|
| 1 | +import numpy as np |
| 2 | +import torch |
| 3 | +import torch_tensorrt |
| 4 | +from engine_caching_example import remove_timing_cache |
| 5 | +from transformers import BertModel |
| 6 | + |
| 7 | +np.random.seed(0) |
| 8 | +torch.manual_seed(0) |
| 9 | + |
| 10 | +model = BertModel.from_pretrained("bert-base-uncased", return_dict=False).cuda().eval() |
| 11 | +inputs = [ |
| 12 | + torch.randint(0, 2, (1, 14), dtype=torch.int32).to("cuda"), |
| 13 | + torch.randint(0, 2, (1, 14), dtype=torch.int32).to("cuda"), |
| 14 | +] |
| 15 | + |
| 16 | + |
| 17 | +def compile_bert(iterations=3): |
| 18 | + times = [] |
| 19 | + start = torch.cuda.Event(enable_timing=True) |
| 20 | + end = torch.cuda.Event(enable_timing=True) |
| 21 | + |
| 22 | + # The 1st iteration is to measure the compilation time without engine caching |
| 23 | + # The 2nd and 3rd iterations are to measure the compilation time with engine caching. |
| 24 | + # Since the 2nd iteration needs to compile and save the engine, it will be slower than the 1st iteration. |
| 25 | + # The 3rd iteration should be faster than the 1st iteration because it loads the cached engine. |
| 26 | + for i in range(iterations): |
| 27 | + # remove timing cache and reset dynamo for engine caching messurement |
| 28 | + remove_timing_cache() |
| 29 | + torch._dynamo.reset() |
| 30 | + |
| 31 | + if i == 0: |
| 32 | + save_engine_cache = False |
| 33 | + load_engine_cache = False |
| 34 | + else: |
| 35 | + save_engine_cache = True |
| 36 | + load_engine_cache = True |
| 37 | + |
| 38 | + start.record() |
| 39 | + compilation_kwargs = { |
| 40 | + "use_python_runtime": False, |
| 41 | + "enabled_precisions": {torch.float}, |
| 42 | + "truncate_double": True, |
| 43 | + "debug": True, |
| 44 | + "min_block_size": 1, |
| 45 | + "make_refitable": True, |
| 46 | + "save_engine_cache": save_engine_cache, |
| 47 | + "load_engine_cache": load_engine_cache, |
| 48 | + "engine_cache_size": 1 << 30, # 1GB |
| 49 | + } |
| 50 | + optimized_model = torch.compile( |
| 51 | + model, |
| 52 | + backend="torch_tensorrt", |
| 53 | + options=compilation_kwargs, |
| 54 | + ) |
| 55 | + optimized_model(*inputs) |
| 56 | + end.record() |
| 57 | + torch.cuda.synchronize() |
| 58 | + times.append(start.elapsed_time(end)) |
| 59 | + |
| 60 | + print("-----compile bert-----> compilation time:", times, "milliseconds") |
| 61 | + |
| 62 | + |
| 63 | +if __name__ == "__main__": |
| 64 | + compile_bert() |
0 commit comments