-
Notifications
You must be signed in to change notification settings - Fork 362
/
Copy pathtensor_parallel_simple_example.py
executable file
·100 lines (83 loc) · 2.81 KB
/
tensor_parallel_simple_example.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
"""
This file contains the Tensor parallel simple model example used for tensor parallel distribution
"""
import time
import tensorrt as trt
import torch
import torch.nn as nn
import torch_tensorrt
from tensor_parallel_initialize_dist import initialize_distributed_env
from torch.distributed._tensor import Shard
from torch.distributed.tensor.parallel import (
ColwiseParallel,
RowwiseParallel,
parallelize_module,
)
device_mesh, _world_size, _rank, logger = initialize_distributed_env(
"./tensor_parallel_simple_example"
)
"""
This example copies some code from https://github.com/pytorch/examples/blob/main/distributed/tensor_parallelism/tensor_parallel_example.py
"""
class ToyModel(nn.Module):
"""MLP based model"""
def __init__(self):
super(ToyModel, self).__init__()
self.in_proj = nn.Linear(10, 3200)
self.relu = nn.ReLU()
self.out_proj = nn.Linear(3200, 1600)
self.in_proj2 = nn.Linear(1600, 500)
self.out_proj2 = nn.Linear(500, 100)
def forward(self, x):
x = self.out_proj(self.relu(self.in_proj(x)))
x = self.relu(x)
x = self.out_proj2(self.relu(self.in_proj2(x)))
return x
logger.info(f"Starting PyTorch TP example on rank {_rank}.")
assert (
_world_size % 2 == 0
), f"TP examples require even number of GPUs, but got {_world_size} gpus"
# # create model and move it to GPU - init"cuda"_mesh has already mapped GPU ids.
tp_model = ToyModel().to("cuda")
# Custom parallelization plan for the model
tp_model = parallelize_module(
module=tp_model,
device_mesh=device_mesh,
parallelize_plan={
"in_proj": ColwiseParallel(input_layouts=Shard(0)),
"out_proj": RowwiseParallel(output_layouts=Shard(0)),
"in_proj2": ColwiseParallel(input_layouts=Shard(0)),
"out_proj2": RowwiseParallel(output_layouts=Shard(0)),
},
)
torch.manual_seed(0)
inp = torch.rand(20, 10, device="cuda")
python_result = tp_model(inp)
backend = "torch_tensorrt"
tp_model = torch.compile(
tp_model,
backend=backend,
options={
"truncate_long_and_double": True,
"enabled_precisions": {torch.float32, torch.float16},
"use_python_runtime": True,
"min_block_size": 1,
"use_aot_joint_export": False,
},
dynamic=False,
)
for i in range(10):
# For TP, input needs to be same across all TP ranks.
# Setting the random seed is to mimic the behavior of dataloader.
torch.manual_seed(i)
inp = torch.rand(20, 10, device="cuda")
start = time.time()
output = tp_model(inp)
end = time.time()
if i == 0:
logger.info(f"Compilation time is {end-start}")
assert (
python_result - output
).std() < 0.01, "Compilation result is not correct."
elif _rank == 0:
logger.info(f"Inference time is {end-start}")