-
Notifications
You must be signed in to change notification settings - Fork 53
/
Copy pathmiller.py
1106 lines (945 loc) · 35.6 KB
/
miller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# -*- coding: utf-8 -*-
# Copyright 2018-2023 the orix developers
#
# This file is part of orix.
#
# orix is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# orix is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with orix. If not, see <http://www.gnu.org/licenses/>.
from __future__ import annotations
from copy import deepcopy
from itertools import product
from typing import Optional, Tuple, Union
from diffpy.structure import Lattice
import numpy as np
from orix.vector import Vector3d
class Miller(Vector3d):
r"""Direct crystal lattice vectors (uvw or UVTW) and reciprocal
crystal lattice vectors (hkl or hkil), the latter known as Miller
indices, describing directions with respect to the crystal reference
frame defined by a phase's crystal lattice and symmetry.
Exactly one of ``xyz``, ``uvw``, ``UVTW``, ``hkl``, or ``hkil``
must be passed.
The vectors are stored internally as cartesian coordinates in
:attr:`data`.
Parameters
----------
xyz
Vector(s) given in cartesian coordinates. Default is ``None``.
uvw
Indices of direct lattice vector(s). Default is ``None``.
UVTW
Indices of direct lattice vector(s), often preferred over
``uvw`` in trigonal and hexagonal lattices. Default is ``None``.
hkl
Indices of reciprocal lattice vector(s). Default is ``None``.
hkil
Indices of reciprocal lattice vector(s), often preferred
over ``hkl`` in trigonal and hexagonal lattices. Default is
``None``.
phase
A phase with a crystal lattice and symmetry. Must be passed
whenever direct or reciprocal lattice vectors are created.
Notes
-----
The Miller-Bravais indices :math:`UVTW` are defined as
.. math::
U &= \frac{2u - v}{3}, \\
V &= \frac{2v - u}{3}, \\
T &= -\frac{u + v}{3}, \\
W &= w.
"""
def __init__(
self,
xyz: Union[np.ndarray, list, tuple, None] = None,
uvw: Union[np.ndarray, list, tuple, None] = None,
UVTW: Union[np.ndarray, list, tuple, None] = None,
hkl: Union[np.ndarray, list, tuple, None] = None,
hkil: Union[np.ndarray, list, tuple, None] = None,
phase: Optional["orix.crystal_map.Phase"] = None,
):
"""Create a set of direct lattice vectors (uvw or UVTW) or
reciprocal lattice vectors (hkl or hkil) describing directions
with respect to a crystal reference frame defined by a phase's
crystal lattice and symmetry.
"""
n_passed = np.sum([i is not None for i in [xyz, uvw, UVTW, hkl, hkil]])
if n_passed == 0 or n_passed > 1:
raise ValueError(
"Exactly one of `xyz`, `uvw`, `UVTW`, `hkl`, `hkil` must be passed"
)
if xyz is None and phase is None:
raise ValueError(
"A phase with a crystal lattice and symmetry must be passed to create "
"direct or reciprocal lattice vector(s)"
)
self.phase = phase
if xyz is not None:
xyz = np.asarray(xyz)
self.coordinate_format = "xyz"
elif uvw is not None:
xyz = _transform_space(uvw, "d", "c", phase.structure.lattice)
self.coordinate_format = "uvw"
elif UVTW is not None:
UVTW = np.asarray(UVTW)
_check_UVTW(UVTW)
uvw = _UVTW2uvw(UVTW=UVTW)
xyz = _transform_space(uvw, "d", "c", phase.structure.lattice)
self.coordinate_format = "UVTW"
elif hkl is not None:
xyz = _transform_space(hkl, "r", "c", phase.structure.lattice)
self.coordinate_format = "hkl"
elif hkil is not None:
hkil = np.asarray(hkil)
_check_hkil(hkil)
hkl = _hkil2hkl(hkil)
xyz = _transform_space(hkl, "r", "c", phase.structure.lattice)
self.coordinate_format = "hkil"
super().__init__(xyz)
def __repr__(self) -> str:
"""String representation."""
name = self.__class__.__name__
shape = self.shape
symmetry = None if self.phase is None else self.phase.point_group.name
coordinate_format = self.coordinate_format
data = np.array_str(self.coordinates, precision=4, suppress_small=True)
return (
f"{name} {shape}, point group {symmetry}, {coordinate_format}\n" f"{data}"
)
def __getitem__(self, key) -> Miller:
"""NumPy fancy indexing of vectors."""
m = self.__class__(xyz=self.data[key], phase=self.phase).deepcopy()
m.coordinate_format = self.coordinate_format
return m
# ---------------------- Unique properties ---------------------- #
@property
def coordinate_format(self) -> str:
"""Return or set the vector coordinate format.
Parameters
----------
value : str
Vector coordinate format, either ``"xyz"``, ``"uvw"``,
``"UVTW"``, ``"hkl"`` or ``"hkil"``.
"""
return self._coordinate_format
@coordinate_format.setter
def coordinate_format(self, value: str):
"""Set the vector coordinate format."""
formats = ["xyz", "uvw", "UVTW", "hkl", "hkil"]
if value not in formats:
raise ValueError(f"Available coordinate formats are {formats}")
self._coordinate_format = value
@property
def coordinates(self) -> np.ndarray:
"""Return the vector coordinates."""
coordinate_format = self.coordinate_format
if coordinate_format == "xyz":
coordinate_format = "data"
coordinates = self.__getattribute__(coordinate_format)
return coordinates
@property
def hkl(self) -> np.ndarray:
"""Return or set the reciprocal lattice vectors.
Parameters
----------
value : np.ndarray
New reciprocal lattice vector array.
"""
return _transform_space(self.data, "c", "r", self.phase.structure.lattice)
@hkl.setter
def hkl(self, value: np.ndarray):
"""Set the reciprocal lattice vectors."""
self.data = _transform_space(value, "r", "c", self.phase.structure.lattice)
@property
def hkil(self):
r"""Return or set the reciprocal lattice vectors expressed as
4-index Miller-Bravais indices.
Parameters
----------
value : np.ndarray
New reciprocal lattice vector array. The sum of the first
three indices, :math:`h`, :math:`k`, and :math:`i` must be
zero.
"""
return _hkl2hkil(self.hkl)
@hkil.setter
def hkil(self, value: np.ndarray):
"""Set the reciprocal lattice vectors expressed as 4-index
Miller-Bravais indices.
"""
self.hkl = _hkil2hkl(value)
@property
def h(self) -> np.ndarray:
"""Return the first reciprocal lattice vector index."""
return self.hkl[..., 0]
@property
def k(self) -> np.ndarray:
"""Return the second reciprocal lattice vector index."""
return self.hkl[..., 1]
@property
def i(self) -> np.ndarray:
r"""Return the third reciprocal lattice vector index in 4-index
Miller-Bravais indices, equal to :math:`-(h + k)`.
"""
return self.hkil[..., 2]
@property
def l(self) -> np.ndarray:
"""Return the third reciprocal lattice vector index, or fourth
index in 4-index Miller Bravais indices.
"""
return self.hkl[..., 2]
@property
def uvw(self) -> np.ndarray:
"""Return or set the direct lattice vectors.
Parameters
----------
value : np.ndarray
New direct lattice vector array.
"""
return _transform_space(self.data, "c", "d", self.phase.structure.lattice)
@uvw.setter
def uvw(self, value: np.ndarray):
"""Set the direct lattice vectors."""
self.data = _transform_space(value, "d", "c", self.phase.structure.lattice)
@property
def UVTW(self):
r"""Return or set the direct lattice vectors expressed as
4-index Weber symbols.
They are defined as
.. math::
U &= \frac{2u - v}{3}, \\
V &= \frac{2v - u}{3}, \\
T &= -\frac{u + v}{3}, \\
W &= w.
Parameters
----------
value : np.ndarray
New direct lattice vector array. The sum of the first three
indices, :math:`U`, :math:`V`, and :math:`T` must be zero.
"""
return _uvw2UVTW(self.uvw)
@UVTW.setter
def UVTW(self, value):
"""Set the direct lattice vectors expressed as 4-index Weber
symbols.
"""
self.uvw = _UVTW2uvw(value)
@property
def u(self) -> np.ndarray:
"""Return the first direct lattice vector index."""
return self.uvw[..., 0]
@property
def v(self) -> np.ndarray:
"""Return the second direct lattice vector index."""
return self.uvw[..., 1]
@property
def w(self) -> np.ndarray:
"""Return the third direct lattice vector index."""
return self.uvw[..., 2]
@property
def U(self) -> np.ndarray:
r"""Return the first direct lattice vector index in 4-index
Weber symbols, equal to :math:`(2u - v)/(3)`.
"""
return self.UVTW[..., 0]
@property
def V(self) -> np.ndarray:
r"""Return the second direct lattice vector index in 4-index
Weber symbols, equal to :math:`(2v - u)/3`.
"""
return self.UVTW[..., 1]
@property
def T(self) -> np.ndarray:
r"""Return the third direct lattice vector index in 4-index
Weber symbols, equal to :math:`-(u + v)/3`.
"""
return self.UVTW[..., 2]
@property
def W(self) -> np.ndarray:
r"""Return the fourth direct lattice vector index in 4-index
Weber symbols, equal to :math:`w`.
"""
return self.UVTW[..., 3]
@property
def length(self) -> np.ndarray:
"""Return the length of each vector given in lattice parameter
units if the :attr:`coordinate_format` attribute equals
``"uvw"`` or ``"UVTW"``, and inverse lattice parameter units if
the attribute equals ``"hkl"`` or ``"hkil"``.
If the attribute equals ``"xyz"``, the norms of the vectors in
:attr:`data` are returned.
"""
if self.coordinate_format in ["hkl", "hkil"]:
return self.phase.structure.lattice.rnorm(self.hkl)
elif self.coordinate_format in ["uvw", "UVTW"]:
return self.phase.structure.lattice.norm(self.uvw)
else:
return self.norm
@property
def multiplicity(self) -> np.ndarray:
"""Return the number of symmetrically equivalent directions per
vector.
"""
_, l = self.symmetrise(unique=True, return_multiplicity=True)
return l.reshape(self.shape)
@property
def space(self) -> str:
"""Return whether the vector is in direct (``"d"``) or
reciprocal (``"r"``) space.
"""
if self.coordinate_format in ["xyz", "uvw", "UVTW"]:
return "d"
else:
return "r"
@property
def is_hexagonal(self) -> bool:
"""Return whether the crystal reference frame is
hexagonal/trigonal.
"""
return self.phase.is_hexagonal
# ----------- Overwritten Vector3d/Object3d properties ----------- #
@property
def unit(self) -> Miller:
"""Return unit vectors."""
m = self.__class__(xyz=super().unit.data, phase=self.phase)
m.coordinate_format = self.coordinate_format
return m
# ------------------------ Unique methods ------------------------ #
@classmethod
def from_highest_indices(
cls,
phase: "orix.crystal_map.Phase",
uvw: Union[np.ndarray, list, tuple, None] = None,
hkl: Union[np.ndarray, list, tuple, None] = None,
) -> Miller:
"""Create a set of unique direct or reciprocal lattice vectors
from three highest indices and a phase (crystal lattice and
symmetry).
Parameters
----------
phase
A phase with a crystal lattice and symmetry.
uvw
Three highest direct lattice vector indices.
hkl
Three highest reciprocal lattice vector indices.
"""
if uvw is not None:
coordinate_format = "uvw"
highest_idx = uvw
elif hkl is not None:
coordinate_format = "hkl"
highest_idx = hkl
else:
raise ValueError("Either highest `hkl` or `uvw` indices must be passed")
idx = _get_indices_from_highest(highest_indices=highest_idx)
init_kw = {coordinate_format: idx, "phase": phase}
return cls(**init_kw).unique()
@classmethod
def from_min_dspacing(
cls, phase: "orix.crystal_map.Phase", min_dspacing: float = 0.05
) -> Miller:
"""Create a set of unique reciprocal lattice vectors with a
a direct space interplanar spacing greater than a lower
threshold.
Parameters
----------
phase
A phase with a crystal lattice and symmetry.
min_dspacing
Smallest interplanar spacing to consider. Default is 0.05,
in the unit used to define the lattice parameters in
``phase``.
"""
highest_hkl = _get_highest_hkl(
lattice=phase.structure.lattice, min_dspacing=min_dspacing
)
hkl = _get_indices_from_highest(highest_indices=highest_hkl)
hkl = hkl.astype(float).round(0)
return cls(hkl=hkl, phase=phase).unique()
def deepcopy(self) -> Miller:
"""Return a deepcopy of the instance."""
data = deepcopy(self.data) # Otherwise, data is a view
copied = self.__class__(xyz=data, phase=self.phase) # deepcopy is slow.
copied.coordinate_format = self.coordinate_format
return copied
def round(self, max_index: int = 20) -> Miller:
"""Round a set of index triplet (Miller) or quartet
(Miller-Bravais/Weber) to the *closest* smallest integers.
Adopted from MTEX' :code:`Miller.round` function.
Parameters
----------
max_index
Maximum integer index to round to, by default 20.
Returns
-------
mill
Rounded set of index triplet(s) or quartet(s).
"""
if self.coordinate_format == "xyz":
return self.deepcopy()
else:
new_coords = _round_indices(indices=self.coordinates, max_index=max_index)
init_kw = {self.coordinate_format: new_coords, "phase": self.phase}
return self.__class__(**init_kw)
def symmetrise(
self,
unique: bool = False,
return_multiplicity: bool = False,
return_index: bool = False,
) -> Union[
Miller, Tuple[Miller, np.ndarray], Tuple[Miller, np.ndarray, np.ndarray]
]:
"""Return vectors symmetrically equivalent to the vectors.
Parameters
----------
unique
Whether to return only unique vectors. Default is ``False``.
return_multiplicity
Whether to return the multiplicity of each vector. Default
is ``False``.
return_index
Whether to return the index into the vectors for the
returned symmetrically equivalent vectors. Default is
``False``.
Returns
-------
mill
Flattened symmetrically equivalent vectors.
multiplicity
Multiplicity of each vector. Returned if
``return_multiplicity=True``.
idx
Index into the vectors for the returned symmetrically
equivalent vectors. Returned if ``return_index=True``.
"""
if return_multiplicity and not unique:
raise ValueError("`unique` must be True when `return_multiplicity` is True")
elif return_index and not unique:
raise ValueError("`unique` must be True when `return_index` is True")
# Symmetrise directions with respect to crystal symmetry on the
# flattened set of vectors
operations = self.phase.point_group
v2 = operations.outer(self.flatten())
if unique:
n_v = self.size # Number of initial vectors in `self`
# Array for symmetrically equivalent vectors
v3 = self.zero((n_v, operations.size))
# Array for multiplicity of initial vectors
multiplicity = np.zeros(n_v, dtype=int)
# Array for index into `self` for the returned symmetrically
# equivalent vectors
idx = np.ones(v3.size, dtype=int) * -1
# Loop over initial vectors
l_accum = 0
for i in range(n_v):
# Unique vectors among those symmetrically equivalent
vi = v2[:, i].unique()
l = vi.size # Multiplicity
v3[i, :l] = vi # Insert only the unique ones
# Multiplicity of this initial vector
multiplicity[i] = l
# Index into `self` for the unique, symmetrically
# equivalent vectors
idx[l_accum : l_accum + l] = i
l_accum += l
# Remove entries into `v3` and `idx` not used
non_zero = np.sum(np.abs(v3.data), axis=-1) != 0
v2 = v3[non_zero]
idx = idx[: np.sum(non_zero)]
v2 = v2.flatten()
# Carry over crystal structure and coordinate format
m = self.__class__(xyz=v2.data, phase=self.phase)
m.coordinate_format = self.coordinate_format
if return_multiplicity and return_index:
return m, multiplicity, idx
elif return_multiplicity and not return_index:
return m, multiplicity
elif not return_multiplicity and return_index:
return m, idx
else:
return m
def _compatible_with(self, other: Miller, raise_error: bool = False) -> bool:
"""Whether ``self`` and ``other`` are the same (the same crystal
lattice and symmetry) with vectors in the same space.
Parameters
----------
other
Another vector instance.
raise_error
Whether to raise a ``ValueError`` if the instances are
incompatible (default is ``False``).
Returns
-------
compatible
Whether they are compatible.
"""
same_symmetry = self.phase.point_group == other.phase.point_group
same_lattice = np.allclose(
self.phase.structure.lattice.abcABG(),
other.phase.structure.lattice.abcABG(),
)
same_space = self.space == other.space
compatible = same_symmetry * same_lattice * same_space
if not compatible and raise_error:
raise ValueError(
"The crystal lattices and symmetries must be the same, and the "
"vector(s) must be in the same space"
)
else:
return compatible
# ------------- Overwritten Vector3d/Object3d methods ------------ #
def angle_with(
self,
other: Miller,
use_symmetry: bool = False,
degrees: bool = False,
) -> np.ndarray:
"""Return the angles between these vectors and the other vectors
possibly using symmetrically equivalent vectors to find the
smallest angle under symmetry.
Vectors must have compatible shapes, and be in the same space
(direct or reciprocal) and crystal reference frames.
Parameters
----------
other
Other vectors.
use_symmetry
Whether to consider equivalent vectors to find the smallest
angle under symmetry. Default is ``False``.
degrees
If ``True``, the given angles are returned in degrees.
Default is ``False``.
Returns
-------
angles
Angles in radians (``degrees=False``) or degrees
(``degrees=True``).
"""
self._compatible_with(other, raise_error=True)
if use_symmetry:
other2 = other.symmetrise(unique=True)
cosines = self.dot_outer(other2) / (
self.norm[..., np.newaxis] * other2.norm[np.newaxis, ...]
)
cosines = np.round(cosines, 12)
angles = np.min(np.arccos(cosines), axis=-1)
else:
angles = super().angle_with(other)
if degrees:
angles = np.rad2deg(angles)
return angles
def cross(self, other: Miller):
"""Return the cross products of the vectors with the other
vectors, which is considered the zone axes between the vectors.
Parameters
----------
other
Other vectors, which must be in the same space (direct or
reciprocal) and have the same crystal reference frame.
Returns
-------
mill
Vectors in reciprocal (direct) space if direct (reciprocal)
vectors are crossed.
"""
self._compatible_with(other, raise_error=True)
new_fmt = dict(hkl="uvw", uvw="hkl", hkil="UVTW", UVTW="hkil")
mill = self.__class__(xyz=super().cross(other).data, phase=self.phase)
mill.coordinate_format = new_fmt[self.coordinate_format]
return mill
def dot(self, other: Miller) -> np.ndarray:
"""Return the dot products of the vectors and the other vectors.
Parameters
----------
other
Other vectors, which must be in the same space (direct or
reciprocal) and have the same crystal reference frame.
Returns
-------
dot_products
Dot products.
"""
self._compatible_with(other, raise_error=True)
return super().dot(other)
def dot_outer(self, other: Miller) -> np.ndarray:
"""Return the outer dot products of the vectors and the other
vectors.
Parameters
----------
other
Other vectors, which must be in the same space (direct or
reciprocal) and have the same crystal reference frame.
Returns
-------
dot_products
Dot products.
"""
self._compatible_with(other, raise_error=True)
return super().dot_outer(other)
def flatten(self) -> Miller:
"""Return the flattened vectors.
Returns
-------
mill
Flattened vectors.
"""
mill = self.__class__(xyz=super().flatten().data, phase=self.phase)
mill.coordinate_format = self.coordinate_format
return mill
def transpose(self, *axes: Optional[int]) -> Miller:
"""Return a new instance with the data transposed.
The order may be undefined if :attr:`ndim` is originally 2. In
this case the first two dimensions are transposed.
Parameters
----------
axes
Transposed axes order. Only navigation axes need to be
defined. May be undefined if self only contains two
navigation dimensions.
Returns
-------
mill
New transposed Miller instance of the original instance.
"""
mill = self.__class__(xyz=super().transpose(*axes).data, phase=self.phase)
mill.coordinate_format = self.coordinate_format
return mill
def get_nearest(self, *args) -> NotImplemented:
"""NotImplemented."""
return NotImplemented
def mean(self, use_symmetry: bool = False) -> Miller:
"""Return the mean vector of the set of vectors.
Parameters
----------
use_symmetry
Not implemented yet.
Returns
-------
mill
Mean vector.
"""
# TODO: Allow using symmetry by projecting to fundamental sector
if use_symmetry:
return NotImplemented
mill = self.__class__(xyz=super().mean().data, phase=self.phase)
mill.coordinate_format = self.coordinate_format
return mill
def reshape(self, *shape: Optional[int]) -> Miller:
"""Return a new instance with the vectors reshaped.
Parameters
----------
*shape
New shape.
Returns
-------
mill
New instance.
"""
mill = self.__class__(xyz=super().reshape(*shape).data, phase=self.phase)
mill.coordinate_format = self.coordinate_format
return mill
def unique(
self, use_symmetry: bool = False, return_index: bool = False
) -> Union[Miller, Tuple[Miller, np.ndarray]]:
"""Unique vectors in ``self``.
Parameters
----------
use_symmetry
Whether to consider equivalent vectors to compute the unique
vectors. Default is ``False``.
return_index
Whether to return the indices of the (flattened) data where
the unique entries were found. Default is ``False``.
Returns
-------
mill
Flattened unique vectors.
idx
Indices of the unique data in the (flattened) array.
"""
out = super().unique(return_index=return_index)
if return_index:
v, idx = out
else:
v = out
if use_symmetry:
operations = self.phase.point_group
n_v = v.size
v2 = operations.outer(v).flatten().reshape(*(n_v, operations.size))
data = v2.data.round(10)
data_sorted = np.zeros_like(data)
for i in range(n_v):
a = data[i]
order = np.lexsort(a.T) # Sort by column 1, 2, then 3
data_sorted[i] = a[order]
_, idx = np.unique(data_sorted, return_index=True, axis=0)
v = v[idx[::-1]]
mill = self.__class__(xyz=v.data, phase=self.phase)
mill.coordinate_format = self.coordinate_format
if return_index:
return mill, idx
else:
return mill
def in_fundamental_sector(
self, symmetry: Optional["orix.quaternion.Symmetry"] = None
) -> Miller:
"""Project Miller indices to a symmetry's fundamental sector
(inverse pole figure).
This projection is taken from MTEX'
:code:`project2FundamentalRegion`.
Parameters
----------
symmetry
Symmetry with a fundamental sector, possibly not equal to
:attr:`~orix.crystal_map.Phase.point_group`. If not given,
``point_group`` is used if valid, otherwise an error is
raised.
Returns
-------
mill
Vectors within the fundamental sector.
Examples
--------
>>> from orix.crystal_map import Phase
>>> from orix.quaternion.symmetry import D6h
>>> from orix.vector import Miller
>>> mill = Miller(uvw=(-1, 1, 0), phase=Phase(point_group="m-3m"))
>>> mill.in_fundamental_sector()
Miller (1,), point group m-3m, uvw
[[1. 0. 1.]]
>>> mill.in_fundamental_sector(D6h)
Miller (1,), point group m-3m, uvw
[[1.366 0.366 0. ]]
"""
if symmetry is None:
symmetry = self.phase.point_group
if symmetry is None:
raise ValueError(
"`symmetry` must be passed or `self.phase.point_group` must be a "
"`Symmetry` with a `Symmetry.fundamental_sector`"
)
v = Vector3d(self.data).in_fundamental_sector(symmetry)
mill = self.__class__(xyz=v.data, phase=self.phase)
mill.coordinate_format = self.coordinate_format
return mill
def _transform_space(
v_in: np.ndarray, space_in: str, space_out: str, lattice: Lattice
) -> np.ndarray:
r"""Convert vectors in a unit cell from one space to another.
Parameters
----------
v_in
Input vectors.
space_in, space_out
``"d"`` for direct (uvw), ``"r"`` for reciprocal (hkl) or
``"c"`` for cartesian (xyz).
Returns
-------
v_out
Output vectors.
Notes
-----
Conversions between direct lattice vectors :math:`[uvw]`, reciprocal
lattice vectors :math:`(hkl)` and Cartesian vectors
:math:`(x, y, z)` using the structure matrix :math:`A` and the
metric tensor :math:`g_{ij}`, where vectors are row vectors and
matrices are row matrices:
.. math::
(x, y, z) = [uvw] \cdot \mathbf{A}
(x, y, z) = (hkl) \cdot (\mathbf{A}^{-1})^T
[uvw] = (x, y, z) \cdot \mathbf{A}^{-1}
[uvw] = (hkl) \cdot g_{ij}^{-1}
(hkl) = (x, y, z) \cdot A^T
(hkl) = [uvw] \cdot g_{ij}
"""
spaces = ["d", "r", "c"]
if space_in not in spaces or space_out not in spaces:
raise ValueError(f"`space_in` and `space_out` must be one of {spaces}")
if space_in == space_out:
v_out = np.copy(v_in)
elif space_in == "d":
if space_out == "c":
# xyz = uvw * A
v_out = np.matmul(v_in, lattice.base)
else:
# hkl = uvw * g_ij
v_out = np.matmul(v_in, lattice.metrics)
elif space_in == "r":
if space_out == "c":
# xyz = hkl * (A^-1)^T
v_out = np.matmul(v_in, lattice.recbase.T)
else:
# uvw = hkl * g_ij^-1
v_out = np.matmul(v_in, lattice.reciprocal().metrics)
else:
if space_out == "d":
# uvw = xyz * A^-1
v_out = np.dot(v_in, lattice.recbase)
else:
# hkl = xyz * ((A^-1)^T)^-1 = xyz * A^T
v_out = np.matmul(v_in, lattice.base.T)
return v_out
def _hkl2hkil(hkl: np.ndarray) -> np.ndarray:
hkl = np.asarray(hkl)
hkil = np.zeros(hkl.shape[:-1] + (4,))
h = hkl[..., 0]
k = hkl[..., 1]
hkil[..., 0] = h
hkil[..., 1] = k
hkil[..., 2] = -(h + k)
hkil[..., 3] = hkl[..., 2]
return hkil
def _hkil2hkl(hkil: np.ndarray) -> np.ndarray:
hkil = np.asarray(hkil)
hkl = np.zeros(hkil.shape[:-1] + (3,))
hkl[..., :2] = hkil[..., :2]
hkl[..., 2] = hkil[..., 3]
return hkl
def _check_hkil(hkil: np.ndarray):
hkil = np.asarray(hkil)
if not np.allclose(np.sum(hkil[..., :3], axis=-1), 0, atol=1e-4):
raise ValueError(
"The Miller-Bravais indices convention h + k + i = 0 is not satisfied"
)
def _uvw2UVTW(uvw: np.ndarray, convention: Optional[str] = None) -> np.ndarray:
uvw = np.asarray(uvw)
UVTW = np.zeros(uvw.shape[:-1] + (4,))
u = uvw[..., 0]
v = uvw[..., 1]
# DeGraef: U = (2u - v) / 3, V = (2v - u) / 3, T = -(u + v) / 3, W = w
UVTW[..., 0] = (2 * u - v) / 3
UVTW[..., 1] = (2 * v - u) / 3
UVTW[..., 2] = -(u + v) / 3
UVTW[..., 3] = uvw[..., 2]
if convention is not None and convention.lower() == "mtex":
# MTEX: U = 2u - v, V = 2v - u, T = -(u + v), W = 3w
UVTW *= 3
return UVTW
def _UVTW2uvw(UVTW: np.ndarray, convention: Optional[str] = None) -> np.ndarray:
UVTW = np.asarray(UVTW)
uvw = np.zeros(UVTW.shape[:-1] + (3,))
# DeGraef: u = 2U + V, v = 2V + U, w = W
U = UVTW[..., 0]
V = UVTW[..., 1]
uvw[..., 0] = 2 * U + V
uvw[..., 1] = U + 2 * V
uvw[..., 2] = UVTW[..., 3]
if convention is not None and convention.lower() == "mtex":
# MTEX: u = 2U + V, v = 2V + U, w = W / 3
uvw /= 3
return uvw
def _check_UVTW(UVTW: np.ndarray):
UVTW = np.asarray(UVTW)
if not np.allclose(np.sum(UVTW[..., :3], axis=-1), 0, atol=1e-4):
raise ValueError(
"The Miller-Bravais indices convention U + V + T = 0 is not satisfied"
)
def _get_indices_from_highest(
highest_indices: Union[list, tuple, np.ndarray]
) -> np.ndarray:
"""Return a list of coordinates from a set of highest indices.
Parameters
----------
highest_indices
Highest indices to consider.
Returns