Skip to content

Commit c7fef9a

Browse files
committed
2 parents a752698 + b33b783 commit c7fef9a

File tree

2 files changed

+2
-2
lines changed

2 files changed

+2
-2
lines changed

overview.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Overview
22

3-
This [Jupyter Book](https://jupyterbook.org) presents tutorials on multimodal AI applications using the `PyKale` library.
3+
This [Jupyter Book](https://jupyterbook.org) presents tutorials on multimodal AI applications using the [`PyKale`](https://github.com/pykale/pykale) library.
44

55
[//]: # (:::{note})
66

tutorials/cardiac-abnormality-assessment/extend-reading/extension-tasks.md

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,4 +13,4 @@ Zoom into specific regions of the input ECG for detailed model interpretation. Y
1313

1414
Download the [MIMIC-CXR](https://physionet.org/content/mimic-cxr/2.1.0/) and [MIMIC-IV-ECG](https://physionet.org/content/mimic-iv-ecg/1.0/) datasets, then **uncomment** the optional code cell in *[Step 1: Data Loading and Preparation](https://pykale.github.io/mmai-tutorials/tutorials/cardiac-abnormality-assessment/tutorial-heart.html#step-1-data-loading-and-preparation)*.
1515

16-
Set `cfg_PT.TRAIN.LATENT_DIM=128`, `cfg_PT.DATA.BATCH_SIZE=128` and `cfg_PT.TRAIN.EPOCH=100` to obtain the **optimal pre-trained CardioVAE model** using the full 50K paired CXR-ECG data. Compare the results with the pre-trained CardioVAE model using 10K paired CXR-ECG data in the tutorial.
16+
Set `cfg_PT.TRAIN.LATENT_DIM=128`, `cfg_PT.DATA.BATCH_SIZE=128` and `cfg_PT.TRAIN.EPOCH=100` to obtain the **optimal pre-trained CardioVAE model** using the full 50K paired CXR-ECG data. Compare the results with the pre-trained CardioVAE model using 1K paired CXR-ECG data in the tutorial.

0 commit comments

Comments
 (0)