
| 1 | +.. _spectrum_user_guide: |
| 2 | +.. currentmodule:: pvlib.spectrum |
| 3 | + |
| 4 | + |
| 5 | +Spectrum |
| 6 | +======== |
| 7 | + |
| 8 | +The spectrum functionality of pvlib-python includes simulating clear sky |
| 9 | +spectral irradiance curves, calculating the spectral mismatch factor for |
| 10 | +a range of single-junction PV cell technologies, and other calculations |
| 11 | +such as converting between spectral response and EQE, and computing average |
| 12 | +photon energy values from spectral irradiance data. |
| 13 | + |
| 14 | +This user guide page summarizes some of pvlib-python's spectrum-related |
| 15 | +capabilities, starting with a summary of spectral mismatch estimation models |
| 16 | +available in pvlib-python. |
| 17 | + |
| 18 | + |
| 19 | +Spectral mismatch models |
| 20 | +------------------------ |
| 21 | +The spectral mismatch factor is the ratio of a PV device's response under a |
| 22 | +given spectrum to its response under a reference spectrum, typically the |
| 23 | +AM1.5G spectrum. It represents the relative difference in the performance of |
| 24 | +a PV device under a spectrum different from the reference spectrum, and can be |
| 25 | +used to correct the measured power output of a PV system for spectral effects. |
| 26 | + |
| 27 | +pvlib-python contains several models to estimate the spectral mismatch factor |
| 28 | +using atmospheric variables such as air mass, or calculate it exactly using |
| 29 | +system and meteorological data such as spectral response and spectral |
| 30 | +irradiance. Examples demonstrating the application of several spectral |
| 31 | +mismatch models using pvlib-python are also available: |
| 32 | +:ref:`sphx_glr_gallery_spectrum_spectral_factor.py` and Reference [1]_, the |
| 33 | +latter of which also contains downloadable spectral response and spectral |
| 34 | +irradiance data. |
| 35 | + |
| 36 | +The table below summarizes the models currently available in pvlib, their |
| 37 | +required inputs, cell technologies for which model coefficients have been |
| 38 | +published, and references. Note that while most models are validated for |
| 39 | +specific cell technologies, the Sandia Array Performance Model (SAPM) is |
| 40 | +validated for a range of commercial modules. An extended review of a |
| 41 | +wider range of models available in the published literature may be found in |
| 42 | +Reference [2]_. |
| 43 | + |
| 44 | + |
| 45 | ++-----------------------------------------------------+-----------------------------+---------+---------+------+------+------+------------+-----------+ |
| 46 | +| Model | Inputs | Default parameter availability | Reference | |
| 47 | ++ + +---------+---------+------+------+------+------------+ + |
| 48 | +| | | mono-Si | poly-Si | CdTe | CIGS | a-Si | perovskite | | |
| 49 | ++=====================================================+=============================+=========+=========+======+======+======+============+===========+ |
| 50 | +| :py:func:`Caballero <spectral_factor_caballero>` | :term:`airmass_absolute`, | | | | | | | | |
| 51 | +| +-----------------------------+ | | | | | | | |
| 52 | +| |:term:`precipitable_water`, | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | [2]_ | |
| 53 | +| +-----------------------------+ | | | | | | | |
| 54 | +| | :term:`aod` | | | | | | | | |
| 55 | ++-----------------------------------------------------+-----------------------------+---------+---------+------+------+------+------------+-----------+ |
| 56 | +| :py:func:`First Solar <spectral_factor_firstsolar>` | :term:`airmass_absolute`, | | | | | | | | |
| 57 | +| +-----------------------------+ | ✓ | ✓ | | | | [3]_ | |
| 58 | +| | :term:`precipitable_water` | | | | | | | | |
| 59 | ++-----------------------------------------------------+-----------------------------+---------+---------+------+------+------+------------+-----------+ |
| 60 | +| :py:func:`JRC <spectral_factor_jrc>` | :term:`airmass_relative`, | | | | | | | | |
| 61 | +| +-----------------------------+ | ✓ | ✓ | | | + [4]_ | |
| 62 | +| | :term:`clearsky_index` | | | | | | | | |
| 63 | ++-----------------------------------------------------+-----------------------------+---------+---------+------+------+------+------------+-----------+ |
| 64 | +| :py:func:`PVSPEC <spectral_factor_pvspec>` | :term:`airmass_absolute`, | | | | | | | | |
| 65 | +| +-----------------------------+ ✓ | ✓ | ✓ | ✓ | ✓ | | [5]_ | |
| 66 | +| | :term:`clearsky_index` | | | | | | | | |
| 67 | ++-----------------------------------------------------+-----------------------------+---------+---------+------+------+------+------------+-----------+ |
| 68 | +| :py:func:`SAPM <spectral_factor_sapm>` | :term:`airmass_absolute` | | | | | | | [6]_ | |
| 69 | ++-----------------------------------------------------+-----------------------------+---------+---------+------+------+------+------------+-----------+ |
| 70 | + |
| 71 | + |
| 72 | +References |
| 73 | +---------- |
| 74 | +.. [1] A. Driesse, J. S. Stein, and M. Theristis, "Global horizontal spectral |
| 75 | + irradiance and module spectral response measurements: an open dataset |
| 76 | + for PV research Sandia National Laboratories, ALbuquerque, NM, USA, Rep. |
| 77 | + SAND2023-02045, 2023. Available: |
| 78 | + https://datahub.duramat.org/dataset/module-sr-library |
| 79 | +.. [2] R. Daxini and Y. Wu, "Review of methods to account for the solar |
| 80 | + spectral influence on photovoltaic device performance," Energy, |
| 81 | + vol. 286, p. 129461, Jan. 2024. :doi:`10.1016/j.energy.2023.129461` |
| 82 | +.. [3] J. A. Caballero, E. Fernández, M. Theristis, F. Almonacid, and |
| 83 | + G. Nofuentes, "Spectral Corrections Based on Air Mass, Aerosol Optical |
| 84 | + Depth and Precipitable Water for PV Performance Modeling," IEEE Journal |
| 85 | + of Photovoltaics, vol. 8, no. 2, pp. 552–558, Mar. 2018. |
| 86 | + :doi:`10.1109/JPHOTOV.2017.2787019` |
| 87 | +.. [4] S. Pelland, J. Remund, and J. Kleissl, "Development and Testing of the |
| 88 | + PVSPEC Model of Photovoltaic Spectral Mismatch Factor," in Proc. 2020 |
| 89 | + IEEE 47th Photovoltaic Specialists Conference (PVSC), Calgary, AB, |
| 90 | + Canada, 2020, pp. 1–6. :doi:`10.1109/PVSC45281.2020.9300932` |
| 91 | +.. [5] D. L. King, W. E. Boyson, and J. A. Kratochvil, Photovoltaic Array |
| 92 | + Performance Model, Sandia National Laboratories, Albuquerque, NM, USA, |
| 93 | + Tech. Rep. SAND2004-3535, Aug. 2004. :doi:`10.2172/919131` |
| 94 | +.. [6] M. Lee and A. Panchula, "Spectral Correction for Photovoltaic Module |
| 95 | + Performance Based on Air Mass and Precipitable Water," 2016 IEEE 43rd |
| 96 | + Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 2016, |
| 97 | + pp. 3696-3699. :doi:`10.1109/PVSC.2016.7749836` |
| 98 | +.. [7] H. Thomas, S. Tony, and D. Ewan, “A Simple Model for Estimating the |
| 99 | + Influence of Spectrum Variations on PV Performance,” pp. 3385–3389, Nov. |
| 100 | + 2009, :doi:`10.4229/24THEUPVSEC2009-4AV.3.27` |
| 101 | +.. [8] IEC 60904-7:2019, Photovoltaic devices — Part 7: Computation of the |
| 102 | + spectral mismatch correction for measurements of photovoltaic devices, |
| 103 | + International Electrotechnical Commission, Geneva, Switzerland, 2019. |
0 commit comments