diff --git a/py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py b/py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
index 14c25ec8ab..066d0b2588 100644
--- a/py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
+++ b/py/torch_tensorrt/dynamo/conversion/aten_ops_converters.py
@@ -1714,6 +1714,23 @@ def aten_ops_isnan(
     )
 
 
+@dynamo_tensorrt_converter(torch.ops.aten._local_scalar_dense.default)
+def aten_ops_local_scalar_dense(
+    ctx: ConversionContext,
+    target: Target,
+    args: Tuple[Argument, ...],
+    kwargs: Dict[str, Argument],
+    name: str,
+) -> Union[TRTTensor, Sequence[TRTTensor]]:
+    return impl.unary.local_scalar_dense(
+        ctx,
+        target,
+        SourceIR.ATEN,
+        name,
+        args[0],
+    )
+
+
 @dynamo_tensorrt_converter(operator.add, supports_dynamic_shapes=True)
 @dynamo_tensorrt_converter(torch.ops.aten.add.Tensor, supports_dynamic_shapes=True)
 @dynamo_tensorrt_converter(torch.ops.aten.add.Scalar, supports_dynamic_shapes=True)
diff --git a/py/torch_tensorrt/dynamo/conversion/impl/unary/ops.py b/py/torch_tensorrt/dynamo/conversion/impl/unary/ops.py
index beb13fca9b..dbdbb332c5 100644
--- a/py/torch_tensorrt/dynamo/conversion/impl/unary/ops.py
+++ b/py/torch_tensorrt/dynamo/conversion/impl/unary/ops.py
@@ -571,3 +571,26 @@ def isnan(
     )
 
     return nan_values_mask
+
+
+def local_scalar_dense(
+    ctx: ConversionContext,
+    target: Union[Target, str],
+    source_ir: Optional[SourceIR],
+    name: str,
+    input: TRTTensor,
+) -> TRTTensor:
+    start = [0] * len(input.shape)
+    shape = [1] * len(input.shape)  # Get one element from each dimension
+    stride = [1] * len(input.shape)  # Step through each dimension by 1
+
+    layer = ctx.net.add_slice(input=input, start=start, shape=shape, stride=stride)
+    set_layer_name(layer, target, f"{name}_slice", source_ir)
+
+    reshape_layer = ctx.net.add_shuffle(layer.get_output(0))
+    reshape_layer.reshape_dims = [
+        1,
+    ]  # Reshape to a single-element tensor
+    set_layer_name(reshape_layer, target, f"{name}_reshape", source_ir)
+
+    return reshape_layer.get_output(0)
diff --git a/tests/py/dynamo/conversion/test_local_scalar_dense_aten.py b/tests/py/dynamo/conversion/test_local_scalar_dense_aten.py
new file mode 100644
index 0000000000..7817fc0ab7
--- /dev/null
+++ b/tests/py/dynamo/conversion/test_local_scalar_dense_aten.py
@@ -0,0 +1,52 @@
+import torch
+import torch.nn as nn
+from parameterized import parameterized
+from torch.testing._internal.common_utils import run_tests
+
+from .harness import DispatchTestCase
+
+
+class TestLocalScalarDenseConverter(DispatchTestCase):
+    @parameterized.expand(
+        [
+            (torch.randn((5, 10, 5), dtype=torch.float32),),
+            (torch.randint(-10, 10, (5, 1, 15), dtype=torch.int32),),
+            (torch.randn((1), dtype=torch.float32),),
+            ((torch.tensor([-2.4])),),
+            ((torch.tensor([5.5, 3.5, 3.6])),),
+            ((torch.tensor([True])),),
+            (
+                torch.tensor(
+                    [
+                        float("nan"),
+                        1.23,
+                        float("inf"),
+                    ]
+                ),
+            ),
+            (
+                torch.tensor(
+                    [
+                        float("-inf"),
+                        1.23,
+                        float("nan"),
+                    ]
+                ),
+            ),
+            ((torch.tensor([float("inf")])),),
+        ]
+    )
+    def test_local_scalar_dense(self, data):
+        class local_scalar_dense(nn.Module):
+            def forward(self, input):
+                return torch.ops.aten._local_scalar_dense.default(input)
+
+        inputs = [data]
+        self.run_test(
+            local_scalar_dense(),
+            inputs,
+        )
+
+
+if __name__ == "__main__":
+    run_tests()