Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pytorch backend slow with pymc model #1110

Open
Ch0ronomato opened this issue Nov 30, 2024 · 25 comments
Open

Pytorch backend slow with pymc model #1110

Ch0ronomato opened this issue Nov 30, 2024 · 25 comments

Comments

@Ch0ronomato
Copy link
Contributor

Ch0ronomato commented Nov 30, 2024

Description

@ricardoV94 did a nice perf improvement in pymc-devs/pymc#7578 to try to speedup jitted backends. I tried out torch as well. The model performed quite slow.

mode t_sampling (seconds) manual measure (seconds)
NUMBA 2.483 11.346
PYTORCH (COMPILED) 206.503 270.188
PYTORCH (EAGER) 60.607 64.140

We need to investigate why

  1. Torch is so slow
  2. Torch compile is slower than eager mode

When doing perf evaluations, keep in mind that torch does a lot of caching. If you want a truly cache-less eval, you can either add torch.compiler.reset() or set the env variable to disable the dynamo cache (google it).

@Ch0ronomato
Copy link
Contributor Author

The script I used for reference

import arviz as az
import numpy as np
import multiprocessing
import pandas as pd
import pymc as pm
import pytensor as pt
import pytensor.tensor.random as ptr
import time

def main():
    # Load the radon dataset
    data = pd.read_csv(pm.get_data("radon.csv"))
    data["log_radon"] = data["log_radon"].astype(np.float64)
    county_idx, counties = pd.factorize(data.county)
    coords = {"county": counties, "obs_id": np.arange(len(county_idx))}

    # Create a simple hierarchical model for the radon dataset
    with pm.Model(coords=coords, check_bounds=False) as model:
        intercept = pm.Normal("intercept", sigma=10)

        # County effects
        raw = pm.ZeroSumNormal("county_raw", dims="county")
        sd = pm.HalfNormal("county_sd")
        county_effect = pm.Deterministic("county_effect", raw * sd, dims="county")

        # Global floor effect
        floor_effect = pm.Normal("floor_effect", sigma=2)

        # County:floor interaction
        raw = pm.ZeroSumNormal("county_floor_raw", dims="county")
        sd = pm.HalfNormal("county_floor_sd")
        county_floor_effect = pm.Deterministic(
            "county_floor_effect", raw * sd, dims="county"
        )

        mu = (
            intercept
            + county_effect[county_idx]
            + floor_effect * data.floor.values
            + county_floor_effect[county_idx] * data.floor.values
        )

        sigma = pm.HalfNormal("sigma", sigma=1.5)
        pm.Normal(
            "log_radon", mu=mu, sigma=sigma, observed=data.log_radon.values, dims="obs_id"
        )

    from pymc.model.transform.optimization import freeze_dims_and_data
    model = freeze_dims_and_data(model)
    for mode in ("NUMBA", "PYTORCH"):
        start = time.perf_counter()
        trace = pm.sample(
            model=model, 
            cores=1,
            chains=1,
            tune=500, 
            draws=500, 
            progressbar=False, 
            compute_convergence_checks=False, 
            return_inferencedata=False,
            compile_kwargs=dict(mode=mode)
        )
        end = time.perf_counter()
        idata = pm.to_inference_data(trace, model=model)
        print(az.summary(idata, kind="diagnostics"))
        print(mode, trace._report.t_sampling, end - start)


if __name__ == "__main__":
    multiprocessing.freeze_support()
    main()

@Ch0ronomato
Copy link
Contributor Author

I called compile logp and dlogp as well to narrow down the time

mode method time
PYTORCH logp 5.891
PYTORCH dlogp 4.054
NUMBA logp 2.376
NUMBA dlogp 2.244

@ricardoV94
Copy link
Member

ricardoV94 commented Nov 30, 2024

You have to call it once (perhaps assert they output the same) to jit compile and then only timeit

@Ch0ronomato
Copy link
Contributor Author

Ch0ronomato commented Dec 1, 2024

@ricardoV94 can you assign this issue to me by chance?

I profiled a bit more. The logp and dlogp pytensor functions don't take long to generate, but executing it is slower. Both numba and torch do show that it gets faster if you execute it multiple times, but numba is much faster

mode method time
PYTORCH logp.call 4.8469
PYTORCH logp.call 0.0013
PYTORCH logp.call 0.0008
PYTORCH dlogp.call 9.9691
PYTORCH dlogp.call 7.2030
PYTORCH dlogp.call 7.9464
NUMBA logp.call 2.8590
NUMBA logp.call 0.0001
NUMBA logp.call 0.0001
NUMBA dlogp.call 3.7824
NUMBA dlogp.call 0.0059
NUMBA dlogp.call 0.0001

I'm seeing some interesting data in the .explain call, it looks like join and alloc create a few different graph breaks, and then a lot of data dependent stuff happening as well. Seeing that just running logp once multiple times has the runtime reduce makes me thing that there is a bit more recomplication happening. Attached is the full dump of the torch compile logs, but here is the header that just outlines what happened to the graph

Graph Count: 8
Graph Break Count: 7
Op Count: 198
Break Reasons:
  Break Reason 1:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpxndm7s5l, line 35 in pytorch_funcified_fgraph>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 129 in join>
  Break Reason 2:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 129 in join>
  Break Reason 3:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpxndm7s5l, line 75 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_35>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 129 in join>
  Break Reason 4:
    Reason: Dynamic slicing on data-dependent value is not supported
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpxndm7s5l, line 133 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_75>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/subtensor.py, line 77 in inc_subtensor>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/tensor/subtensor.py, line 142 in indices_from_subtensor>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/tensor/subtensor.py, line 142 in <genexpr>>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/tensor/subtensor.py, line 131 in convert_indices>
  Break Reason 5:
    Reason: Dynamic slicing on data-dependent value is not supported
    User Stack:
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/subtensor.py, line 81 in torch_dynamo_resume_in_inc_subtensor_at_78>
  Break Reason 6:
    Reason: Dynamic slicing on data-dependent value is not supported
    User Stack:
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/subtensor.py, line 81 in torch_dynamo_resume_in_inc_subtensor_at_81>
  Break Reason 7:
    Reason: Dynamic slicing on data-dependent value is not supported
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpxndm7s5l, line 193 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_133>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/subtensor.py, line 77 in inc_subtensor>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/tensor/subtensor.py, line 142 in indices_from_subtensor>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/tensor/subtensor.py, line 142 in <genexpr>>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/tensor/subtensor.py, line 131 in convert_indices>

explaination.txt

The first thing I'm gonna do is clean up some of the warnings. These timings are only possible because of sending the warning logs out to dev null, if you don't the timings balloon a bit.

@ricardoV94
Copy link
Member

ricardoV94 commented Dec 1, 2024

The first time is the compilation, it's not as relevant since it's a one time thing. If we're recompiling multiple times that's a different thing.

Also are you using %timeit after the first call? A single call is going to be noisy.

Did you confirm the outputs match?

@ricardoV94
Copy link
Member

ricardoV94 commented Dec 1, 2024

Those breaks are interesting but most are not data dependent? Like the slice is constant in this model. Can you enable that capture scalar outputs option?

Also are you freezing the model data and dims like in the original example? When we have static shapes we could forward those to the dispatch

@Ch0ronomato
Copy link
Contributor Author

Yeah my bad; this is how the profiling looks

    from pymc.model.transform.optimization import freeze_dims_and_data
    model = freeze_dims_and_data(model)
    val = model.initial_point(123)
    for mode in ("PYTORCH", "NUMBA"):
        fn = model.compile_logp(mode=mode)
        for _ in range(3):
            start = time.perf_counter()
            fn(val)
            end = time.perf_counter()
            print("| ", " | ".join((mode, "logp.__call__", "{:.4f}".format(end - start))), " |")

@Ch0ronomato
Copy link
Contributor Author

Btw, I only showed logp, here is dlogp, which is potentially more problematic

Graph Count: 16
Graph Break Count: 15
Op Count: 163
Break Reasons:
  Break Reason 1:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 33 in pytorch_funcified_fgraph>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 129 in join>
  Break Reason 2:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 129 in join>
  Break Reason 3:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 73 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_33>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 129 in join>
  Break Reason 4:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 111 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_73>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/shape.py, line 10 in reshape>
  Break Reason 5:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/shape.py, line 10 in reshape>
  Break Reason 6:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 119 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_111>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 106 in alloc>
  Break Reason 7:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 139 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_119>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/shape.py, line 10 in reshape>
  Break Reason 8:
    Reason: Tensor.item
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 147 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_139>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 193 in inner_fn>
  Break Reason 9:
    Reason: Tensor.item
    User Stack:
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 193 in inner_fn>
  Break Reason 10:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 173 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_149>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/shape.py, line 10 in reshape>
  Break Reason 11:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 179 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_173>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 106 in alloc>
  Break Reason 12:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 199 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_179>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/shape.py, line 10 in reshape>
  Break Reason 13:
    Reason: Tensor.item
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 207 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_199>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 193 in inner_fn>
  Break Reason 14:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /var/folders/2z/y4z6q41j7l93ysr2y2k_gsnh0000gn/T/tmpo4p1bvf1, line 229 in torch_dynamo_resume_in_pytorch_funcified_fgraph_at_209>
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/shape.py, line 10 in reshape>
  Break Reason 15:
    Reason: data dependent operator: aten._local_scalar_dense.default; to enable, set torch._dynamo.config.capture_scalar_outputs = True
    User Stack:
      <FrameSummary file /Users/ch0ronomato/dev/pytensor/pytensor/link/pytorch/dispatch/basic.py, line 129 in join>

dlogp seems to be a bit more problematic. I reran timing this morning and got really poor numbers (8s), but last night it was "better". Not sure what's going on there.

import os
import arviz as az
import numpy as np
import multiprocessing
import pandas as pd
import pymc as pm
import pytensor as pt
import pytensor.tensor.random as ptr
import time

def main():
    # Load the radon dataset
    data = pd.read_csv(pm.get_data("radon.csv"))
    data["log_radon"] = data["log_radon"].astype(np.float64)
    county_idx, counties = pd.factorize(data.county)
    coords = {"county": counties, "obs_id": np.arange(len(county_idx))}

    # Create a simple hierarchical model for the radon dataset
    with pm.Model(coords=coords, check_bounds=False) as model:
        intercept = pm.Normal("intercept", sigma=10)

        # County effects
        raw = pm.ZeroSumNormal("county_raw", dims="county")
        sd = pm.HalfNormal("county_sd")
        county_effect = pm.Deterministic("county_effect", raw * sd, dims="county")

        # Global floor effect
        floor_effect = pm.Normal("floor_effect", sigma=2)

        # County:floor interaction
        raw = pm.ZeroSumNormal("county_floor_raw", dims="county")
        sd = pm.HalfNormal("county_floor_sd")
        county_floor_effect = pm.Deterministic(
            "county_floor_effect", raw * sd, dims="county"
        )

        mu = (
            intercept
            + county_effect[county_idx]
            + floor_effect * data.floor.values
            + county_floor_effect[county_idx] * data.floor.values
        )

        sigma = pm.HalfNormal("sigma", sigma=1.5)
        pm.Normal(
            "log_radon", mu=mu, sigma=sigma, observed=data.log_radon.values, dims="obs_id"
        )

    from pymc.model.transform.optimization import freeze_dims_and_data
    model = freeze_dims_and_data(model)
    val = model.initial_point(123)
    os.environ["PYTORCH_RECORD_EXPLAIN"] = "yes"
    for mode in ("PYTORCH", "NUMBA"):
        fn = model.compile_dlogp(mode=mode)
        for _ in range(3):
            start = time.perf_counter()
            fn(val)
            end = time.perf_counter()
            print("| ", " |".join((mode, "dlogp.__call__", "{:.4f}".format(end - start))), " |")


if __name__ == "__main__":
    multiprocessing.freeze_support()
    main()

explaination.txt

@Ch0ronomato
Copy link
Contributor Author

Ch0ronomato commented Dec 1, 2024

Addressing the q's

Also are you freezing the model data and dims like in the original example? When we have static shapes we could forward those to the dispatch

yea, i pasted the profiling code, mb

Those breaks are interesting but most are not data dependent? Like the slice is constant in this model.

I find this a bit strange too; i think what might be happening is we have tensors of a single value (like what we had in #1031 ) and that's causing a log of "data dependent" operators? I need to understand the plumbing a bit more I think to really know.

Can you enable that capture scalar outputs option?

Unbelievably, this crashes

  File "/opt/anaconda3/envs/pytensor-dev/lib/python3.11/site-packages/torch/fx/experimental/symbolic_shapes.py", line 5205, in evaluate_expr
    raise self._make_data_dependent_error(
torch._dynamo.exc.BackendCompilerFailed: backend='inductor' raised:
GuardOnDataDependentSymNode: Could not guard on data-dependent expression Eq(u0, 1) (unhinted: Eq(u0, 1)).  (Size-like symbols: u0)

Did you confirm the outputs match?

Yes! just using np.testing.assert_allclose between the numba and torch backend

Also are you using %timeit after the first call?

I time 3 calls. I could time more but I mostly just cared to see that the first one was big and the rest were "smaller"

@ricardoV94
Copy link
Member

I time 3 calls. I could time more but I mostly just cared to see that the first one was big and the rest were "smaller"

The first slow next fast is really not surprising, compilation happens on the first call.

3 calls is not usually enough to measure without noise. I believe torch is slower of course but you should average the time it takes to eval like 100 times at least. You can use the %timeit magic to do this automatically on an ipython (or jupyter) environment.

@ricardoV94
Copy link
Member

ricardoV94 commented Dec 1, 2024

What's the compiled function. Curious why it doesn't think those slice indices are constant. You can do fn.dprint() where fn is the compiled pytensor function

@Ch0ronomato
Copy link
Contributor Author

Yea, agree that the pattern isn't surprising, but i was worried each call was getting a recompile (like the dlogp seems to do perhaps intermittently). I'll do a more robust measure.

What would a dynamic slice look like?

@ricardoV94
Copy link
Member

ricardoV94 commented Dec 1, 2024

a = pt.scalar("a", dtype=int)
x = pt.vector("x")
out = x[:a]

@Ch0ronomato
Copy link
Contributor Author

Here are the graphs, i dumped them into a text file. Logp first, then dlogp, separated by ---. It's quite large, i'll go through it later
out.txt

@ricardoV94
Copy link
Member

looking at the times the problem is definitely the dlogp graph. How much better if we get it through torch autodiff?

@Ch0ronomato
Copy link
Contributor Author

Ch0ronomato commented Dec 2, 2024

Okay just to drive the numbers point home, I did this in ipython.

fn = model.compile_logp(mode="PYTORCH")
fn(val)
%timeit -n 100 -r 100 fn(val)

2.18 ms ± 411 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)
fn = model.compile_logp(mode="NUMBA")
fn(val)
%timeit -n 100 -r 100 fn(val)

50.5 μs ± 4.29 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)

That's for logp. For dlogp

fn = model.compile_dlogp(mode="PYTORCH")
fn(val)
%timeit -n 100 -r 100 fn(val)

2.47 ms ± 430 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)
fn = model.compile_dlogp(mode="NUMBA")
fn(val)
%timeit -n 100 -r 100 fn(val)

62.3 μs ± 5.34 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)

I haven't looked at going through the torch autodiff engine for dlogp, I can put that on the list of possible things.

@Ch0ronomato
Copy link
Contributor Author

I can't super tell from the dprint if the slices are constant or not. I do see Split and AdvancedSubtensor throughout the graphs, but I imagine just cause they are there doesn't mean they are dynamic indexing?

 │  ├─ True_div [id EG] 79
 │  │  ├─ Sub [id EH] 78
 │  │  │  ├─ SpecifyShape [id EI] 73
 │  │  │  │  ├─ Split{2}.1 [id DY] 72
 │  │  │  │  │  └─ ···
 │  │  │  │  └─ 1 [id DA]
 │  │  │  └─ ExpandDims{axis=0} [id EJ] 77
 │  │  │     └─ Sum{axes=None} [id EK] 76
 │  │  │        └─ Sub [id DZ] 71
 │  │  │           └─ ···
 │  ├─ Split{2}.0 [id DY] 72
 │  │  ├─ Sub [id DZ] 71
 │  │  │  ├─ Mul [id EA] 70
 │  │  │  │  ├─ AdvancedIncSubtensor1{no_inplace,inc} [id EB] 59
 │  │  │  │  │  ├─ Alloc [id EC] 58
 │  │  │  │  │  │  ├─ [0.] [id CQ]
 │  │  │  │  │  │  └─ Add [id ED] 57
 │  │  │  │  │  │     ├─ Shape_i{0} [id CC] 4
 │  │  │  │  │  │     │  └─ ···
 │  │  │  │  │  │     └─ 1 [id CS]
 │  │  │  │  │  ├─ True_div [id EE] 56
 │  │  │  │  │  │  ├─ Mul [id DW] 55
 │  │  │  │  │  │  │  └─ ···
 │  │  │  │  │  │  └─ ExpandDims{axis=0} [id CV] 42
 │  │  │  │  │  │     └─ ···
 │  │  │  │  │  └─ [ 0  0  0 ... 83 84 84] [id BI]

@Ch0ronomato
Copy link
Contributor Author

Ch0ronomato commented Dec 2, 2024

There are two warnings I wanna dig into.

  1. There is a warning when doing a call to torch.tensor that is warning of a copy. So I'm gonna poke at that
  2. Warnings about data dependent ops. I wonder if it's because everything comes in as a torch.tensor, so torch thinks it's a variable it needs to track. We might be able avoid that...somehow lol

@ricardoV94
Copy link
Member

ricardoV94 commented Dec 2, 2024

@Ch0ronomato you need to eval the function once before doing the timeit. The first call will take care of the jit compilation which shouldn't be mixed with the eval cost. That's why you're getting those warnings that the slowest eval took x longer than fastest

@Ch0ronomato
Copy link
Contributor Author

you need to eval the function once before doing the timeit.

Cleaned up

@ricardoV94
Copy link
Member

So it's 4-5x slower than numba. Can you show what you get on the default c backend and jax on your machine as well?

@Ch0ronomato
Copy link
Contributor Author

Ch0ronomato commented Dec 5, 2024

My bad @ricardoV94 , here is jax and c

fn = model.compile_logp(mode="JAX")
fn(val)
%timeit -n 100 -r 100 fn(val)
98.5 μs ± 11.1 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)
fn = model.compile_logp()
fn(val)
%timeit -n 100 -r 100 fn(val)
117 μs ± 5.44 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)

Here were the torch and numba as well

fn = model.compile_logp(mode="NUMBA")
fn(val)
%timeit -n 100 -r 100 fn(val)
50.5 μs ± 4.29 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)
fn = model.compile_logp(mode="PYTORCH")
fn(val)
%timeit -n 100 -r 100 fn(val)
2.18 ms ± 411 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)

Similar for dlogp, but the text will be less verbose lol. Jax doesn't seem to work atm

torch: 2.81 ms ± 576 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)
numba: 59.7 μs ± 2.92 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)
c: 117 μs ± 5.44 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)

@ricardoV94
Copy link
Member

I run the profiler with the following code:

import pymc as pm
import numpy as np
import pandas as pd

from pymc import DictToArrayBijection
from pymc.model.transform.optimization import freeze_dims_and_data

# Load the radon dataset
data = pd.read_csv(pm.get_data("radon.csv"))
data["log_radon"] = data["log_radon"].astype(np.float64)
county_idx, counties = pd.factorize(data.county)
coords = {"county": counties, "obs_id": np.arange(len(county_idx))}

# Create a simple hierarchical model for the radon dataset
with pm.Model(coords=coords, check_bounds=False) as model:
    intercept = pm.Normal("intercept", sigma=10)

    # County effects
    raw = pm.ZeroSumNormal("county_raw", dims="county")
    sd = pm.HalfNormal("county_sd")
    county_effect = pm.Deterministic("county_effect", raw * sd, dims="county")

    # Global floor effect
    floor_effect = pm.Normal("floor_effect", sigma=2)

    # County:floor interaction
    raw = pm.ZeroSumNormal("county_floor_raw", dims="county")
    sd = pm.HalfNormal("county_floor_sd")
    county_floor_effect = pm.Deterministic(
        "county_floor_effect", raw * sd, dims="county"
    )

    mu = (
        intercept
        + county_effect[county_idx]
        + floor_effect * data.floor.values
        + county_floor_effect[county_idx] * data.floor.values
    )

    sigma = pm.HalfNormal("sigma", sigma=1.5)
    pm.Normal(
        "log_radon", mu=mu, sigma=sigma, observed=data.log_radon.values, dims="obs_id"
    )

frozen_model = freeze_dims_and_data(model)

def test_benchmark():
    logp_f = frozen_model.logp_dlogp_function(mode="PYTORCH", ravel_inputs=True)._pytensor_function
    logp_f.trust_input = True
    ip = DictToArrayBijection.map(model.initial_point()).data
    logp_f(ip)  # trigger compilation
    import cProfile
    with cProfile.Profile() as pr:
        [logp_f(ip) for _ in range(1000)]
    pr.dump_stats("torch_logp_fn.prof")

Then snakeviz shows there are 5 graph breaks, which is quite a lot?

image

It seems specify_shape, check_runtime_broadcasting and subtensor Ops are running in Python model, we should check if we can do something about that.

For curiosity the overhead of set/del_attr in around 2% of the whole benchmark

image

@Ch0ronomato
Copy link
Contributor Author

I also grabbed a bit of info from torch. Unfortunately on it's own it's not incredibly useful. I'm digging around a little to see if I can get what is going on.
gen_torch_dlogp.md
gen_torch.md
image

For those functions, I wonder if those are in the torch guards, since those will always run in python. For example here is a shape check

  Guard 1778:
    Name: "G['elemwise_fn_76'].__closure__[1].cell_contents.inputs[0].type.shape[0]"
    Source: global
    Create Function: CONSTANT_MATCH
    Guard Types: ['EQUALS_MATCH']
    Code List: ["G['elemwise_fn_76'].__closure__[1].cell_contents.inputs[0].type.shape[0] == 1"]
    Object Weakref: None
    Guarded Class Weakref: <weakref at 0x10c8ca7a0; to 'type' at 0x10c6b0538 (int)>

there are thousands of them.

@Ch0ronomato
Copy link
Contributor Author

Ch0ronomato commented Dec 25, 2024

I did some investigating on using autodiff instead of the way pytensor does it. It doesn't look like that gives us much in terms of raw performance.

%timeit -n 100 -r 100 without_autograd_fn(initial_point)
2.15 ms ± 104 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)

%timeit -n 100 -r 100 with_autograd_fn(initial_point)
3.05 ms ± 138 μs per loop (mean ± std. dev. of 100 runs, 100 loops each)

where the autodiff'd function looks like this

AutogradOp.0 [id A] 0
 ├─ intercept [id B]
 ├─ county_raw_zerosum__ [id C]
 ├─ county_sd_log__ [id D]
 ├─ floor_effect [id E]
 ├─ county_floor_raw_zerosum__ [id F]
 ├─ county_floor_sd_log__ [id G]
 └─ sigma_log__ [id H]
AutogradOp.1 [id A] 0
 └─ ···
AutogradOp.2 [id A] 0
 └─ ···
AutogradOp.3 [id A] 0
 └─ ···
AutogradOp.4 [id A] 0
 └─ ···
AutogradOp.5 [id A] 0
 └─ ···
AutogradOp.6 [id A] 0
 └─ ···

Inner graphs:

AutogradOp [id A]
 ← Add [id I]
    ├─ Check{sigma > 0} [id J] 'intercept_logprob'
    │  ├─ Add [id K]
    │  │  ├─ -3.221523658174155 [id L]
    │  │  └─ Mul [id M]
    │  │     ├─ -0.5 [id N]
    │  │     └─ Pow [id O]
    │  │        ├─ Mul [id P]
    │  │        │  ├─ 0.1 [id Q]
    │  │        │  └─ intercept [id R]
    │  │        └─ 2 [id S]
    │  └─ True [id T]
    ├─ Check{mean(value, axis=n_zerosum_axes) = 0} [id U]
    │  ├─ Sum{axes=None} [id V]
    │  │  └─ Sub [id W]
    │  │     ├─ Mul [id X]
    │  │     │  ├─ [-0.5] [id Y]
    │  │     │  └─ Pow [id Z]
    │  │     │     ├─ Sub [id BA]
    │  │     │     │  ├─ Join [id BB]
    │  │     │     │  │  ├─ 0 [id BC]
    │  │     │     │  │  ├─ county_raw_zerosum__ [id BD]
    │  │     │     │  │  └─ Sub [id BE]
    │  │     │     │  │     ├─ True_div [id BF]
    │  │     │     │  │     │  ├─ ExpandDims{axis=0} [id BG]
    │  │     │     │  │     │  │  └─ Sum{axes=None} [id BH]
    │  │     │     │  │     │  │     └─ county_raw_zerosum__ [id BD]
    │  │     │     │  │     │  └─ Add [id BI]
    │  │     │     │  │     │     ├─ Sqrt [id BJ]
    │  │     │     │  │     │     │  └─ Cast{float64} [id BK]
    │  │     │     │  │     │     │     └─ Add [id BL]
    │  │     │     │  │     │     │        ├─ [1] [id BM]
    │  │     │     │  │     │     │        └─ Shape [id BN]
    │  │     │     │  │     │     │           └─ county_raw_zerosum__ [id BD]
    │  │     │     │  │     │     └─ Cast{float64} [id BK]
    │  │     │     │  │     │        └─ ···
    │  │     │     │  │     └─ True_div [id BO]
    │  │     │     │  │        ├─ ExpandDims{axis=0} [id BG]
    │  │     │     │  │        │  └─ ···
    │  │     │     │  │        └─ Sqrt [id BJ]
    │  │     │     │  │           └─ ···
    │  │     │     │  └─ True_div [id BF]
    │  │     │     │     └─ ···
    │  │     │     └─ [2] [id BP]
    │  │     └─ True_div [id BQ]
    │  │        ├─ Mul [id BR]
    │  │        │  ├─ [0.91893853] [id BS]
    │  │        │  └─ Cast{float64} [id BT]
    │  │        │     └─ IncSubtensor{start:} [id BU]
    │  │        │        ├─ Shape [id BV]
    │  │        │        │  └─ Sub [id BA]
    │  │        │        │     └─ ···
    │  │        │        ├─ -1 [id BW]
    │  │        │        └─ -1 [id BX]
    │  │        └─ Cast{float64} [id BY]
    │  │           └─ Shape [id BV]
    │  │              └─ ···
    │  └─ And [id BZ]
    │     ├─ Le [id CA]
    │     │  ├─ True_div [id CB]
    │     │  │  ├─ Abs [id CC]
    │     │  │  │  └─ Sum{axes=None} [id CD]
    │     │  │  │     └─ Sub [id BA]
    │     │  │  │        └─ ···
    │     │  │  └─ Abs [id CE]
    │     │  │     └─ Cast{float64} [id CF]
    │     │  │        └─ DropDims{axis=0} [id CG]
    │     │  │           └─ Shape [id BV]
    │     │  │              └─ ···
    │     │  └─ 1e-09 [id CH]
    │     └─ Invert [id CI]
    │        └─ Or [id CJ]
    │           ├─ Isnan [id CK]
    │           │  └─ True_div [id CL] 'mean'
    │           │     ├─ Sum{axes=None} [id CD]
    │           │     │  └─ ···
    │           │     └─ Cast{float64} [id CF]
    │           │        └─ ···
    │           └─ Isinf [id CM]
    │              └─ True_div [id CL] 'mean'
    │                 └─ ···
    ├─ Check{sigma > 0} [id CN]
    │  ├─ Switch [id CO]
    │  │  ├─ Ge [id CP]
    │  │  │  ├─ Exp [id CQ]
    │  │  │  │  └─ county_sd_log__ [id CR]
    │  │  │  └─ 0.0 [id CS]
    │  │  ├─ Add [id CT]
    │  │  │  ├─ -0.22579135264472738 [id CU]
    │  │  │  └─ Mul [id CV]
    │  │  │     ├─ -0.5 [id N]
    │  │  │     └─ Pow [id CW]
    │  │  │        ├─ Exp [id CQ]
    │  │  │        │  └─ ···
    │  │  │        └─ 2 [id S]
    │  │  └─ -inf [id CX]
    │  └─ True [id T]
    ├─ county_sd_log__ [id CR]
    ├─ Check{sigma > 0} [id CY] 'floor_effect_logprob'
    │  ├─ Add [id CZ]
    │  │  ├─ -1.6120857156692723 [id DA]
    │  │  └─ Mul [id DB]
    │  │     ├─ -0.5 [id N]
    │  │     └─ Pow [id DC]
    │  │        ├─ Mul [id DD]
    │  │        │  ├─ 0.5 [id DE]
    │  │        │  └─ floor_effect [id DF]
    │  │        └─ 2 [id S]
    │  └─ True [id T]
    ├─ Check{mean(value, axis=n_zerosum_axes) = 0} [id DG]
    │  ├─ Sum{axes=None} [id DH]
    │  │  └─ Sub [id DI]
    │  │     ├─ Mul [id DJ]
    │  │     │  ├─ [-0.5] [id Y]
    │  │     │  └─ Pow [id DK]
    │  │     │     ├─ Sub [id DL]
    │  │     │     │  ├─ Join [id DM]
    │  │     │     │  │  ├─ 0 [id BC]
    │  │     │     │  │  ├─ county_floor_raw_zerosum__ [id DN]
    │  │     │     │  │  └─ Sub [id DO]
    │  │     │     │  │     ├─ True_div [id DP]
    │  │     │     │  │     │  ├─ ExpandDims{axis=0} [id DQ]
    │  │     │     │  │     │  │  └─ Sum{axes=None} [id DR]
    │  │     │     │  │     │  │     └─ county_floor_raw_zerosum__ [id DN]
    │  │     │     │  │     │  └─ Add [id DS]
    │  │     │     │  │     │     ├─ Sqrt [id DT]
    │  │     │     │  │     │     │  └─ Cast{float64} [id DU]
    │  │     │     │  │     │     │     └─ Add [id DV]
    │  │     │     │  │     │     │        ├─ [1] [id BM]
    │  │     │     │  │     │     │        └─ Shape [id DW]
    │  │     │     │  │     │     │           └─ county_floor_raw_zerosum__ [id DN]
    │  │     │     │  │     │     └─ Cast{float64} [id DU]
    │  │     │     │  │     │        └─ ···
    │  │     │     │  │     └─ True_div [id DX]
    │  │     │     │  │        ├─ ExpandDims{axis=0} [id DQ]
    │  │     │     │  │        │  └─ ···
    │  │     │     │  │        └─ Sqrt [id DT]
    │  │     │     │  │           └─ ···
    │  │     │     │  └─ True_div [id DP]
    │  │     │     │     └─ ···
    │  │     │     └─ [2] [id BP]
    │  │     └─ True_div [id DY]
    │  │        ├─ Mul [id DZ]
    │  │        │  ├─ [0.91893853] [id BS]
    │  │        │  └─ Cast{float64} [id EA]
    │  │        │     └─ IncSubtensor{start:} [id EB]
    │  │        │        ├─ Shape [id EC]
    │  │        │        │  └─ Sub [id DL]
    │  │        │        │     └─ ···
    │  │        │        ├─ -1 [id BW]
    │  │        │        └─ -1 [id BX]
    │  │        └─ Cast{float64} [id ED]
    │  │           └─ Shape [id EC]
    │  │              └─ ···
    │  └─ And [id EE]
    │     ├─ Le [id EF]
    │     │  ├─ True_div [id EG]
    │     │  │  ├─ Abs [id EH]
    │     │  │  │  └─ Sum{axes=None} [id EI]
    │     │  │  │     └─ Sub [id DL]
    │     │  │  │        └─ ···
    │     │  │  └─ Abs [id EJ]
    │     │  │     └─ Cast{float64} [id EK]
    │     │  │        └─ DropDims{axis=0} [id EL]
    │     │  │           └─ Shape [id EC]
    │     │  │              └─ ···
    │     │  └─ 1e-09 [id CH]
    │     └─ Invert [id EM]
    │        └─ Or [id EN]
    │           ├─ Isnan [id EO]
    │           │  └─ True_div [id EP] 'mean'
    │           │     ├─ Sum{axes=None} [id EI]
    │           │     │  └─ ···
    │           │     └─ Cast{float64} [id EK]
    │           │        └─ ···
    │           └─ Isinf [id EQ]
    │              └─ True_div [id EP] 'mean'
    │                 └─ ···
    ├─ Check{sigma > 0} [id ER]
    │  ├─ Switch [id ES]
    │  │  ├─ Ge [id ET]
    │  │  │  ├─ Exp [id EU]
    │  │  │  │  └─ county_floor_sd_log__ [id EV]
    │  │  │  └─ 0.0 [id CS]
    │  │  ├─ Add [id EW]
    │  │  │  ├─ -0.22579135264472738 [id CU]
    │  │  │  └─ Mul [id EX]
    │  │  │     ├─ -0.5 [id N]
    │  │  │     └─ Pow [id EY]
    │  │  │        ├─ Exp [id EU]
    │  │  │        │  └─ ···
    │  │  │        └─ 2 [id S]
    │  │  └─ -inf [id CX]
    │  └─ True [id T]
    ├─ county_floor_sd_log__ [id EV]
    ├─ Check{sigma > 0} [id EZ]
    │  ├─ Switch [id FA]
    │  │  ├─ Ge [id FB]
    │  │  │  ├─ Exp [id FC]
    │  │  │  │  └─ sigma_log__ [id FD]
    │  │  │  └─ 0.0 [id CS]
    │  │  ├─ Add [id FE]
    │  │  │  ├─ -0.6312564488800027 [id FF]
    │  │  │  └─ Mul [id FG]
    │  │  │     ├─ -0.5 [id N]
    │  │  │     └─ Pow [id FH]
    │  │  │        ├─ Mul [id FI]
    │  │  │        │  ├─ 0.6666666666666666 [id FJ]
    │  │  │        │  └─ Exp [id FC]
    │  │  │        │     └─ ···
    │  │  │        └─ 2 [id S]
    │  │  └─ -inf [id CX]
    │  └─ True [id T]
    ├─ sigma_log__ [id FD]
    └─ Sum{axes=None} [id FK]
       └─ Check{sigma > 0} [id FL] 'log_radon_logprob'
          ├─ Sub [id FM]
          │  ├─ Add [id FN]
          │  │  ├─ [-0.91893853] [id FO]
          │  │  └─ Mul [id FP]
          │  │     ├─ [-0.5] [id Y]
          │  │     └─ Pow [id FQ]
          │  │        ├─ True_div [id FR]
          │  │        │  ├─ Sub [id FS]
          │  │        │  │  ├─ log_radon{[ 0.832909 ... .09861229]} [id FT]
          │  │        │  │  └─ Add [id FU]
          │  │        │  │     ├─ ExpandDims{axis=0} [id FV]
          │  │        │  │     │  └─ intercept [id R]
          │  │        │  │     ├─ AdvancedSubtensor [id FW]
          │  │        │  │     │  ├─ Mul [id FX] 'county_effect'
          │  │        │  │     │  │  ├─ Sub [id BA]
          │  │        │  │     │  │  │  └─ ···
          │  │        │  │     │  │  └─ ExpandDims{axis=0} [id FY]
          │  │        │  │     │  │     └─ Exp [id CQ]
          │  │        │  │     │  │        └─ ···
          │  │        │  │     │  └─ [ 0  0  0 ... 83 84 84] [id FZ]
          │  │        │  │     ├─ Mul [id GA]
          │  │        │  │     │  ├─ ExpandDims{axis=0} [id GB]
          │  │        │  │     │  │  └─ floor_effect [id DF]
          │  │        │  │     │  └─ [1. 0. 0. ... 0. 0. 0.] [id GC]
          │  │        │  │     └─ Mul [id GD]
          │  │        │  │        ├─ AdvancedSubtensor [id GE]
          │  │        │  │        │  ├─ Mul [id GF] 'county_floor_effect'
          │  │        │  │        │  │  ├─ Sub [id DL]
          │  │        │  │        │  │  │  └─ ···
          │  │        │  │        │  │  └─ ExpandDims{axis=0} [id GG]
          │  │        │  │        │  │     └─ Exp [id EU]
          │  │        │  │        │  │        └─ ···
          │  │        │  │        │  └─ [ 0  0  0 ... 83 84 84] [id FZ]
          │  │        │  │        └─ [1. 0. 0. ... 0. 0. 0.] [id GC]
          │  │        │  └─ ExpandDims{axis=0} [id GH]
          │  │        │     └─ Exp [id FC]
          │  │        │        └─ ···
          │  │        └─ [2] [id BP]
          │  └─ Log [id GI]
          │     └─ ExpandDims{axis=0} [id GH]
          │        └─ ···
          └─ Gt [id GJ]
             ├─ Exp [id FC]
             │  └─ ···
             └─ 0 [id BC]

and the normal one looks like this

Join [id A] 117
 ├─ 0 [id B]
 ├─ Reshape{1} [id C] 116
 │  ├─ Add [id D] 115
 │  │  ├─ Mul [id E] 114
 │  │  │  ├─ -0.0100000 ... 0000000002 [id F]
 │  │  │  └─ intercept [id G]
 │  │  └─ True_div [id H] 113
 │  │     ├─ True_div [id I] 112
 │  │     │  ├─ Sum{axes=None} [id J] 111
 │  │     │  │  └─ Sub [id K] 41
 │  │     │  │     ├─ log_radon{[ 0.832909 ... .09861229]} [id L]
 │  │     │  │     └─ Add [id M] 40
 │  │     │  │        ├─ ExpandDims{axis=0} [id N] 39
 │  │     │  │        │  └─ intercept [id G]
 │  │     │  │        ├─ AdvancedSubtensor1 [id O] 38
 │  │     │  │        │  ├─ Mul [id P] 'county_effect' 37
 │  │     │  │        │  │  ├─ Sub [id Q] 36
 │  │     │  │        │  │  │  ├─ Join [id R] 35
 │  │     │  │        │  │  │  │  ├─ 0 [id B]
 │  │     │  │        │  │  │  │  ├─ county_raw_zerosum__ [id S]
 │  │     │  │        │  │  │  │  └─ Sub [id T] 34
 │  │     │  │        │  │  │  │     ├─ True_div [id U] 32
 │  │     │  │        │  │  │  │     │  ├─ ExpandDims{axis=0} [id V] 31
 │  │     │  │        │  │  │  │     │  │  └─ Sum{axes=None} [id W] 30
 │  │     │  │        │  │  │  │     │  │     └─ county_raw_zerosum__ [id S]
 │  │     │  │        │  │  │  │     │  └─ Add [id X] 29
 │  │     │  │        │  │  │  │     │     ├─ Sqrt [id Y] 28
 │  │     │  │        │  │  │  │     │     │  └─ Cast{float64} [id Z] 27
 │  │     │  │        │  │  │  │     │     │     └─ Add [id BA] 26
 │  │     │  │        │  │  │  │     │     │        ├─ [1] [id BB]
 │  │     │  │        │  │  │  │     │     │        └─ MakeVector{dtype='int64'} [id BC] 25
 │  │     │  │        │  │  │  │     │     │           └─ Shape_i{0} [id BD] 24
 │  │     │  │        │  │  │  │     │     │              └─ county_raw_zerosum__ [id S]
 │  │     │  │        │  │  │  │     │     └─ Cast{float64} [id Z] 27
 │  │     │  │        │  │  │  │     │        └─ ···
 │  │     │  │        │  │  │  │     └─ True_div [id BE] 33
 │  │     │  │        │  │  │  │        ├─ ExpandDims{axis=0} [id V] 31
 │  │     │  │        │  │  │  │        │  └─ ···
 │  │     │  │        │  │  │  │        └─ Sqrt [id Y] 28
 │  │     │  │        │  │  │  │           └─ ···
 │  │     │  │        │  │  │  └─ True_div [id U] 32
 │  │     │  │        │  │  │     └─ ···
 │  │     │  │        │  │  └─ ExpandDims{axis=0} [id BF] 23
 │  │     │  │        │  │     └─ Exp [id BG] 22
 │  │     │  │        │  │        └─ county_sd_log__ [id BH]
 │  │     │  │        │  └─ [ 0  0  0 ... 83 84 84] [id BI]
 │  │     │  │        ├─ Mul [id BJ] 21
 │  │     │  │        │  ├─ ExpandDims{axis=0} [id BK] 20
 │  │     │  │        │  │  └─ floor_effect [id BL]
 │  │     │  │        │  └─ [1. 0. 0. ... 0. 0. 0.] [id BM]
 │  │     │  │        └─ Mul [id BN] 19
 │  │     │  │           ├─ AdvancedSubtensor1 [id BO] 18
 │  │     │  │           │  ├─ Mul [id BP] 'county_floor_effect' 17
 │  │     │  │           │  │  ├─ Sub [id BQ] 16
 │  │     │  │           │  │  │  ├─ Join [id BR] 15
 │  │     │  │           │  │  │  │  ├─ 0 [id B]
 │  │     │  │           │  │  │  │  ├─ county_floor_raw_zerosum__ [id BS]
 │  │     │  │           │  │  │  │  └─ Sub [id BT] 14
 │  │     │  │           │  │  │  │     ├─ True_div [id BU] 12
 │  │     │  │           │  │  │  │     │  ├─ ExpandDims{axis=0} [id BV] 11
 │  │     │  │           │  │  │  │     │  │  └─ Sum{axes=None} [id BW] 10
 │  │     │  │           │  │  │  │     │  │     └─ county_floor_raw_zerosum__ [id BS]
 │  │     │  │           │  │  │  │     │  └─ Add [id BX] 9
 │  │     │  │           │  │  │  │     │     ├─ Sqrt [id BY] 8
 │  │     │  │           │  │  │  │     │     │  └─ Cast{float64} [id BZ] 7
 │  │     │  │           │  │  │  │     │     │     └─ Add [id CA] 6
 │  │     │  │           │  │  │  │     │     │        ├─ [1] [id BB]
 │  │     │  │           │  │  │  │     │     │        └─ MakeVector{dtype='int64'} [id CB] 5
 │  │     │  │           │  │  │  │     │     │           └─ Shape_i{0} [id CC] 4
 │  │     │  │           │  │  │  │     │     │              └─ county_floor_raw_zerosum__ [id BS]
 │  │     │  │           │  │  │  │     │     └─ Cast{float64} [id BZ] 7
 │  │     │  │           │  │  │  │     │        └─ ···
 │  │     │  │           │  │  │  │     └─ True_div [id CD] 13
 │  │     │  │           │  │  │  │        ├─ ExpandDims{axis=0} [id BV] 11
 │  │     │  │           │  │  │  │        │  └─ ···
 │  │     │  │           │  │  │  │        └─ Sqrt [id BY] 8
 │  │     │  │           │  │  │  │           └─ ···
 │  │     │  │           │  │  │  └─ True_div [id BU] 12
 │  │     │  │           │  │  │     └─ ···
 │  │     │  │           │  │  └─ ExpandDims{axis=0} [id CE] 3
 │  │     │  │           │  │     └─ Exp [id CF] 2
 │  │     │  │           │  │        └─ county_floor_sd_log__ [id CG]
 │  │     │  │           │  └─ [ 0  0  0 ... 83 84 84] [id BI]
 │  │     │  │           └─ [1. 0. 0. ... 0. 0. 0.] [id BM]
 │  │     │  └─ Exp [id CH] 0
 │  │     │     └─ sigma_log__ [id CI]
 │  │     └─ Exp [id CH] 0
 │  │        └─ ···
 │  └─ [-1] [id CJ]
 ├─ Add [id CK] 110
 │  ├─ Split{2}.0 [id CL] 102
 │  │  ├─ Sub [id CM] 101
 │  │  │  ├─ Mul [id CN] 100
 │  │  │  │  ├─ AdvancedIncSubtensor1{no_inplace,inc} [id CO] 89
 │  │  │  │  │  ├─ Alloc [id CP] 88
 │  │  │  │  │  │  ├─ [0.] [id CQ]
 │  │  │  │  │  │  └─ Add [id CR] 87
 │  │  │  │  │  │     ├─ Shape_i{0} [id BD] 24
 │  │  │  │  │  │     │  └─ ···
 │  │  │  │  │  │     └─ 1 [id CS]
 │  │  │  │  │  ├─ True_div [id CT] 86
 │  │  │  │  │  │  ├─ True_div [id CU] 43
 │  │  │  │  │  │  │  ├─ Sub [id K] 41
 │  │  │  │  │  │  │  │  └─ ···
 │  │  │  │  │  │  │  └─ ExpandDims{axis=0} [id CV] 42
 │  │  │  │  │  │  │     └─ Exp [id CH] 0
 │  │  │  │  │  │  │        └─ ···
 │  │  │  │  │  │  └─ ExpandDims{axis=0} [id CV] 42
 │  │  │  │  │  │     └─ ···
 │  │  │  │  │  └─ [ 0  0  0 ... 83 84 84] [id BI]
 │  │  │  │  └─ ExpandDims{axis=0} [id BF] 23
 │  │  │  │     └─ ···
 │  │  │  └─ Sub [id Q] 36
 │  │  │     └─ ···
 │  │  ├─ 0 [id B]
 │  │  └─ MakeVector{dtype='int64'} [id CW] 99
 │  │     ├─ Shape_i{0} [id BD] 24
 │  │     │  └─ ···
 │  │     └─ 1 [id CS]
 │  ├─ True_div [id CX] 109
 │  │  ├─ Sub [id CY] 108
 │  │  │  ├─ SpecifyShape [id CZ] 103
 │  │  │  │  ├─ Split{2}.1 [id CL] 102
 │  │  │  │  │  └─ ···
 │  │  │  │  └─ 1 [id DA]
 │  │  │  └─ ExpandDims{axis=0} [id DB] 107
 │  │  │     └─ Sum{axes=None} [id DC] 106
 │  │  │        └─ Sub [id CM] 101
 │  │  │           └─ ···
 │  │  └─ Add [id X] 29
 │  │     └─ ···
 │  └─ True_div [id DD] 105
 │     ├─ Neg [id DE] 104
 │     │  └─ SpecifyShape [id CZ] 103
 │     │     └─ ···
 │     └─ Sqrt [id Y] 28
 │        └─ ···
 ├─ Reshape{1} [id DF] 98
 │  ├─ Add [id DG] 97
 │  │  ├─ 1.0 [id DH]
 │  │  └─ Mul [id DI] 96
 │  │     ├─ Add [id DJ] 95
 │  │     │  ├─ Switch [id DK] 94
 │  │     │  │  ├─ Ge [id DL] 93
 │  │     │  │  │  ├─ Exp [id BG] 22
 │  │     │  │  │  │  └─ ···
 │  │     │  │  │  └─ 0.0 [id DM]
 │  │     │  │  ├─ Neg [id DN] 92
 │  │     │  │  │  └─ Exp [id BG] 22
 │  │     │  │  │     └─ ···
 │  │     │  │  └─ 0.0 [id DM]
 │  │     │  └─ Sum{axes=None} [id DO] 91
 │  │     │     └─ Mul [id DP] 90
 │  │     │        ├─ AdvancedIncSubtensor1{no_inplace,inc} [id CO] 89
 │  │     │        │  └─ ···
 │  │     │        └─ Sub [id Q] 36
 │  │     │           └─ ···
 │  │     └─ Exp [id BG] 22
 │  │        └─ ···
 │  └─ [-1] [id CJ]
 ├─ Reshape{1} [id DQ] 85
 │  ├─ Add [id DR] 84
 │  │  ├─ Mul [id DS] 83
 │  │  │  ├─ -0.25 [id DT]
 │  │  │  └─ floor_effect [id BL]
 │  │  └─ True_div [id DU] 82
 │  │     ├─ Sum{axes=None} [id DV] 81
 │  │     │  └─ Mul [id DW] 55
 │  │     │     ├─ True_div [id CU] 43
 │  │     │     │  └─ ···
 │  │     │     └─ [1. 0. 0. ... 0. 0. 0.] [id BM]
 │  │     └─ Exp [id CH] 0
 │  │        └─ ···
 │  └─ [-1] [id CJ]
 ├─ Add [id DX] 80
 │  ├─ Split{2}.0 [id DY] 72
 │  │  ├─ Sub [id DZ] 71
 │  │  │  ├─ Mul [id EA] 70
 │  │  │  │  ├─ AdvancedIncSubtensor1{no_inplace,inc} [id EB] 59
 │  │  │  │  │  ├─ Alloc [id EC] 58
 │  │  │  │  │  │  ├─ [0.] [id CQ]
 │  │  │  │  │  │  └─ Add [id ED] 57
 │  │  │  │  │  │     ├─ Shape_i{0} [id CC] 4
 │  │  │  │  │  │     │  └─ ···
 │  │  │  │  │  │     └─ 1 [id CS]
 │  │  │  │  │  ├─ True_div [id EE] 56
 │  │  │  │  │  │  ├─ Mul [id DW] 55
 │  │  │  │  │  │  │  └─ ···
 │  │  │  │  │  │  └─ ExpandDims{axis=0} [id CV] 42
 │  │  │  │  │  │     └─ ···
 │  │  │  │  │  └─ [ 0  0  0 ... 83 84 84] [id BI]
 │  │  │  │  └─ ExpandDims{axis=0} [id CE] 3
 │  │  │  │     └─ ···
 │  │  │  └─ Sub [id BQ] 16
 │  │  │     └─ ···
 │  │  ├─ 0 [id B]
 │  │  └─ MakeVector{dtype='int64'} [id EF] 69
 │  │     ├─ Shape_i{0} [id CC] 4
 │  │     │  └─ ···
 │  │     └─ 1 [id CS]
 │  ├─ True_div [id EG] 79
 │  │  ├─ Sub [id EH] 78
 │  │  │  ├─ SpecifyShape [id EI] 73
 │  │  │  │  ├─ Split{2}.1 [id DY] 72
 │  │  │  │  │  └─ ···
 │  │  │  │  └─ 1 [id DA]
 │  │  │  └─ ExpandDims{axis=0} [id EJ] 77
 │  │  │     └─ Sum{axes=None} [id EK] 76
 │  │  │        └─ Sub [id DZ] 71
 │  │  │           └─ ···
 │  │  └─ Add [id BX] 9
 │  │     └─ ···
 │  └─ True_div [id EL] 75
 │     ├─ Neg [id EM] 74
 │     │  └─ SpecifyShape [id EI] 73
 │     │     └─ ···
 │     └─ Sqrt [id BY] 8
 │        └─ ···
 ├─ Reshape{1} [id EN] 68
 │  ├─ Add [id EO] 67
 │  │  ├─ 1.0 [id DH]
 │  │  └─ Mul [id EP] 66
 │  │     ├─ Add [id EQ] 65
 │  │     │  ├─ Switch [id ER] 64
 │  │     │  │  ├─ Ge [id ES] 63
 │  │     │  │  │  ├─ Exp [id CF] 2
 │  │     │  │  │  │  └─ ···
 │  │     │  │  │  └─ 0.0 [id DM]
 │  │     │  │  ├─ Neg [id ET] 62
 │  │     │  │  │  └─ Exp [id CF] 2
 │  │     │  │  │     └─ ···
 │  │     │  │  └─ 0.0 [id DM]
 │  │     │  └─ Sum{axes=None} [id EU] 61
 │  │     │     └─ Mul [id EV] 60
 │  │     │        ├─ AdvancedIncSubtensor1{no_inplace,inc} [id EB] 59
 │  │     │        │  └─ ···
 │  │     │        └─ Sub [id BQ] 16
 │  │     │           └─ ···
 │  │     └─ Exp [id CF] 2
 │  │        └─ ···
 │  └─ [-1] [id CJ]
 └─ Reshape{1} [id EW] 54
    ├─ Add [id EX] 53
    │  ├─ 1.0 [id DH]
    │  ├─ Switch [id EY] 52
    │  │  ├─ Ge [id EZ] 51
    │  │  │  ├─ Exp [id CH] 0
    │  │  │  │  └─ ···
    │  │  │  └─ 0.0 [id DM]
    │  │  ├─ Mul [id FA] 50
    │  │  │  ├─ Exp [id FB] 49
    │  │  │  │  └─ Add [id FC] 48
    │  │  │  │     ├─ sigma_log__ [id CI]
    │  │  │  │     └─ sigma_log__ [id CI]
    │  │  │  └─ -0.4444444444444444 [id FD]
    │  │  └─ 0.0 [id DM]
    │  ├─ Mul [id FE] 47
    │  │  ├─ True_div [id FF] 46
    │  │  │  ├─ Sum{axes=None} [id FG] 45
    │  │  │  │  └─ Mul [id FH] 44
    │  │  │  │     ├─ True_div [id CU] 43
    │  │  │  │     │  └─ ···
    │  │  │  │     └─ Sub [id K] 41
    │  │  │  │        └─ ···
    │  │  │  └─ Sqr [id FI] 1
    │  │  │     └─ Exp [id CH] 0
    │  │  │        └─ ···
    │  │  └─ Exp [id CH] 0
    │  │     └─ ···
    │  └─ -919.0 [id FJ]
    └─ [-1] [id CJ]

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants