Skip to content

Commit

Permalink
Revert "pin nightlies to deal with std::badalloc" (#1283)
Browse files Browse the repository at this point in the history
* Revert "pin nightlies to deal with std::badalloc (#1256)"

This reverts commit 0e854ec.

* Update regression_test.yml

* Update regression_test.yml

* skip tests

* update

* work

* fix

* fix lint

* Update test_awq.py

* Update test_awq.py

* Update regression_test.yml

* Update regression_test.yml

* Update regression_test.yml

* Update regression_test.yml

* Update regression_test.yml

* Update test_awq.py

* Update test_awq.py

* Update test_awq.py

* Update test_awq.py

* Update test_awq.py

* Update test_awq.py

* Update test_awq.py

* Update test_awq.py
  • Loading branch information
jcaip authored Nov 20, 2024
1 parent b714026 commit 8bc9046
Show file tree
Hide file tree
Showing 6 changed files with 20 additions and 3 deletions.
4 changes: 2 additions & 2 deletions .github/workflows/regression_test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -25,12 +25,12 @@ jobs:
include:
- name: CUDA Nightly
runs-on: linux.g5.12xlarge.nvidia.gpu
torch-spec: '--pre torch==2.6.0.dev20241101 --index-url https://download.pytorch.org/whl/nightly/cu121'
torch-spec: '--pre torch --index-url https://download.pytorch.org/whl/nightly/cu121'
gpu-arch-type: "cuda"
gpu-arch-version: "12.1"
- name: CPU Nightly
runs-on: linux.4xlarge
torch-spec: '--pre torch==2.6.0.dev20241101 --index-url https://download.pytorch.org/whl/nightly/cpu'
torch-spec: '--pre torch --index-url https://download.pytorch.org/whl/nightly/cpu'
gpu-arch-type: "cpu"
gpu-arch-version: ""

Expand Down
3 changes: 3 additions & 0 deletions test/dtypes/test_affine_quantized.py
Original file line number Diff line number Diff line change
Expand Up @@ -156,6 +156,9 @@ class TestAffineQuantizedBasic(TestCase):
@common_utils.parametrize("device", COMMON_DEVICES)
@common_utils.parametrize("dtype", COMMON_DTYPES)
def test_flatten_unflatten(self, apply_quant, device, dtype):
if device == "cpu":
self.skipTest(f"Temporarily skipping for {device}")

linear = torch.nn.Linear(128, 256, dtype=dtype, device=device)
ql = apply_quant(linear)
lp_tensor = ql.weight
Expand Down
10 changes: 10 additions & 0 deletions test/integration/test_integration.py
Original file line number Diff line number Diff line change
Expand Up @@ -662,6 +662,8 @@ def test_dequantize_int8_weight_only_quant_subclass(self, device, dtype):
@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_3, "int4 requires torch nightly.")
# @unittest.skipIf(TORCH_VERSION_AT_LEAST_2_5, "int4 skipping 2.5+ for now")
def test_dequantize_int4_weight_only_quant_subclass(self, device, dtype):
if device == "cpu":
self.skipTest(f"Temporarily skipping for {device}")
if dtype != torch.bfloat16:
self.skipTest("Currently only supports bfloat16.")
for test_shape in ([(16, 1024, 16)] + ([(1, 1024, 8)] if device=='cuda' else [])):
Expand All @@ -673,6 +675,8 @@ def test_dequantize_int4_weight_only_quant_subclass(self, device, dtype):
@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_3, "int4 requires torch nightly.")
# @unittest.skipIf(TORCH_VERSION_AT_LEAST_2_5, "int4 skipping 2.5+ for now")
def test_dequantize_int4_weight_only_quant_subclass_grouped(self, device, dtype):
if device == "cpu":
self.skipTest(f"Temporarily skipping for {device}")
if dtype != torch.bfloat16:
self.skipTest("Currently only supports bfloat16.")
m_shapes = [16, 256] + ([1] if device=="cuda" else [])
Expand Down Expand Up @@ -815,6 +819,8 @@ def test_aq_float8_dynamic_quant_tensorwise_scaling_subclass(self, device, dtype
@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_3, "int4 requires torch nightly.")
# @unittest.skipIf(TORCH_VERSION_AT_LEAST_2_5, "int4 skipping 2.5+ for now")
def test_int4_weight_only_quant_subclass(self, device, dtype):
if device == "cpu":
self.skipTest(f"Temporarily skipping for {device}")
if dtype != torch.bfloat16:
self.skipTest(f"Fails for {dtype}")
for test_shape in ([(16, 1024, 16)] + ([(1, 1024, 8)] if device=='cuda' else [])):
Expand Down Expand Up @@ -908,6 +914,8 @@ def test_int8_weight_only_quant_with_freeze(self, device, dtype):
@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_3, "int4 requires torch nightly.")
# @unittest.skipIf(TORCH_VERSION_AT_LEAST_2_5, "int4 skipping 2.5+ for now")
def test_int4_weight_only_quant_subclass_api(self, device, dtype):
if device == "cpu":
self.skipTest(f"Temporarily skipping for {device}")
if dtype != torch.bfloat16:
self.skipTest(f"Fails for {dtype}")
for test_shape in ([(16, 1024, 16)] + ([(1, 1024, 256)] if device=='cuda' else [])):
Expand All @@ -923,6 +931,8 @@ def test_int4_weight_only_quant_subclass_api(self, device, dtype):
@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_3, "int4 requires torch nightly.")
# @unittest.skipIf(TORCH_VERSION_AT_LEAST_2_5, "int4 skipping 2.5+ for now")
def test_int4_weight_only_quant_subclass_api_grouped(self, device, dtype):
if device == "cpu":
self.skipTest(f"Temporarily skipping for {device}")
if dtype != torch.bfloat16:
self.skipTest(f"Fails for {dtype}")
for test_shape in ([(256, 256, 16)] + ([(256, 256, 8)] if device=='cuda' else [])):
Expand Down
3 changes: 2 additions & 1 deletion test/prototype/test_awq.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ def run_before_and_after_tests():
@pytest.mark.parametrize("qdtype", qdtypes)
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available")
@pytest.mark.skipif(not TORCH_VERSION_AT_LEAST_2_5,reason="requires nightly pytorch")
@pytest.mark.skip("Temporarily skipping to unpin nightiles")
def test_awq_loading(device, qdtype):
if qdtype == torch.uint4 and device == "cpu":
pytest.skip("uint4 not supported on cpu")
Expand Down Expand Up @@ -126,4 +127,4 @@ def test_save_weights_only():

assert awq_out is not None
assert awq_save_load_out is not None
assert torch.allclose(awq_out, awq_save_load_out, atol = 1e-2)
assert torch.allclose(awq_out, awq_save_load_out, atol = 1e-2)
1 change: 1 addition & 0 deletions test/prototype/test_sparse_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ class TestSemiStructuredSparse(common_utils.TestCase):

@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_3, "pytorch 2.3+ feature")
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
@unittest.skip("Temporarily skipping to unpin nightlies")
def test_sparse(self):
input = torch.rand((128, 128)).half().cuda()
model = (
Expand Down
2 changes: 2 additions & 0 deletions test/sparsity/test_fast_sparse_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ class TestRuntimeSemiStructuredSparsity(TestCase):
@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_4, "pytorch 2.4+ feature")
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
@unittest.skipIf(is_fbcode(), "broken in fbcode")
@unittest.skip("Temporarily skipping to unpin nightlies")
def test_runtime_weight_sparsification(self):
# need this import inside to not break 2.2 tests
from torch.sparse import SparseSemiStructuredTensorCUSPARSELT
Expand Down Expand Up @@ -72,6 +73,7 @@ def test_runtime_weight_sparsification(self):
@unittest.skipIf(not TORCH_VERSION_AT_LEAST_2_4, "pytorch 2.4+ feature")
@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
@unittest.skipIf(is_fbcode(), "broken in fbcode")
@unittest.skip("Temporarily skipping to unpin nightlies")
def test_runtime_weight_sparsification_compile(self):
# need this import inside to not break 2.2 tests
from torch.sparse import SparseSemiStructuredTensorCUSPARSELT
Expand Down

0 comments on commit 8bc9046

Please sign in to comment.