-
Notifications
You must be signed in to change notification settings - Fork 236
/
Copy path__init__.py
195 lines (193 loc) · 5.67 KB
/
__init__.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
from torchao.kernel import (
int_scaled_matmul,
safe_int_mm,
)
from .autoquant import (
ALL_AUTOQUANT_CLASS_LIST,
DEFAULT_AUTOQUANT_CLASS_LIST,
DEFAULT_FLOAT_AUTOQUANT_CLASS_LIST,
DEFAULT_INT4_AUTOQUANT_CLASS_LIST,
DEFAULT_SPARSE_AUTOQUANT_CLASS_LIST,
GEMLITE_INT4_AUTOQUANT_CLASS_LIST,
OTHER_AUTOQUANT_CLASS_LIST,
autoquant,
)
from .GPTQ import (
Int4WeightOnlyGPTQQuantizer,
Int4WeightOnlyQuantizer,
Int8DynActInt4WeightGPTQQuantizer,
Int8DynActInt4WeightLinear,
Int8DynActInt4WeightQuantizer,
)
from .granularity import (
PerAxis,
PerGroup,
PerRow,
PerTensor,
PerToken,
)
from .linear_activation_quantized_tensor import (
LinearActivationQuantizedTensor,
to_linear_activation_quantized,
)
from .linear_activation_scale import (
to_weight_tensor_with_linear_activation_scale_metadata,
)
from .observer import (
AffineQuantizedMinMaxObserver,
AffineQuantizedObserverBase,
)
from .quant_api import (
CutlassInt4PackedLayout,
Float8DynamicActivationFloat8SemiSparseWeightConfig,
Float8DynamicActivationFloat8WeightConfig,
Float8MMConfig,
Float8StaticActivationFloat8WeightConfig,
Float8WeightOnlyConfig,
FPXWeightOnlyConfig,
GemliteUIntXWeightOnlyConfig,
Int4DynamicActivationInt4WeightConfig,
Int4WeightOnlyConfig,
Int8DynamicActivationInt4WeightConfig,
Int8DynamicActivationInt8WeightConfig,
Int8WeightOnlyConfig,
PlainLayout,
TensorCoreTiledLayout,
UIntXWeightOnlyConfig,
float8_dynamic_activation_float8_weight,
float8_static_activation_float8_weight,
float8_weight_only,
fpx_weight_only,
gemlite_uintx_weight_only,
int4_dynamic_activation_int4_weight,
int4_weight_only,
int8_dynamic_activation_int4_weight,
int8_dynamic_activation_int8_semi_sparse_weight,
int8_dynamic_activation_int8_weight,
int8_weight_only,
intx_quantization_aware_training,
quantize_,
swap_conv2d_1x1_to_linear,
uintx_weight_only,
)
from .quant_primitives import (
MappingType,
TorchAODType,
ZeroPointDomain,
choose_qparams_affine,
choose_qparams_affine_floatx,
choose_qparams_affine_with_min_max,
choose_qparams_and_quantize_affine_hqq,
dequantize_affine,
dequantize_affine_floatx,
fake_quantize_affine,
fake_quantize_affine_cachemask,
quantize_affine,
quantize_affine_floatx,
)
from .smoothquant import (
SmoothFakeDynamicallyQuantizedLinear,
SmoothFakeDynQuantMixin,
get_scale,
set_smooth_fq_attribute,
smooth_fq_linear_to_inference,
swap_linear_with_smooth_fq_linear,
)
from .subclass import * # noqa: F403
from .transform_module import register_quantize_module_handler
from .unified import Quantizer, TwoStepQuantizer
from .utils import (
compute_error,
)
from .weight_only import WeightOnlyInt8QuantLinear
__all__ = [
# top level API - auto
"autoquant",
"DEFAULT_AUTOQUANT_CLASS_LIST",
"DEFAULT_INT4_AUTOQUANT_CLASS_LIST",
"GEMLITE_INT4_AUTOQUANT_CLASS_LIST",
"DEFAULT_FLOAT_AUTOQUANT_CLASS_LIST",
"DEFAULT_SPARSE_AUTOQUANT_CLASS_LIST",
"OTHER_AUTOQUANT_CLASS_LIST",
"ALL_AUTOQUANT_CLASS_LIST",
# top level API - manual
"quantize_",
"int4_dynamic_activation_int4_weight",
"int8_dynamic_activation_int4_weight",
"int8_dynamic_activation_int8_weight",
"int8_dynamic_activation_int8_semi_sparse_weight",
"int4_weight_only",
"int8_weight_only",
"intx_quantization_aware_training",
"float8_weight_only",
"float8_dynamic_activation_float8_weight",
"float8_static_activation_float8_weight",
"uintx_weight_only",
"fpx_weight_only",
"gemlite_uintx_weight_only",
"swap_conv2d_1x1_to_linear",
"Int4DynamicActivationInt4WeightConfig",
"Int8DynamicActivationInt4WeightConfig",
"Int8DynamicActivationInt8WeightConfig",
"Int4WeightOnlyConfig",
"Int8WeightOnlyConfig",
"Float8WeightOnlyConfig",
"Float8DynamicActivationFloat8WeightConfig",
"Float8StaticActivationFloat8WeightConfig",
"Float8DynamicActivationFloat8SemiSparseWeightConfig",
"UIntXWeightOnlyConfig",
"FPXWeightOnlyConfig",
"GemliteUIntXWeightOnlyConfig",
# smooth quant - subject to change
"get_scale",
"SmoothFakeDynQuantMixin",
"SmoothFakeDynamicallyQuantizedLinear",
"swap_linear_with_smooth_fq_linear",
"smooth_fq_linear_to_inference",
"set_smooth_fq_attribute",
"compute_error",
# building blocks
"to_linear_activation_quantized",
"to_weight_tensor_with_linear_activation_scale_metadata",
"AffineQuantizedMinMaxObserver",
"AffineQuantizedObserverBase",
# quant primitive ops
"choose_qparams_affine",
"choose_qparams_affine_with_min_max",
"choose_qparams_affine_floatx",
"quantize_affine",
"quantize_affine_floatx",
"dequantize_affine",
"dequantize_affine_floatx",
"choose_qparams_and_quantize_affine_hqq",
"fake_quantize_affine",
"fake_quantize_affine_cachemask",
# operators/kernels
"safe_int_mm",
"int_scaled_matmul",
# registration of module transforms for quantize_
"register_quantize_module_handler",
# dataclasses and types
"MappingType",
"ZeroPointDomain",
"TorchAODType",
"PerTensor",
"PerAxis",
"PerGroup",
"PerRow",
"PerToken",
"LinearActivationQuantizedTensor",
"Int4WeightOnlyGPTQQuantizer",
"Int4WeightOnlyQuantizer",
"Int8DynActInt4WeightGPTQQuantizer",
"Int8DynActInt4WeightQuantizer",
"Int8DynActInt4WeightLinear",
"WeightOnlyInt8QuantLinear",
"TwoStepQuantizer",
"Quantizer",
# Layouts for quant_api
"PlainLayout",
"TensorCoreTiledLayout",
"CutlassInt4PackedLayout",
"Float8MMConfig",
]