From a2d964f6ac8583528557713299d19c23fd9101c1 Mon Sep 17 00:00:00 2001 From: Carter Francis Date: Tue, 28 May 2024 15:43:21 -0500 Subject: [PATCH 1/2] Update Strain Mapping Tutorial. --- 05 Simulate Data - Strain Mapping.ipynb | 767 ------------ 05 Strain Mapping.ipynb | 1482 +++++++++++++++++++++++ 2 files changed, 1482 insertions(+), 767 deletions(-) delete mode 100644 05 Simulate Data - Strain Mapping.ipynb create mode 100644 05 Strain Mapping.ipynb diff --git a/05 Simulate Data - Strain Mapping.ipynb b/05 Simulate Data - Strain Mapping.ipynb deleted file mode 100644 index 9d72d0b..0000000 --- a/05 Simulate Data - Strain Mapping.ipynb +++ /dev/null @@ -1,767 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Strain Mapping" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This tutorial demonstrates different routes to obtain strain maps from scanning electron diffraction data." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "The code functionality is illustrated using synthetic data, which is first generated using pyxem. This synthetic data represents a simple cubic crystal that is distorted to a tetragonal stucture. The intention is for this to provide an easy to understand illustration of the code functionality rather than to model any physical system." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "This functionaility has been checked to run in pyxem-0.15.0 (April 2023). Bugs are always possible, do not trust the code blindly, and if you experience any issues please report them here: https://github.com/pyxem/pyxem-demos/issues" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Contents" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "1. Setting up & Creating Synthetic Data\n", - "2. Image Affine Transform Based Mapping\n", - "3. Vector Based Mapping" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# 1. Setting up & Creating Synthetic Data" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Import pyxem and other required libraries" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "WARNING:silx.opencl.common:Unable to import pyOpenCl. Please install it from: https://pypi.org/project/pyopencl\n" - ] - } - ], - "source": [ - "%matplotlib inline\n", - "import pyxem as pxm\n", - "import numpy as np\n", - "import hyperspy.api as hs\n", - "import diffpy.structure\n", - "from matplotlib import pyplot as plt\n", - "from pyxem.generators.indexation_generator import IndexationGenerator\n", - "from diffsims.generators.diffraction_generator import DiffractionGenerator" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "hs.set_log_level('ERROR') # removes Warnings from hyperspy." - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define a structure for the creation of synthetic data. We will start by showing how changing\n", - "the lattice parameter changes the diffraction spots. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "latt = diffpy.structure.lattice.Lattice(3,3,3,90,90,90)\n", - "atom = diffpy.structure.atom.Atom(atype='Ni',xyz=[0,0,0],lattice=latt)\n", - "structure = diffpy.structure.Structure(atoms=[atom],lattice=latt)\n", - "\n", - "latt = diffpy.structure.lattice.Lattice(3.2,3.2,3,90,90,90)\n", - "atom = diffpy.structure.atom.Atom(atype='Ni',xyz=[0,0,0],lattice=latt)\n", - "structure2 = diffpy.structure.Structure(atoms=[atom],lattice=latt)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Simulate an electron diffraction pattern. This just calculates the electron diffraction spots which should be visable based on the paramters given. We simulate a 300 keV beam here. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "ediff = DiffractionGenerator(300.)\n", - "diffraction = ediff.calculate_ed_data(structure,\n", - " reciprocal_radius=5.,\n", - " max_excitation_error=0.025, shape_factor_width=5.0,\n", - " with_direct_beam=False)\n", - "strained_diffraction = ediff.calculate_ed_data(structure2,\n", - " reciprocal_radius=5.,\n", - " max_excitation_error=0.025, shape_factor_width=5.0,\n", - " with_direct_beam=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Check we have some spots. Notice that the material is strained in both x,y so the diffraction spots are all at smaller reciporical spacing. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAi8AAAGdCAYAAADaPpOnAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUIklEQVR4nO3deXwTdeLG8U963wFaekFpi8gh9yGXcqgrl/JDdF1PhFVZWdf1QNdjXRTX9VxRvE8QPHbVFXBVUEHlppy2gnJDoQVaSgttWno38/sjUK2UNuk2TKc+79crryaTSfJkGDJPvjNJbIZhGIiIiIhYhI/ZAUREREQ8ofIiIiIilqLyIiIiIpai8iIiIiKWovIiIiIilqLyIiIiIpai8iIiIiKWovIiIiIiluJndoDG5nQ6OXToEOHh4dhsNrPjiIiIiBsMw6CwsJD4+Hh8fOoeW2l25eXQoUMkJCSYHUNEREQaIDMzk7Zt29Y5T7MrL+Hh4YDryUdERJicRkRERNzhcDhISEio3o7XpdmVl5O7iiIiIlReRERELMadQz50wK6IiIhYisqLiIiIWIrKi4iIiFhKszvmRUTEqgzDoLKykqqqKrOjiHiFr68vfn5+//NXmai8iIg0AeXl5WRlZVFcXGx2FBGvCgkJIS4ujoCAgAbfh8qLiIjJnE4n6enp+Pr6Eh8fT0BAgL5kU5odwzAoLy/nyJEjpKenc/bZZ9f7ZXSno/IiImKy8vJynE4nCQkJhISEmB1HxGuCg4Px9/dn//79lJeXExQU1KD70QG7IiJNREPfhYpYSWOs5/qfIiIiIpai8iIiIiKWovIiIiK/OsOHD+fOO+/0+uNMmjSJyy67zOuP4002m41PPvnE7fmnT59Or169vJYHVF5EROR/cLoS8MknnzTqJ6YauwTMnz+fRx99tNHur6GWLVuGzWajZcuWlJaW1rhu/fr12Gw2j5djYxezrKwsRo8e3Wj31xhUXkTEOrZ8DK8Phe2LzE4iTVRFRYVb87Vq1cqtXy8+U8LDw1mwYEGNabNnz6Zdu3YmJXJ9Cg4gNjaWwMBA03LURuVFRKxj9fOQ9T2sfdnsJOKhk7sS3n33XZKSkrDb7Vx99dUUFhZWz/Pxxx/TvXt3goODiYyM5De/+Q3Hjx9n+vTpzJ07l//+97/VIxHLli1j37592Gw2PvroI4YPH05QUBDvvfceeXl5XHPNNbRt25aQkBC6d+/Ov//97xp5fjk6kZSUxOOPP86NN95IeHg47dq144033qhxm4MHD3LVVVfRsmVLIiMjGTduHPv27au+vqqqiqlTp9KiRQsiIyO59957MQzDreUzceJEZs+eXX25pKSEDz74gIkTJ9aYr77nNmnSJJYvX87zzz9fvaxOZty6dStjxowhLCyMmJgYJkyYQG5ubo1lcttttzF16lSioqK4+OKLgVN3G91333107NiRkJAQ2rdvz7Rp09wujY1F5UVErGPYfZB4Hpw/1ewk0gB79uzhk08+4fPPP+fzzz9n+fLlPPnkk4Br18Q111zDjTfeyLZt21i2bBmXX345hmFwzz338Lvf/Y5Ro0aRlZVFVlYWgwcPrr7f++67j9tvv51t27YxcuRISktL6du3L59//jk//PADf/jDH5gwYQLr1q2rM9+MGTPo168fqamp3Hrrrfzxj39k+/btABQXF3PBBRcQFhbGihUrWLVqFWFhYYwaNap6hGLGjBnMnj2bWbNmsWrVKo4ePXrKaMrpTJgwgZUrV5KRkQHAvHnzSEpKok+fPjXmq++5Pf/88wwaNIjJkydXL6uEhASysrIYNmwYvXr1YuPGjXz55ZccPnyY3/3udzXuf+7cufj5+bF69Wpef/31WrOGh4czZ84ctm7dyvPPP8+bb77Jc88959bzbDRGM1NQUGAARkFBgdlRRETcUlJSYmzdutUoKSlplPsrKCk31uzONQpKyhvl/uoybNgw44477jhl+oIFC4yfb2IefvhhIyQkxHA4HNXT/vKXvxgDBgwwDMMwNm3aZADGvn37an2ciRMnGuPGjasxLT093QCMmTNn1ptzzJgxxt13333a3ImJicb1119ffdnpdBrR0dHGq6++ahiGYcyaNcvo1KmT4XQ6q+cpKyszgoODja+++sowDMOIi4sznnzyyerrKyoqjLZt256S++eWLl1qAMaxY8eMyy67zHjkkUcMwzCMCy64wHj++edPWY4NeW6GYRjTpk0zRowYUWNaZmamARg7duyovl2vXr1OuX/AWLBgwWkf/+mnnzb69u1bffnhhx82evbsedr5T7e+e7L99urIy4oVKxg7dizx8fFuHa188sClX55ONl8REambo7SCkc+t4Jo31zLyuRU4Ss/scH5dkpKSahxnEhcXR05ODgA9e/bkoosuonv37lx55ZW8+eabHDt2zK377devX43LVVVVPPbYY/To0YPIyEjCwsJYvHhx9ajG6fTo0aP6vM1mIzY2tjrfpk2b2L17N+Hh4YSFhREWFkarVq0oLS1lz549FBQUkJWVxaBBg6rvw8/P75RsdbnxxhuZM2cOe/fuJSUlheuuu+6UeRr63DZt2sTSpUurs4eFhdG5c2fANSJ2kjt5P/74Y84//3xiY2MJCwtj2rRp9T5+Y/PqzwMcP36cnj178vvf/54rrrjC7dvt2LGDiIiI6sutW7f2RjwRkWbnx4MOsgpcn1rJKihl6yEHA9tHeu3xIiIiKCgoOGV6fn5+jddxAH9//xqXbTYbTqcTcP3a8JIlS1izZg2LFy/mxRdf5MEHH2TdunUkJyfXmSE0NLTG5RkzZvDcc88xc+ZMunfvTmhoKHfeeWf17p3TqSuf0+mkb9++vP/++6fcrrG2UWPGjOGWW27hpptuYuzYsURGnvrv1tDn5nQ6GTt2LE899dQp18XFxVWf/+Wy/KW1a9dy9dVX88gjjzBy5EjsdjsffPABM2bMcPNZNg6vlpfRo0c36ONV0dHRtGjRovEDiYg0c13bRBBnDyKroJQ4exBd4yPqv9H/oHPnznzxxRenTN+wYQOdOnXy6L5sNhvnnXce5513Hg899BCJiYksWLCAqVOnEhAQQFVVlVv3s3LlSsaNG8f1118PuDbcu3btokuXLh7l+bk+ffrw4YcfEh0dfUopOykuLo61a9cydOhQACorK9m0adMpx62cjq+vLxMmTODpp5+udZmCe8+ttmXVp0+f6uNo/PwavulfvXo1iYmJPPjgg9XT9u/f3+D7a6gmecBu7969iYuL46KLLmLp0qV1zltWVobD4ahxEhH5tYoI8ueru4bywR8GsviuoYQH+dd/o//Brbfeyp49e/jTn/7E999/z86dO3n55ZeZNWsWf/nLX9y+n3Xr1vH444+zceNGMjIymD9/PkeOHKneKCclJbF582Z27NhBbm5unZ9u6dChQ/UozrZt27jlllvIzs7+n57nddddR1RUFOPGjWPlypWkp6ezfPly7rjjDg4cOADAHXfcwZNPPsmCBQvYvn07t956K/n5+R49zqOPPsqRI0cYOXJkg59bUlIS69atY9++feTm5uJ0OvnTn/7E0aNHueaaa1i/fj179+5l8eLF3HjjjW6XwpOPn5GRwQcffMCePXt44YUX3D4ouTE1qfISFxfHG2+8wbx585g/fz6dOnXioosuYsWKFae9zRNPPIHdbq8+JSQknMHEIiJNT0SQPwPbR3q9uIBrQ7ly5Ur27NnDiBEjOPfcc5kzZw5z5szhyiuvdPt+IiIiWLFiBWPGjKFjx4787W9/Y8aMGdWj95MnT6ZTp07069eP1q1bs3r16tPe17Rp0+jTpw8jR45k+PDhxMbG/s9fcBcSEsKKFSto164dl19+OV26dOHGG2+kpKSkeiTm7rvv5oYbbmDSpEkMGjSI8PBwxo8f79HjBAQEEBUVddovpnPnud1zzz34+vpyzjnn0Lp1azIyMoiPj2f16tVUVVUxcuRIunXrxh133IHdbvfohxLHjRvHXXfdxW233UavXr1Ys2YN06ZN8+g5NgbbiSOJvf9ANhsLFizweAUaO3YsNpuNTz/9tNbry8rKKCsrq77scDhISEigoKDgtEN7IiJNSWlpKenp6SQnJxMUFGR2HBGvOt367nA4sNvtbm2/m9TIS20GDhzIrl27Tnt9YGAgERERNU4iIiLSfDX58pKamlrjSGgRERH5dfPqp42KiorYvXt39eX09HTS0tJo1aoV7dq144EHHuDgwYO88847AMycOZOkpCS6du1KeXk57733HvPmzWPevHnejCkiIiIW4tXysnHjRi644ILqy1Onur7Se+LEicyZM4esrKwaX2xTXl7OPffcw8GDBwkODqZr164sXLiQMWPGeDOmiIiIWMgZO2D3TPHkgB8RkaZAB+zKr8mv4oBdERERkZ9TeRERERFLUXkRERERS1F5ERERy9i3bx82m420tDSvP5bNZuOTTz7x+uN4y5w5czz+ncCkpCRmzpzplTyNSeVFREQaLCcnh1tuuYV27doRGBhIbGwsI0eOJCUlpXqexiwBCQkJZGVl0a1bt0a5v//FpEmTsNlsTJky5ZTrbr31Vmw2G5MmTXL7/hq7mF111VXs3LmzUe6rqVF5ERGRBrviiiv4/vvvmTt3Ljt37uTTTz9l+PDhHD161KP7qeuHFn/O19eX2NjY/+mXkRtTQkICH3zwASUlJdXTSktL+fe//027du1My1VRUUFwcDDR0dGmZfAmlRcREWmQ/Px8Vq1axVNPPcUFF1xAYmIi/fv354EHHuCSSy4BXLshAMaPH4/NZqu+PH36dHr16sXs2bNp3749gYGBGIbBl19+yfnnn0+LFi2IjIzk0ksvZc+ePdWP+cvRiWXLlmGz2fjmm2/o168fISEhDB48mB07dtTI+tlnn9G3b1+CgoJo3749jzzyCJWVldXX79q1i6FDhxIUFMQ555zDkiVL3FoGffr0oV27dsyfP7962vz580lISKB379415q3vuSUnJwPQu3dvbDYbw4cPr77u7bffpkuXLgQFBdG5c2deeeWVU5bJRx99xPDhwwkKCuK99947ZbfRnj17GDduHDExMYSFhXHuuefy9ddfu/U8mxqVFxERaZCwsDDCwsL45JNPavxA7s9t2LABcG18s7Kyqi8D7N69m48++oh58+ZVl5Hjx48zdepUNmzYwDfffIOPjw/jx4/H6XTWmeXBBx9kxowZbNy4ET8/P2688cbq67766iuuv/56br/9drZu3crrr7/OnDlzeOyxxwBwOp1cfvnl+Pr6snbtWl577TXuu+8+t5fD73//e95+++3qy7Nnz67x+CfV99zWr18PwNdff01WVlZ1IXrzzTd58MEHeeyxx9i2bRuPP/4406ZNY+7cuTXu/7777uP2229n27ZtjBw58pTHLyoqYsyYMXz99dekpqYycuRIxo4dW+PLYi3DaGYKCgoMwCgoKDA7ioiIW0pKSoytW7caJSUljXOHxUcNY89Swyg+1jj3V4ePP/7YaNmypREUFGQMHjzYeOCBB4zvv/++xjyAsWDBghrTHn74YcPf39/Iycmp8/5zcnIMwNiyZYthGIaRnp5uAEZqaqphGIaxdOlSAzC+/vrr6tssXLjQAKqX55AhQ4zHH3+8xv2+++67RlxcnGEYhvHVV18Zvr6+RmZmZvX1X3zxRa25f27ixInGuHHjjCNHjhiBgYFGenq6sW/fPiMoKMg4cuSIMW7cOGPixIkNfm4nJSQkGP/6179qTHv00UeNQYMG1bjdzJkza8zz9ttvG3a7/bSPbxiGcc455xgvvvhi9eXExETjueeeq/M2/6vTre+ebL818iLigeNllew5UmR2jAY7XlbJ95n5VDmt+cXapRVVbNx3lLLKKrOjNEhllZO0zHxKK7yYv+QYvDII3hkHrwyEkvxGu2vDMCitqML5s/Xniiuu4NChQ3z66aeMHDmSZcuW0adPH+bMmVPv/SUmJtK6desa0/bs2cO1115L+/btiYiIqN6VUt/oQI8eParPn/wx35ycHAA2bdrE3//+9+qRorCwMCZPnkxWVhbFxcVs27aNdu3a0bZt2+r7GDRoUL35T4qKiuKSSy5h7ty5vP3221xyySVERUWdMl9DntuRI0fIzMzkpptuqpH/H//4R41dTgD9+vWrM+fx48e59957Oeecc2jRogVhYWFs377dkiMvTeOIJxELcDoNLn1hJel5xTw+vjvXDjDvYLyGuvK1FLZmOfjD0Pb8dUwXs+N47Oa5G1m1O5fR3WJ59fq+Zsfx2N8++YEPNmQyILkVH97i/sbRI1nfQ2GW63xhFmSlQfvhjXLXuUVlZBWUEuzvy9kx4dXTg4KCuPjii7n44ot56KGHuPnmm3n44Yfr/aRNaGjoKdPGjh1LQkICb775JvHx8TidTrp160Z5eXmd9+Xv71993mazAVTvjnE6nTzyyCNcfvnlp9wuKCgIo5ZfyTl5H+668cYbue222wB4+eWXa52nIc/t5HN48803GTBgQI3rfH19a1yubXn+3F/+8he++uornnnmGTp06EBwcDC//e1v6122TZHKi4ibnIZBTqFrv362o9TkNA1z+ETurPySeuZsmk4ud6su/6yCM5A/rheEx7mKS3i863Ijqagyavw9nXPOOafGR6P9/f2pqqp/tCkvL49t27bx+uuvM2TIEABWrVrV8MAn9OnThx07dtChQ4fT5s3IyODQoUPEx8cD1PiotztGjRpVXQJqO97EnecWEBAAUGNZxcTE0KZNG/bu3ct1113nUaZfWrlyJZMmTWL8+PGA6xiYffv2/U/3aRaVFxE3+fn68PEfB7P5QD7jerUxO06D/GvyQFbuOsLlfdrWP3MT9OYN/fjyh2zG9owzO0qD/PO3Pfhv2iEu6uLFj68Gt4Bb17pGXOJ6uS43kpiIIAL9fQgNcG068vLyuPLKK7nxxhvp0aMH4eHhbNy4kaeffppx48ZV3y4pKYlvvvmG8847j8DAQFq2bFnr/bds2ZLIyEjeeOMN4uLiyMjI4P777/+fcz/00ENceumlJCQkcOWVV+Lj48PmzZvZsmUL//jHP/jNb35Dp06duOGGG5gxYwYOh4MHH3zQo8fw9fVl27Zt1ecb8tyio6MJDg7myy+/pG3btgQFBWG325k+fTq33347ERERjB49mrKyMjZu3MixY8eYOnWq2xk7dOjA/PnzGTt2LDabjWnTptV7IHRTpWNeRDzQJS6Cq85tR5D/qS9OVtApNpybh7SnVWiA2VEaJDkqlD8OP4u2LUPMjtIg0RFBTB7anvatw7z7QMEtXLuKGrG4APj62IgMDaxe/8PCwhgwYADPPfccQ4cOpVu3bkybNo3Jkyfz0ksvVd9uxowZLFmypNaPD/+cj48PH3zwAZs2baJbt27cdddd/POf//yfc48cOZLPP/+cJUuWcO655zJw4ECeffZZEhMTqx93wYIFlJWV0b9/f26++ebqTyJ5IiIi4rS/huzOc/Pz8+OFF17g9ddfJz4+vroA3nzzzbz11lvMmTOH7t27M2zYMObMmVN9zIy7nnvuOVq2bMngwYMZO3YsI0eOpE+fPh4/z6bAZtS2s8/CPPlJbRGRpqC0tJT09HSSk5MJCgoyO46IV51uffdk+62RFxEREbEUlRcRERGxFJUXERERsRSVF2l6So5B7i6zU3jmeB5krAUrHbl/PBd2fQ2VtX+te5NUcgy2L4KyQrOTuK+8GHYtcWW3CsOAsiJwVtY/b1NSUQpOa36BoXhG5UWalsoyeKk/vNQPtn1mdhr3VFXCa+fB7JGweqbZadxjGPDWRfD+FbDQ/Y9amu7dy+GDa+CD681O4r4Ft8D7v4W5Y81O4r7CLMjbBUd2utYVKyjOgyPb4Mh262SWBlN5kabFWQXlJ95VW+WdquH8aSTAKpkBSh2uv5bKnH/ir4Uyn1y+bnxNf5P58OfJERfDQqMYJ0dcNPLS5DXGeq4vqZOmJSAEJi+Do3uh4yiz07jHLwBuWgwHv4PuvzU7jXtsNpi0EPYugx6/MzuN+677GLZ/Dl3Hm53EfZe/CT/Oh7NP/dbVk05+tX1xcTHBwcFnKtnpRbQB/xAICHOtK1YQ2hp8A8A/yDqZf6WKi4uBmj/p4Cl9z4uISBOQlZVFfn4+0dHRhISEePzbOiJNnWEYFBcXk5OTQ4sWLap/QPMkT7bfGnkREWkCYmNjgZ9+CVmkuWrRokX1+t5QKi8iIk2AzWYjLi6O6OhoKioqzI4j4hX+/v61/vaTp1ReRESaEF9f30Z5cRdpzvRpIxEREbEUlRcRERGxFJUXERERsRSVFxEREbEUlRcRERGxFJUXERERsRSVFxEREbEUlRcRERGxFJUXERERsRSVFxEREbEUlRcRERGxFJUXERERsRSVFxEREbEUlRcRERGxFJUXERERsRSVFxEREbEUlRcRERGxFK+WlxUrVjB27Fji4+Ox2Wx88skn9d5m+fLl9O3bl6CgINq3b89rr73mzYgiIiJiMV4tL8ePH6dnz5689NJLbs2fnp7OmDFjGDJkCKmpqfz1r3/l9ttvZ968ed6MKSIiIhbi5807Hz16NKNHj3Z7/tdee4127doxc+ZMALp06cLGjRt55plnuOKKK7yUUs6kHw8VkHm0hBHnxODjYzM7jsc27T/GlgP5XNG3LeFB/mbH8dj69KOs3HWE3/VLIKFViNlxPJaacYwvfshmXK94usbbzY7jsb1Hipj/3UF+c04MvRJamB3HY/nF5cz/7iD9k1vRrY31ln9llZOvfjxMx5gwzo4JNzuO/A+8Wl48lZKSwogRI2pMGzlyJLNmzaKiogJ//1M3FmVlZZSVlVVfdjgcXs8pDZNXVMZlL6+mosrg0cu6MWFgotmRPHLseDlXvZ5CpdNgx+FCnri8h9mRPOIoreC6t9ZSUWWwfOcRPr3tfLMjeaSiysn1b63jeHkV8zYdYNO0i82O5LGb525kb+5xZq9OJ/Whiwn08zU7kkceXPADC7dkEeTvQ+q0EQQHWCv/myvTeerL7QT7+7Jp2m8ICWhSm0DxQJM6YDc7O5uYmJga02JiYqisrCQ3N7fW2zzxxBPY7fbqU0JCwpmIKg3g5+ODn49rlQvya1Krnlt8fGz4+bpGi6y20QHwtdmql3+wv/Xy2wD/E+tNgAXXH4CgE8s9wNcHH5v1Rh6D/E8sf18fLBi/Or+/r82Sy19+0uRqp+0XK5RhGLVOP+mBBx5g6tSp1ZcdDocKTBNlD/Fn8V1DOewopW9iS7PjeMwe7M/nfz6frVmFjOwaU/8NmpjQQD8W/Gkwa/fkcWnPeLPjeMzP14ePpwzim205jOoWa3acBnn79+eyaEsWQzu2xt/XegXsH5d1Z2jH1vRs26K6iFnJpMFJdImLIDEyxJL55SdNqrzExsaSnZ1dY1pOTg5+fn5ERkbWepvAwEACAwPPRDxpBAmtQix5rMVJHaLD6RBt3X3lnWMj6BwbYXaMBrP68o+JCOL35yWbHaPBggN8GderjdkxGsxmszGwfe3bErGWJlX9Bw0axJIlS2pMW7x4Mf369av1eBcRERH59fFqeSkqKiItLY20tDTA9VHotLQ0MjIyANcunxtuuKF6/ilTprB//36mTp3Ktm3bmD17NrNmzeKee+7xZkwRERGxEK+Wl40bN9K7d2969+4NwNSpU+nduzcPPfQQAFlZWdVFBiA5OZlFixaxbNkyevXqxaOPPsoLL7ygj0k3lGHA+jfh60egotTsNO4xDFg1E+b/ARxZZqdxj2HA0sfh7TFwYKPZady3ZDq82A9+sND3KC3/JzzXDVJeNjuJ+757F17sCyv+aXYS96WvhNmjYNVzZidx37F98PGNsO51s5O4r6wIFv8NvnvH7CSWYzNOHhHbTDgcDux2OwUFBUREWHfffqPI2wMv9nGdH/8G9LzK3DzuOLoXXnCVXc67Ay7+u7l53PHzzGddCBMWmJvHHfmZMLOb63x4HNy93dw87igtgCfbuc7bfGBaLvhY4KDLx9tAeZHr/H37IbiFqXHc8sYFcOg71/m/7IHQKHPzuOOzO2HT267z9+yGsNamxnHL+jdh0Yk9C/fsgrBoc/OYzJPtd5M65kUaWUQbiO/j2ji17Wd2GveEx0PrLuDrD8nDzE7jnvB4aHWW6/xZF5qbxV1h0dDyxIGjyUPNzeKugHCI7uo63/ZcaxQXgKQhrr8x3SDQIgcbn33iO3RiukFQC1OjuO2sC8HHz/WaF2yRTzMmDobQ1pB4HgS3MjuNpWjkRZoepxOcFeBnoU+RVZZDyVEIt9BHeMuPw9F0iD4HfCzyPqaiBA5vhdhu1lk/qirhyDaIPBv8g8xO4z7HIdeG1ddCH5aoKHWtF/oOF0vyZPut8iIiIiKm024jERERabZUXkRERMRSVF5ERETEUlReRERExFJUXkRERMRSVF5ERETEUlReRERExFJUXkRERMRSVF5ERETEUlReRERExFJUXkRERMRSVF5ERETEUlReRERExFJUXkRERMRSVF5ERETEUlReRERExFJUXkRERMRSVF5ERETEUlReRERExFJUXkRERMRSVF5ERETEUlReRERExFJUXkRERMRSVF5ERETEUlReLOaz7w/xTso+qpyG2VE8ZhgG76bsY/qnP3L0eLnZcTxmGAYzFu/g+lnrSM04ZnYcj1U5DR6Yv5nzn/qW99ftNzuOx5xOg/vnbabnI4t59POtGIb1/g+8tXIv5z35LY9+9qMl86/dm8d1b67l5aW7LZn/sKOUh/77Ax9tzDQ7SoOUVzqZtSqdr37MNjuK6fzMDiDu23m4kD//OxWAVqEBXNoj3uREntma5WDaf38EwM/Hxt8uPcfkRJ75LuMYL367G4CC4go++/P5JifyzLr0PP693vWi/dAnP3Jl3wQC/Kzz/uX7A/l8sMGVf9aqdK7pn0CH6HCTU7mvoLiCfyzcBsCs1fsY36ct3drYTU7lmfvnbWZfXjGr9+Rx8TkxdIyxzvIHeG7Jzup1aEByKxIjQ01O5Jl53x3g0c+3ArD6/gtp0yLY5ETmsc4rl9A6LJBWoQEE+PmQHGWt/3QA0eFBhAW6+rLVXvQAYu3B1Rv7DtFhJqfxXLw9GF8fGwAx9kD8Tpy3iuiIIPx8bNiAID8fWoUGmh3JI0EBPrQKDQAgwM+H1uHWyg9wVmvXeh8S4EvkiediJWefeN1pGeJPSyvmjw7Dz8dGbEQQLYL9zY5jKpthxbG/OjgcDux2OwUFBURERJgdp9GVVlRRUeUkPMiaK25eURlHj5dXv4hYzd4jRezKKWJ4p9YE+vmaHcdjqRnH2LjvGJf0iCPegu/aNu0/xvIdOYzoGmu5UQuAjLxivvoxm0FnRVoyf0l5Fct35tA13k5CqxCz43jMMAx2HC50bfxDrFdeABylFQT6+Vjy9ac+nmy/VV6au6pKcFaCf5DZSdxXWgAlx6BlktlJ3JefCbk7IXko+FqkWGZvgcz10PkSCI81O417DqXB3qVw9kiIschux4IDsPMrSDofWncyO417Kkph3yqI6QoRcWancd/RvRAaDYEWGhmtKAHfAPBpfmXEU55sv3XMS3NWcgxePQ+K8+DGLyG+t9mJ6nc8F146F0qOwtjnoe8ksxPVr+AAvNwfKoqh22/ht7PMTlS/vD3wxgXgrIBVz8HtaeDbxF8O8jNg1sVQVQ7Ln4Y7NkNYa7NT1a2iBF4fBsW54BcEt6dChAWOVftoAuxaDIERrsyhUWYnqt+aF2Hx3yAsFm7bAEEWePO6bxW8Ox7sbWHKKgiw3uEAZtExL83Zsf3gOAiVpXBwk9lp3HM03VVcADI3mJvFXXl7XMUF4NB35mZxV95uV3EBKMiEiuPm5nHH0XRXcQHX8i6wwCdGio+6igu4/h8es8invA65PhhAmcNVGq0gc53rb1E2OA6Zm8Vdmetd6/TRvVCoTxB5oom/1ZL/SVxPGPm46z9Fz2vMTuOeNn1hyN2Qsw2GTDU7jXsSz4Oe18KB9XDxo2ancU/yMDjrIti/Cgb9GYIscPxFu0HQ/gLXbqPOl7rW76bO3gYGTIGNb0PHkdD2XLMTuWfUk7D0cWg/HOJ6mZ3GPRc8CJUV0LafdXbPnXuTa7Q58izXSdymY15ExFoqy8HPmgdbisjpebL91m4jEbEWFReRXz2VFxEREbEUlRcRERGxFJUXERERsRSVFxEREbEUlRcRERGxFJUXERERsZQzUl5eeeUVkpOTCQoKom/fvqxcufK08y5btgybzXbKafv27WciqoiIiDRxXi8vH374IXfeeScPPvggqampDBkyhNGjR5ORUfdXTu/YsYOsrKzq09lnn+3tqCIiImIBXi8vzz77LDfddBM333wzXbp0YebMmSQkJPDqq6/Webvo6GhiY2OrT76++sVNERER8XJ5KS8vZ9OmTYwYMaLG9BEjRrBmzZo6b9u7d2/i4uK46KKLWLp06WnnKysrw+Fw1DiJiIhI8+XV8pKbm0tVVRUxMTE1psfExJCdXfsvaMbFxfHGG28wb9485s+fT6dOnbjoootYsWJFrfM/8cQT2O326lNCQkKjPw8RERFpOs7Ir0rbbLYalw3DOGXaSZ06daJTp59+EXTQoEFkZmbyzDPPMHTo0FPmf+CBB5g69adfH3Y4HCowIiIizZhXR16ioqLw9fU9ZZQlJyfnlNGYugwcOJBdu3bVel1gYCARERE1TiIiItJ8ebW8BAQE0LdvX5YsWVJj+pIlSxg8eLDb95OamkpcXFxjxxMREREL8vpuo6lTpzJhwgT69evHoEGDeOONN8jIyGDKlCmAa7fPwYMHeeeddwCYOXMmSUlJdO3alfLyct577z3mzZvHvHnzvB1VRERELMDr5eWqq64iLy+Pv//972RlZdGtWzcWLVpEYmIiAFlZWTW+86W8vJx77rmHgwcPEhwcTNeuXVm4cCFjxozxdlQRERGxAJthGIbZIRqTw+HAbrdTUFCg419EREQswpPtt37bSERERCxF5UVEREQsReVFRERELEXlRURERCxF5UVEREQsReVFRERELEXlRURERCxF5UVEREQsReVFxAOGYVBZ5TQ7RoPlFJaydm8eJeVVZkdpkM0H8pmzOp1tWQ6zozRIUVklKXvyyCsqMztKg1VUOWlm320qFuT1nweQxlNZ5eSpL7dzrLicaZd2xR7sb3Ykj5RWVHHXh2mk5x7nn7/tSfe2drMjeSS/uJwrX0thz5Ei7h3VmSnDzjI7kke2ZzsY//IaSiqqaN86lM//fD4hAdZ5CVi9O5frZ63DMMDXx8bHUwbRu11Ls2O5raCkgjHPr+RgfgnhQX58dtv5JEWFmh3LI88u3sGL3+6mWxs7//7DQMICrbP+AGzYd5S/zt9CtzZ2/vnbHvj5Wuv9e15RGX//fCsJLUOYenFHfHxsZkcyjbX+5X7lvsvI582V6Xy86SCffX/I7DgeS9mbxxc/ZLM9u5C3Vu01O47HvtmWw66cIpwGvPztbrPjeGzR5izKKl0jLnuPHCdt/zEoLzY5lfu++CELO8X0su0mzCjmqx8Pmx3JfeXHSdmdy8H8EgAKSytZvDXb5FCeMQyDl5fuwQC2HCxg9e5csyN57JWlu9mVU8SC1IN8fyDf7Dge+8+mA/w37RAvLd3N9uxCs+OYSuXFQjrFhnNW61AiQwMY2D7SvRv9MB/WvQ5VFd4N54au8RFEhgZgA4Z1bF37TIYBa16Ez+6AggNnNF99eibY8fd1vdOpsfwry+G/f4JXz4Ntn5uUrn7d27bAaYCPDRL8Cui/aBQ8HgcfXAdVlWbHq9eA0ByWB9zOJ4EP8U3AXfSNyDc7Uv0qy+Cdy+DxeC5YfjlRvsc5+Wa5W5smPPK4+T/w6mBYeA84XYXXZrNxbrJrpCvY35dz4prYb8cd3Qv/vQ3Wv3naWS7sHA1AnD2IDtHhZyrZ6VWUQMrLsH2hW7Of3yEKe7A/58RFkGyxUbvGph9mbM4OfgdvXuA6P+YZ6D/Z3Dy4dh0dL6skMiyw9hn2Lod3/s91vut4uHLOGcvmjoy8YtLzjjOofSQBfie6/+aPYP6JZRsQBn89aF7Aenz1YzbfZ+YzqfxfRKe+CMaJ43cmLICzLjQ3XD2Mz+7E2PQOPlThtPliG/QnbCMeNTtW3X78BP4z8cQFGwfPfYD3fcfRP7kVwztFm5ns9CrL4Yn4n97wXPMBdBoNuP7/puzNo1NMOPEtgk0MWYt3LoO9S13nJy+FNn1qne1IYRkRwX4E+vmeuWyns3IGfPN31/nbNkLU2ebmMZkn229r7bAUzwS3BN8AqCqH8Fiz0wAQ5O9LkH8dLxohkWCzuUZgwmLOXDA3tYsMoV1kSM2JIa1cf20+P51vokZ2jWVk11hIiXEt45OCWpiWyV22wHBsNsAAHwwIssCbk+AWP7tg0CYunnv7dDYrjXt8fCEwAkqOucptyE+jjEH+vlzQVEvXydc4H79fLPeaWoef5o2TGcLjXH/9g13LXNymkZfm7th+KHNAbHezk7jvwEbXEPA5l4FfgNlp3PP9B5C9Bfr+HqI6mJ2mfpVl8OX9kLkeek+AgVPMTlS/kmOuXVyZ6yF5KPzuHQgMMztV3QwDVj3r2n2bNARG/AN8LfCe8fBWSH0XEvq7RkCtoKIEtv4XWneG+F5mp3HfoVQIjQZ7G7OTmM6T7bfKi4iIiJjOk+23DtgVERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUs5I+XllVdeITk5maCgIPr27cvKlSvrnH/58uX07duXoKAg2rdvz2uvvXYmYoqIiIgFeL28fPjhh9x55508+OCDpKamMmTIEEaPHk1GRkat86enpzNmzBiGDBlCamoqf/3rX7n99tuZN2+et6OKiIiIBdgMwzC8+QADBgygT58+vPrqq9XTunTpwmWXXcYTTzxxyvz33Xcfn376Kdu2baueNmXKFL7//ntSUlLqfTyHw4HdbqegoICIiIjGeRLSaJxOg0qnQYBfHb25qhKqyiAg9MwFc1NOYSkHjpXQo40dP9+fPYf8TDiWDgkDwS/AvIB1cDoNPtiQybYsB6POac15RxfA4S3QeSx0GmV2vObrx09g9xJo049vQ0fz7Y4j9E5oyeV92mCz2cxOV7uKUshcC1GdICLup8lVTjYfyCcpMpTIsEATA55GWRH4B4OP72lnKa904u9ra7rL/lfMk+23nzeDlJeXs2nTJu6///4a00eMGMGaNWtqvU1KSgojRoyoMW3kyJHMmjWLiooK/P39a1xXVlZGWVlZ9WWHw9FI6X+hogTmT4aqCrhiFgSGeedx6nC8rJKb39nIsePlvDWxH21bhtR9g7JCeO8KKMqBaz+E1p3OTNDTOHq8nMteXk1WQQkvXtOHUd1iT52pKAfeGA6FWTDuZeh17RnPeTq7Dhcy9qVVlFY4Gdk1htcn9HNdkb0F3rzIVbiSh8HET80NehqzV6fzj4Xb8LXZCN/4AoP9PsRm84XU92DSIkg6z+yIzc+OL+E/E+HEcl5akca/nSN5b20GFVVOru7fzuyEp3I64e3RcOg78A+FKSsh8iwMw2DS7PWs3pNHWKAfX9wxhIRW9bwGnUnr3oAv7oVWyTB5KQS3OGWW+d8d4C8fb6Z9VCgL/nQeYYFe3QTW71AafHg9tGoP134E/kF1zr47p4gp720ioWUwr03oS6Df6Uua1xQfhXk3Q3BLGP8a+PrXfxsv8Opuo9zcXKqqqoiJiakxPSYmhuzs7Fpvk52dXev8lZWV5ObmnjL/E088gd1urz4lJCQ03hP4uQMbYdtnsPNLyKh/BMgbUjPySdmTx/bsQpZsPVz/DTLXQ+Y614jA1v96P2A91qfnkXG0mIoqgwWpB2qfad8qcBwEwwlp/zqzAeuxclcupRVOAJZsPUz1oOWepa7iApC+3FV0m6B16UcBqDIM+tu2YwMwqsBmc73LlsaXkeIqLkYVTmz099lOlWHgY4P1J/49mpziXFdxAag4DukrACipqGL1njwAisoqSdmbZ1bC2qW+CxhwdK/r9boWH23MpMppsCuniO8z889ovFpt+Q8UZLpeNw7/UO/si7ZksTuniKU7jrA9q/AMBKzF3qWw5xv44WPI2WpOBs7QAbu/HJ4zDKPOIbva5q9tOsADDzxAQUFB9SkzM7MREtcioT/0uBq6/RYSzXmH2i+pJb/pEk2fdi0Y3S2u/hu0GwhnXQQxXaHbFd4PWI9B7aPoFBtOSIAvV597mnec7YdDZAdXm+/3+zOarz7DO7Wufqf2fz3jf1ofzx4B/ifegXYc5Rq2boKGnB0FgK/Nxhqjm2uizRcMIGmIecGas+ShJwqiLz4YrHF2w9dmw2nA+Sf+PZqc0NaQONh1PjACzroAgJAAPy7qHA1AixB/zu/QxPL3nww+fhDdFdoNqHWW6wcmEuTnQ4+2dnq3a3Fm89Wm17WuEfFOl0Bsj3pnH9crnh5t7VzSPY5z4k06LKLDb6DLOOg7ybWsTeLVY17Ky8sJCQnhP//5D+PHj6+efscdd5CWlsby5ctPuc3QoUPp3bs3zz//fPW0BQsW8Lvf/Y7i4uJTdhv9ko55aQYMA5xV4GvykG4tCooryHaUcnZ0GD4+PyvTRUcgPwPie9W5v91MhmHw6feH2JrlYESXaPoeXeR6t9dpDLQfZna85mvnYtj9NbTtx5qQC1i+M5deCS0Y3d2NNyBmqaqArO9duzNCWv002Wmw83AhbVoGExFkzu6COlVVuv7/6XgWS2oyx7wEBATQt29flixZUqO8LFmyhHHjxtV6m0GDBvHZZ5/VmLZ48WL69etXb3GRZsJma5LFBcAe4o89pJb1MKy169SE2Ww2xvVqw7hebVwTkiaYG+jXouMI1wkYDAzu0LTXE8A18tm236mTfWx0iWvCbwqb6OuGND6v7zaaOnUqb731FrNnz2bbtm3cddddZGRkMGXKFMC12+eGG26onn/KlCns37+fqVOnsm3bNmbPns2sWbO45557vB1VRERELMDrNfWqq64iLy+Pv//972RlZdGtWzcWLVpEYmIiAFlZWTW+8yU5OZlFixZx11138fLLLxMfH88LL7zAFVeYf8yGiIiImM/r3/NypumYFxEREevxZPut3zYSERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkREWupqjA7gYiYTOWluTuyAzLWmZ3CM+krYOPbUF5sdhL3GAZsmAWf3QGHt5qdxj0VJTBvMjzfC1bOMDuNe47nwuvD4NEomDUSSgvMTlQ/w4BvHoXne8Knf4bKcrMTuedQKnx6O6S+b3YS95UVwoa3IGOt2UncZxiwbzXk7TE7ieX4mR1AvChvD7w6GJyV8Nu3odvlZieq36E0mDvWdT57C1z6rKlx3LJrMSycCjYf2LkY7t5mdqL6rX8DtvwHMOCbv0PSEEjob3aquq16zrVOABxYD2tfheH3m5upPnu+gZXPuM4f2wfxvaHfjaZGqldVJbxzGZQ54Lu50CoZEgebnap+n90JP3zs+n/4pw0Q1cHsRPX7bq7rTY9vINyRBhHxZieyDI28WIzTaVBZ5XRv5vLjruICUJrvtUyecJRWcOBYHSMq5UU/nW+C76x3HS7kyx+yKK2o+mliWaHrr2HUzN/EGIbBJ6kHmf7pjxw6chRstp+urGj6o1zOihKcxonzBhjlJeYGckfFzzPaSM/KZfqnP7JoS5ZpkeplOF25jROvM2U/rdPHyypZtCWL9NzjJoWrw8nXC8MJFafPl5FXTFFZ5RkKVY+SfNffqvJfrCunV1nlxHnyP8KvmEZeLOTY8XIueXEljpJKPv7jIDrHRtR9g7gecO1HUJQDva49MyHrkF1QyojnluMoreTJy7tzdf92p86UeB5c+hzk7obz7zzjGeuyLcvBpS+uosppMPTsKN65aYDrinMugwMbICsNhv7FzIh1+uKHbO78MA0fG3zh04WVbboSkPMD9Pida+SliVsQ8H8MM/5DlM3BYcPOd8GXcInZoerTcRR0vhS2L6Qkpg+XrWlPIfuYs2Yf79zYn6EdW5ud8FR+AfDb2bDmBWg3CDr8pvqq695aR1pmPgF+Piy5ayiJkaEmBv2FsTNhzUuu1724nrXO8tbKvfxj4TYiQwP4euowWoYGnNmMvzTwVgiyQ8skiDyr3tlTM45x7ZvriLUH8fmfzyc08Ne7Cf/1PnML2n2kiEP5pQBs2n+s/vIC0HGkl1O5b8fhQhylrnc8a/fm1V5ebLYmO6y+LctB1Yl3PGmZ+T9d4esHo58yJ5QHtmc58LG5Ri0OV4WzceQnDE5uBT7WGIBNLY7kofIXiCeHA8Qw6XhE0y8vvv5w9fvgdLJiWw4F726qvmpHdmHTLC8AXS51nX7GMAy2HHSNbpRXOtmRXdi0you9LYx+ss5Z1uzJAyDveDl7c4/T1+zy4hcA/X7v9uzr049SUlFFeu5xMo4W0yXOjW1AM2WNVy0BoG+7ltx+0dncMCiRy3q1MTuOxwa1j+S3fdvSN7ElU4bX/y6jqfnNOTH0atuCQD8f7h7Ryew4Hvu/Xm2q36l1iQunT7uWlikuAP/Xsw2ltkB2GW2p9Angku5xZkdyn48Pg8+KJDnKtbFvFRrA6O6xJofyjM1m4+4RHfH3tTEguRVDzm6ixasOd1x0Nr0SWjBhYCK9ElqYHcdjV5/bjmv6t+MvIzvROTbc7DimshmG0ax2njkcDux2OwUFBURE/HpbqUhtCoor2H/0OJ1jIwjws05xOWnn4ULSMvPpl9iS9q3DzI7jsdKKKnYeLiQ5KpTwIH+z44g0KZ5sv1VeRERExHSebL+t99ZLREREftVUXkRERMRSVF5ERETEUlReRERExFJUXkRERMRSVF5ERETEUlReRERExFJUXkRERMRSVF5ERETEUlReRERExFK8Wl6OHTvGhAkTsNvt2O12JkyYQH5+fp23mTRpEjabrcZp4MCB3owpIiIiFuLnzTu/9tprOXDgAF9++SUAf/jDH5gwYQKfffZZnbcbNWoUb7/9dvXlgACTf7ZcREREmgyvlZdt27bx5ZdfsnbtWgYMGADAm2++yaBBg9ixYwedOnU67W0DAwOJjbXWz8WLiIjImeG13UYpKSnY7fbq4gIwcOBA7HY7a9asqfO2y5YtIzo6mo4dOzJ58mRycnJOO29ZWRkOh6PGSURERJovr5WX7OxsoqOjT5keHR1Ndnb2aW83evRo3n//fb799ltmzJjBhg0buPDCCykrK6t1/ieeeKL6mBq73U5CQkKjPQcRERFpejwuL9OnTz/lgNpfnjZu3AiAzWY75faGYdQ6/aSrrrqKSy65hG7dujF27Fi++OILdu7cycKFC2ud/4EHHqCgoKD6lJmZ6elTEhEREQvx+JiX2267jauvvrrOeZKSkti8eTOHDx8+5bojR44QExPj9uPFxcWRmJjIrl27ar0+MDCQwMBAt+9PRERErM3j8hIVFUVUVFS98w0aNIiCggLWr19P//79AVi3bh0FBQUMHjzY7cfLy8sjMzOTuLg4T6OKiIhIM+S1Y166dOnCqFGjmDx5MmvXrmXt2rVMnjyZSy+9tMYnjTp37syCBQsAKCoq4p577iElJYV9+/axbNkyxo4dS1RUFOPHj/dWVBEREbEQr35J3fvvv0/37t0ZMWIEI0aMoEePHrz77rs15tmxYwcFBQUA+Pr6smXLFsaNG0fHjh2ZOHEiHTt2JCUlhfDwcG9GFREREYuwGYZhmB2iMTkcDux2OwUFBURERJgdR0RERNzgyfZbv20kIiIilqLyIiIiIpai8iIiIiKWovIiIiIilqLyIvJr5qwyO4FnDANKjrn+WonVlrNIE6fy0pwZBiz/Jyy8G0ot8oOVzipYdC/MHQtHdpidxj2V5fDhBJjRGX6Yb3Ya95QXw6wR8PdI+OJ+s9O4p6LUlfmpJHh3PFRVmp2ofoYBn/wJ/t7Klbmy3OxE7kl9D57pCPNvsU7xyvoe3r4EljxsnXJbfBQ+uwNWv2CdzE2EyktzdigVlv4DNrwFmz80O417DmyE9a9D+gpYNdPsNO7Zvxq2fQqFWfDNI2ancU/6CshcBxiw7lUoyTc7Uf0yUuDAetf5vUsh+3tz87jDcRDS3nOd3/MtHNxobh53LXkIig7D5g/gUJrZadyz/GnYvwpWz4Qj281O456Ns2HTHFgyDY7uNTuNpai8NGeRZ0Gr9hAYDu0Gmp3GPVFnQ9iJ375KHmpuFne17uxaxgCJ55ubxV3RncHvxG+CnVxHmrqojuAX5DofGA4tkkyN45bQ1hAe7zofEAqtzjI3j7vanfgJl+BW0CrZ3Czuaj/c9dee4DpZQfJQ8A+B6K4QEW92GkvRl9Q1d4YBhhN8fM1O4r6KEigrgrDWZidxX1GO651T23Ots6xzd8HB7+DsiyGkldlp3JOzHfathLMudJVzKyjKcY26JAywThGoqnCNgkZ1hNBIs9O4r/AwBLf4qZhbgbMKbD5gs5mdxHSebL9VXizGUVpBeaWTqDAL/ef8mayCEnIcZfRoa8dmwf+s27IcbM92MLJrLCEBHv+uqelS9uSxPv0ol/WOJzEy1Ow4HluzO5dvtucwulss/ZIsUrh+ZndOIZ9vzmLI2a3pm9jS7DgeKyytYMnWw/Roa6dDtAVG637BMAxSM/Np2yKY6Iggs+M0SE5hKaEBfoQGWu/1pz4qL820vOQWlXHBM8soLq9iwa2D6dG2hdmRPHLYUcqwfy6ltMLJo5d1Y8LARLMjeSTzaDEXPLOMSqfBJd3jePm6PmZH8sjunCJGPLccpwHR4YGsfeAifHysUyAzjxYz/J/LcGLg52Mj5YGLLFXiSyuqGPD4NxSUVODnY2PFvRcQ3yLY7FgemTBrHSt35RLk58PK+y6kdbh1lj/Aq8v28NSX2wkP8mPVvRdiD/E3O5JHUvbkcd1ba2kZEsCyvwwnPMha+eujnwdopvKLyyksraTKaXDwWInZcTx2rLic0gonAAeOFpucxnO5RWVUOl1d34rLP7eojBPxOXq8vPq5WMXR4+VUGQaGARVVBgUlFWZH8khZpRPHicyVToNjxRb55NHPnFzvSyudFJRYL3/mMdfrTmFpJY5Sa60/4CrwTsP1f6GozAKftvOi5jfu1Ix1iA7nrRv6cay4nJFdY82O47HOsRE8c2VP9h4p4pZhFjle4Wd6JbTgvlGd+f5APn++sIPZcTzWP6kVN52fzMpdR5gy7CwC/Kz13qVHWzs3nZ/Mwi1Z/K5vW85qHWZ2JI/Yg/159LJuvJOyj5FdYzknznojw8/8rievL9/DoPaRltxtdPfFHQkP8qNbvJ2EViFmx/HY5X3aUGUYtGkRTJzdWqN2jU27jURERMR02m0kIiIizZbKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYispLc2cY4HSancIzVRVQ6jA7hWfKj0PeHtfytorSAshc71reVlHqgL3LXcvbKirLIGMdlBWZncR9hgG5u6GixOwkninJh6pKs1N4xum01utGE6Hy0pyVF8MrA+HpZDiy0+w07ikvhpfOhacSYccXZqdxT3kxvNwfXuwDK54xO417KkrhlUEw62KYd5PZadzjrII3L4R3/g/eHm2dF/x/XQWzR8Abw13PwQqWPAQv9YXXhlin3G75GJ5KgtctlPlQGjzZzrVuWCVzE6Hy0pwVZcOR7VCaD1nfm53GPUWH4Vg6GE7IXGd2Gvccz4GCA67zmWvNzeKu4jxwHHSdP7DB3CzuKj8Oebtc57N/cK0jVnBwk+tv3m4ot8joS8Ya19+8XdYZBd2/BjAgZ6trVNEKDm6E8kLISnONGonb/MwOIF7Uqj2MewUKs+CccWancU+rZBjzjOsFaOCfzE7jnpZJ8JtHXC+eF/7N7DTusbdxZd32OQy71+w07gmKgBGPQeq7MOAW8PE1O5F7Ln0O1rwAPa6GILvZadwz8klY/hScPQJCI81O454hd4OzEtqeC6FRZqdxT89r4XguRHaAsNZmp7EUm2FYZezVPQ6HA7vdTkFBAREREWbHERERETd4sv326m6jxx57jMGDBxMSEkKLFi3cuo1hGEyfPp34+HiCg4MZPnw4P/74ozdjioiIiIV4tbyUl5dz5ZVX8sc//tHt2zz99NM8++yzvPTSS2zYsIHY2FguvvhiCgsLvZhURERErMKr5eWRRx7hrrvuonv37m7NbxgGM2fO5MEHH+Tyyy+nW7duzJ07l+LiYv71r395M6qcIbtzili+8whW3Vv5w8ECPtyQQUm5RT418gtpmfm8smw32QWlZkdpkB8PFfDskp3sOmzNNzOZR4t5eeluth6yyEGwv1BYWsG/12ew06LLv8pp8O32w+zLtdBH7aVWTeqA3fT0dLKzsxkxYkT1tMDAQIYNG8aaNWu45ZZbTrlNWVkZZWVl1ZcdDmu+KPwaHDtezpgXVlJe6eSJy7tzTf92ZkfySEFxBZe/uobySidbDhbwj8vcK+VNRVFZJVe9nkJZpZOvtx5m/q3nmR3JI5VVTq5+Yy2FpZX8e30GGx78jdmRPHbjnA3syini1WV7+G7axQT4WesDnw8u+IFPvz9EaIAvm6ZdTJC/RQ6aPmH2qnQeW7SN0ABfNv7tYoIDrJVfftKk/udkZ2cDEBMTU2N6TExM9XW/9MQTT2C326tPCQkJXs8pDWf7xV+rsln8GdhsFs9vdoAGsvhibzasvv5LA0Zepk+fziOPPFLnPBs2bKBfv34NDvXLFcswjNOubA888ABTp06tvuxwOFRgmqiWoQEsumMIB4+VMORsi3yU8WfsIf4suHUwPx50MLZnvNlxPBYW6MdHtwxizZ48Lu/Txuw4HvPz9eHDPwxi8dZsLu0RZ3acBpk18Vw+23yICzpFW27UBeCx8d0YfFYkfRNbWm7UBeCm85PpEBNG+6hQjbpYnMfl5bbbbuPqq6+uc56kpKQGhYmNjQVcIzBxcT+9OOXk5JwyGnNSYGAggYGBDXo8OfPOah3GWa3DzI7RYF3j7XSNt8h3ddSiZ0ILeia0MDtGg50TH8E58db9CoSEViHcOryD2TEaLDzIn6sttrv353x8bFzQKdrsGNIIPC4vUVFRREV5511zcnIysbGxLFmyhN69ewOuTywtX76cp556yiuPKSIiItbi1XHLjIwM0tLSyMjIoKqqirS0NNLS0igq+ukrsjt37syCBQsA1+6iO++8k8cff5wFCxbwww8/MGnSJEJCQrj22mu9GVVEREQswqufNnrooYeYO3du9eWToylLly5l+PDhAOzYsYOCgp9+h+Lee++lpKSEW2+9lWPHjjFgwAAWL15MeHi4N6OKiIiIRejnAURERMR0TebnAUREREQam8qLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyos0PYfSYPN/wFlldhL3HdwEa1+DskKzk7jvUCqs+Cc4ssxO4r7DW2Hp45C72+wk7svPgOX/hMM/mp3EfSXHIOUVyN5idhL3VZbD9x+41hFp9vzMDiBSQ1kRzBoBVWVQXgj9bjQ7Uf0qy2DOJVBR4tpQjXrc7ET1MwyY+39Q5oADG+HaD81O5J5/X+VaxtsXwh9Xm53GPfP/ABkpsGk2TN1mdhr3LJ4Gqe9CUAu4bx/YbGYnqt/aV+DrhyEgDO7bD77avDVnGnmRpsU3AEKjXOcj2pibxV0+fhDa2nU+It7cLJ4Ij3X9tVTmONdfK2U+uR6fzG4FJzNHxFmjuADY27r+hseBTZu25s5mGIZhdojG5HA4sNvtFBQUEBERYXYcaYiyIijN/+nFyApKHZC/H2K6WefFvrTAtSujbX/rvEstK3LtokvoD/7BZqdxT2U5HNgAcT0hMMzsNO4xDMjeDK3Osk5mcI3Khba2zrohNXiy/VZ5EREREdN5sv3W2JqIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiAfSMvN5e3U6x8sqzY7SIJsP5PPCN7vIcZSaHaVBdmQXMmPxDtJzj5sdpUEO5pfw/Ne72J7tMDtKgxSUVPDWyr38eKjA7CjyK2eRz0eKmK+yysk1b6ylpKKK3KIy/jKys9mRPHbD7PXkF1ewPbuQV67rY3Ycj015bxPpucdZvvMIn952vtlxPHbfx5tZtTuX/2zKZNV9F5odx2PPLt7B3JT9tAzxJ/WhEWbHkV8xjbyIuMnXx0a7Vq7vj0iOstB3X/xMUmQoAO2jQk1O0jAnc1s1/1mtXbmTLZr/ZG6r5pfmQ9/zIuKBssoqjh4vJ85uzS/BKqusIiOvmA7RYdis8mV6P1NR5WTX4SI6xoTh52u9915Op8HuI0UkRYYS4Ge9/ODa9RUdHoi/BZe/NG36kjqVFxEREUvRl9SJiIhIs6XyIiIiIpai8iIiIiKWovIiIiIilqLyIiIiIpai8iIiIiKWovIiIiIilqLyIiIiIpai8iIiIiKWovIiIiIilqLyIiIiIpbi1fLy2GOPMXjwYEJCQmjRooVbt5k0aRI2m63GaeDAgd6MKSIiIhbi1fJSXl7OlVdeyR//+EePbjdq1CiysrKqT4sWLfJSQhEREbEaP2/e+SOPPALAnDlzPLpdYGAgsbGxXkgkIiIiVtckj3lZtmwZ0dHRdOzYkcmTJ5OTk3PaecvKynA4HDVOIiIi0nw1ufIyevRo3n//fb799ltmzJjBhg0buPDCCykrK6t1/ieeeAK73V59SkhIOMOJRURE5EzyuLxMnz79lANqf3nauHFjgwNdddVVXHLJJXTr1o2xY8fyxRdfsHPnThYuXFjr/A888AAFBQXVp8zMzAY/toiIiDR9Hh/zctttt3H11VfXOU9SUlJD85wiLi6OxMREdu3aVev1gYGBBAYGNtrjiYiISNPmcXmJiooiKirKG1lqlZeXR2ZmJnFxcWfsMUVERKTp8uoxLxkZGaSlpZGRkUFVVRVpaWmkpaVRVFRUPU/nzp1ZsGABAEVFRdxzzz2kpKSwb98+li1bxtixY4mKimL8+PHejCoiIiIW4dWPSj/00EPMnTu3+nLv3r0BWLp0KcOHDwdgx44dFBQUAODr68uWLVt45513yM/PJy4ujgsuuIAPP/yQ8PBwb0YVESvY8jGseQGG3Q+dx5idRkRMYjMMwzA7RGNyOBzY7XYKCgqIiIgwO46INKbXhkD2Zkg6HybVfhC/iFiTJ9vvJvdRaRGR0xp2HySeB+dPNTuJiJjIq7uNREQaVZdLXScR+VXTyIuIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYSrP7VWnDMABwOBwmJxERERF3ndxun9yO16XZlZfCwkIAEhISTE4iIiIiniosLMRut9c5j81wp+JYiNPp5NChQ4SHh2Oz2c744zscDhISEsjMzCQiIuKMP35Tp+VTNy2fumn51E/LqG5aPnUzc/kYhkFhYSHx8fH4+NR9VEuzG3nx8fGhbdu2ZscgIiJC/zHqoOVTNy2fumn51E/LqG5aPnUza/nUN+Jykg7YFREREUtReRERERFLUXlpZIGBgTz88MMEBgaaHaVJ0vKpm5ZP3bR86qdlVDctn7pZZfk0uwN2RUREpHnTyIuIiIhYisqLiIiIWIrKi4iIiFiKyouIiIhYispLI3jssccYPHgwISEhtGjRwq3bTJo0CZvNVuM0cOBA7wY1SUOWj2EYTJ8+nfj4eIKDgxk+fDg//vijd4Oa5NixY0yYMAG73Y7dbmfChAnk5+fXeZvmvP688sorJCcnExQURN++fVm5cmWd8y9fvpy+ffsSFBRE+/btee21185QUnN4snyWLVt2ynpis9nYvn37GUx85qxYsYKxY8cSHx+PzWbjk08+qfc2v6b1x9Pl05TXH5WXRlBeXs6VV17JH//4R49uN2rUKLKysqpPixYt8lJCczVk+Tz99NM8++yzvPTSS2zYsIHY2Fguvvji6t+uak6uvfZa0tLS+PLLL/nyyy9JS0tjwoQJ9d6uOa4/H374IXfeeScPPvggqampDBkyhNGjR5ORkVHr/Onp6YwZM4YhQ4aQmprKX//6V26//XbmzZt3hpOfGZ4un5N27NhRY105++yzz1DiM+v48eP07NmTl156ya35f23rj6fL56Qmuf4Y0mjefvttw263uzXvxIkTjXHjxnk1T1Pj7vJxOp1GbGys8eSTT1ZPKy0tNex2u/Haa695MeGZt3XrVgMw1q5dWz0tJSXFAIzt27ef9nbNdf3p37+/MWXKlBrTOnfubNx///21zn/vvfcanTt3rjHtlltuMQYOHOi1jGbydPksXbrUAIxjx46dgXRNC2AsWLCgznl+bevPz7mzfJry+qORFxMtW7aM6OhoOnbsyOTJk8nJyTE7UpOQnp5OdnY2I0aMqJ4WGBjIsGHDWLNmjYnJGl9KSgp2u50BAwZUTxs4cCB2u73e59rc1p/y8nI2bdpU498dYMSIEaddFikpKafMP3LkSDZu3EhFRYXXspqhIcvnpN69exMXF8dFF13E0qVLvRnTUn5N68//oimuPyovJhk9ejTvv/8+3377LTNmzGDDhg1ceOGFlJWVmR3NdNnZ2QDExMTUmB4TE1N9XXORnZ1NdHT0KdOjo6PrfK7Ncf3Jzc2lqqrKo3/37OzsWuevrKwkNzfXa1nN0JDlExcXxxtvvMG8efOYP38+nTp14qKLLmLFihVnInKT92tafxqiKa8/ze5XpRvL9OnTeeSRR+qcZ8OGDfTr169B93/VVVdVn+/WrRv9+vUjMTGRhQsXcvnllzfoPs8kby8fAJvNVuOyYRinTGuq3F0+cOrzhPqfq9XXn7p4+u9e2/y1TW8uPFk+nTp1olOnTtWXBw0aRGZmJs888wxDhw71ak6r+LWtP55oyuuPystp3HbbbVx99dV1zpOUlNRojxcXF0diYiK7du1qtPv0Jm8un9jYWMD1riguLq56ek5Ozinvkpoqd5fP5s2bOXz48CnXHTlyxKPnarX1pzZRUVH4+vqeMopQ1797bGxsrfP7+fkRGRnptaxmaMjyqc3AgQN57733GjueJf2a1p/G0lTWH5WX04iKiiIqKuqMPV5eXh6ZmZk1NtZNmTeXT3JyMrGxsSxZsoTevXsDrv39y5cv56mnnvLKYzY2d5fPoEGDKCgoYP369fTv3x+AdevWUVBQwODBg91+PKutP7UJCAigb9++LFmyhPHjx1dPX7JkCePGjav1NoMGDeKzzz6rMW3x4sX069cPf39/r+Y90xqyfGqTmppq6fWkMf2a1p/G0mTWHzOPFm4u9u/fb6SmphqPPPKIERYWZqSmphqpqalGYWFh9TydOnUy5s+fbxiGYRQWFhp33323sWbNGiM9Pd1YunSpMWjQIKNNmzaGw+Ew62l4jafLxzAM48knnzTsdrsxf/58Y8uWLcY111xjxMXFNcvlM2rUKKNHjx5GSkqKkZKSYnTv3t249NJLa8zza1l/PvjgA8Pf39+YNWuWsXXrVuPOO+80QkNDjX379hmGYRj333+/MWHChOr59+7da4SEhBh33XWXsXXrVmPWrFmGv7+/8fHHH5v1FLzK0+Xz3HPPGQsWLDB27txp/PDDD8b9999vAMa8efPMegpeVVhYWP36AhjPPvuskZqaauzfv98wDK0/ni6fprz+qLw0gokTJxrAKaelS5dWzwMYb7/9tmEYhlFcXGyMGDHCaN26teHv72+0a9fOmDhxopGRkWHOE/AyT5ePYbg+Lv3www8bsbGxRmBgoDF06FBjy5YtZz78GZCXl2dcd911Rnh4uBEeHm5cd911p3w08de0/rz88stGYmKiERAQYPTp08dYvnx59XUTJ040hg0bVmP+ZcuWGb179zYCAgKMpKQk49VXXz3Dic8sT5bPU089ZZx11llGUFCQ0bJlS+P88883Fi5caELqM+PkR3t/eZo4caJhGFp/PF0+TXn9sRnGiaOTRERERCxAH5UWERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFLUXkRERERS1F5EREREUtReRERERFL+X8ssLkwJfWL1gAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%matplotlib inline\n", - "fig, ax = plt.subplots(1,1,)\n", - "diffraction.plot(ax=ax, label=\"Unstrained Material\")\n", - "strained_diffraction.plot(ax=ax, label=\"Strained Material\")\n", - "ax.legend()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "We define a \"detector\" configuration here so that we can simulate the dataset." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA+AklEQVR4nO3de3wU9b3/8ffsbsh9N0JMkDsJNAFEQUSDcDCggEgBgSpKC9WjKIcDiqWgHA63R0tBQURu7bHYqlRATkvLRQqlXsLN2sJDQEpEAsgJxJAEQzaBECSZ3x80+2NJArvLJhuG1/Px2Mdj5zvznf1M5qG+/c58ZwzTNE0BAADghmcLdQEAAAAIDoIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAW4Qh1AfVVRUWFcnJyFBsbK8MwQl0OAACwENM0VVxcrCZNmshmC944G8GuBjk5OWrWvLmiJZ0LdTEAAMCSsrOz1axZs6Dtj2BXg9jYWEnSV59/rtikpBBXAwAArMTtdqt58+aevBEsBLsaVF5+jY2NldPpDHE1AADAioJ9uxeTJwAAACyCYAcAAGARBDsAAACLINgBAABYRMiD3eLFi5WYmCi73S7DMDRlyhSv9RUVFUpPT/esj4uL07p16666z2eeeUaGYVT5nDlzphaPBAAAILRCHuwKCwvVtm1bTZw4sdr1AwYMUEZGhiZOnKi1a9fK6XRq6NChysnJuea+9+3b5/WJi4sLcvUAAAD1h2GaphnqIioZhqGXX35Zc+bMkXRptC4sLEx9+/bVn//8Z0mXnvvicrk0YsQIvffee9Xu55lnntFbb72l6zk0t9stp8sld1aWnMnJAe8HAADgSpV5pqioKKiPVQv5iN3VbNu2TRUVFRo1apSnzel0qnHjxvrb3/52zf4Oh0N2u12JiYlatWpVbZYKAAAQcvX6AcWHDh2SJKWkpHi1x8XFKT8/v8Z+aWlpCgsLU69evZSXl6e5c+dqxIgRio+PV58+fart43a75Xa7PcvFxcXiscQAAOBGUq+DXaUrX457rUuszzzzjJ555hnP8pgxYxQbG6uf/vSn2rdvX7V9Bg0apIyMDO/fCbBeAACAUKjXwa5ypC4zM1OdOnXytBcVFcnlcvm8H4fDoZYtW151wsX69eurjNipfXv/iwYAAAiRen2PXc+ePWWz2bRixQpPW0lJiXJzc5WWlubzfioqKpSdna1bbrmlxm2cTqeaNWvm+TRt2vS6agcAAKhrIR+xy83N9boEmpmZqffff18tWrRQt27dPDNiX3rpJaWlpenFF1+UzWbTvHnzPH2Sk5OVkJCgTz/9VJLUq1cvPfjgg+revbtOnTqladOm6dy5c1WekQcAAGAlIX/cycKFC/Xiiy9WaU9OTlZWVpYqKirUu3dvbd++XRUVFXK5XPrtb3+rIUOGeLaNi4tTfHy8srKyJEl33XWX9u/fr/LychmGoYYNG+oXv/iFnn32WZ/r4nEnAPxRUSEVFIS6CgA3iuJit9q0Cf7jTkIe7Oorgh0AX1VUSHFxUnFxqCsBcGMxbq7n2AHAjaCggFAHoH4I+T12AGAlBw5It94a6ioA1HeXLsUGf78EOwAIoltvlRISQl0FgPouIqJ29sulWAAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALCLkwW7x4sVKTEyU3W6XYRiaMmWK1/qKigqlp6d71sfFxWndunXX3O+kSZMUHh4uwzAUHh6ul156qbYOAQAAoF4IebArLCxU27ZtNXHixGrXDxgwQBkZGZo4caLWrl0rp9OpoUOHKicnp8Z9vvnmm5o/f77S09P1wQcfKD09Xa+++qreeuut2joMAACAkDNM0zRDXUQlwzD08ssva86cOZIujdaFhYWpb9+++vOf/yxJcrvdcrlcGjFihN57771q99OiRQuVlpYqPz/f0xYfH6/o6GgdP37cp1rcbrecLpfcWVlyJidf55EBsLK8PCkx8dL3U6ekhITQ1gOg/qvMM0VFRXI6nUHbb8hH7K5m27Ztqqio0KhRozxtTqdTjRs31t/+9rca++Xk5Kh79+5ebT169NDJkydrrVYAAIBQc4S6gKs5dOiQJCklJcWrPS4uzms07krl5eVq2rSpV1vTpk1VXl5eYx+32y232+1ZLi4uVvDyMwAAQO2r18Guks3mPbDoy9Vjf/sMGjRIGRkZ3n18rA8AAKA+qNfBrnKkLjMzU506dfK0FxUVyeVy1djPbrcrOzvbqy0nJ0d2u73GPuvXr68yYqf27QOsHAAAoO7V63vsevbsKZvNphUrVnjaSkpKlJubq7S0tBr7NWnSRLt27fJq27lzZ5XLs5dzOp1q1qyZ53O1bQEAAOqjkAe73Nxcvf/++3r//fclXRqde//99/Xpp5/KZrN5ZsS+9NJL+uMf/6jbb79dNptN8+bN8+wjOTlZ3bp18yxPnTpV+fn56t+/vzZt2qT+/furoKBA06dPr/PjAwAAqCshf9zJwoUL9eKLL1ZpT05OVlZWlioqKtS7d29t375dFRUVcrlc+u1vf6shQ4Z4to2Li1N8fLyysrI8bRMnTtSSJUt04cIFNWjQQC+88IJeffVVn+vicScAfMXjTgD4q7YedxLyYFdfEewA+IpgB8BfN+Vz7AAAAOA7gh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAs4oYIdjk5OercubMcDocMw1BsbKzeeeedGrdfuHChDMOo8tm0aVMdVg0AAFC3HKEuwBdpaWnKy8vT66+/rvbt2+tnP/uZnnzySXXo0EF33313jf02b96s2267zbOcmppaF+UCAACERL0Pdt9++62ys7M1Y8YMjR8/XpL0wAMPKDIyUhMmTNCOHTtq7JuamqqWLVvWVakAAAAhVe8vxZ4/f16SFB0d7dXucDh04MCBq/Zt06aN7Ha7GjZsqAULFlx1W7fbrRMnTng+J0+evL7CAQAA6li9H7Fr0qSJYmJiNHv2bD3wwAO6/fbb9cILL6ikpERhYWHV9klJSdHIkSPVr18/nT17VosWLdLEiRMVFhbmGfW70qBBg5SRkeHVZgb9aAAAAGqPYZpmvc8vH330kYYOHaqioiJJl0bvbr31VuXk5KisrMynfSQmJsowDOXm5la73u12y+12e5aLi4vVrn17ubOy5ExOvv6DAGBZeXlSYuKl76dOSQkJoa0HQP3ndrvlcrlUVFQkp9MZtP3W+0uxktS7d2+dOXNGp06d0ueff66SkhKVl5fL5XL5vI877rhDhYWFNa53Op1q1qyZ59O0adNglA4AAFBn6v2l2MslJCQoISFBx44dU3Z2tn74wx/63DczM1NRUVG1WB0AAEBo3RDBbvbs2TJNUz179tSuXbs0a9YsRUdH680335QkdevWTXl5eTpy5IgkaciQIUpNTVXv3r117tw5zZ07VydPntSkSZNCeRgAAAC16oYIdgUFBVqyZIkuXrwom82mDh06aOPGjZ4RuPz8fJ0+fdqzfVlZmebPn6+5c+d6Hmg8c+ZMzZgxI1SHAAAAUOtuiMkToeB2u+V0uZg8AeCamDwBwF839eQJAAAAXBvBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFBBTsvv32WxUUFHiWd+7cqSFDhmjOnDlBKwwAAAD+cQTSqW3bturXr59Wrlyp48ePq2fPnjIMQ3/605+0f/9+rVq1Kth1AgAA4BoCGrErLCzU8OHDJUnTp09XgwYNdP78eb344otau3ZtUAsEAACAbwIKdqZpKiEhQZL00UcfKS0tTQ6HQ8OHD9eFCxeCWiAAAAB8E1Cwi4iI0Pz58/XZZ5/pxIkTeuKJJyRJhw8fls3GfAwAAIBQCCiFjR07VmvXrlVaWpoaNmyoZ599VpK0YsUKNWzYMKgFAgAAwDcBBbvXXntN+/bt08qVK5Wfn+9pf/zxx/XOO+8ErTgAAAD4LuDrptu2bdN//dd/yeVyaffu3ZKkzz77TF9//XWwagMAAIAfAgp2kyZN0vjx4xUeHq6SkhKVlJRIks6cOaOZM2cGsz4AAAD4KKBgt3TpUo0ePVpffvmlV/uQIUN0+vTpoBQGAAAA/wQU7EpLSzVq1Kgq7YmJiaqoqLjuogAAAOC/gIKdw+HQrl27qrSvXLlSDRo0uO6iAAAA4L+AXinWp08fTZ8+XY0aNZIkHTx4UGvWrNHy5cs1bNiwoBYIAAAA3ximaZqBdOzevXuVUbsePXpo+/btQSks1Nxut5wul9xZWXImJ4e6HAD1WF6elJh46fupU9K/XswDADVyu91yuVwqKiqS0+kM2n4DGrGTpJ07d6qgoECbNm1SeXm5+vfvr8aNGwetMAAAAPgn4GAnSfHx8dVOogAAAEDdC2jyxKuvvlrjuh/+8IcBFwMAAIDABRTsXnrpJd19992eBxNLUmZmphITE7Vq1aqgFQcAAADfBRTsli9frv379+vWW2/VunXrNHPmTHXo0EEXLlzQp59+GuwaAQAA4IOA7rF7+umnNXDgQKWlpemRRx6RJPXv318bN26UzRbw62cBAABwHQJOYVu3btXJkyflcFzKhllZWSooKAhaYQAAAPBPQMHuoYce0o9+9COlpKQoPz9ff/rTn3TixAk1bdpUb775ZrBrVE5Ojjp37iyHwyHDMBQbG6t33nnnqn3eeOMNRUVFyTAMhYWFacSIEUGvCwAAoD4JKNht3bpVs2bN0v79+xUXF6fBgweroKBAnTp10nPPPRfsGpWWlqbMzEy9/vrr+utf/6ouXbroySef1O7du6vdftu2bZowYYJSUlK0YcMGjRgxQqtWrdKkSZOCXhsAAEB9EdCbJw4dOqSUlJRq173xxht64YUXrruwSt9++60aNWqkGTNmaObMmZ72yMhIdenSRTt27KjS595779XevXtVVlbmaWvfvr2ys7NVXFzs0+/y5gkAvuLNEwD8Va/ePFEZ6tavX6/9+/ertLQ0aAVd6fz585Kk6Ohor3aHw6EDBw5U2+fLL79Uu3btvNoGDhyoV199VefOnVNUVFSVPm63W26327NcXFys4P2ZAQAAal9Awe6TTz5R//79PaHrSrNnz76uoi7XpEkTxcTEaPbs2XrggQd0++2364UXXlBJSYnCwsKq7VNaWqqEK/6XOSkpSZL01VdfqVOnTlX6DBo0SBkZGV5tAb1EFwAAIEQCusdu+PDhiouL08GDByVJGzZs0NKlSxUdHa3FixcHtUBJWrdunSSpS5cuCg8P14oVK9SqVSsZhlFjnyvXVVRUSFKNj2NZv369srOzPZ/KYwMAALhRBDRil5+frzVr1ngud9rtdo0dO1alpaWaPHmyxo0bF9Qie/furTNnzigvL085OTnq1KmTWrRoIZfLVe32kZGROnXqlFfb119/LUlq06ZNtX2cTqfXNe7LL8sCAADcCAJ+jl18fLykS/e6ZWZmSpI6d+5cq/fbJSQkqFOnTjp27Jiys7PVt2/fardLTU311FRp48aNiomJqfb+OgAAACsIKNjFxsZqy5YtkqSmTZtqzpw5+uUvf6nRo0crPDw8qAVKl+7Z+/nPf65t27Zp7ty5at++vaKjoz3PzOvWrZuSL5u5Om/ePF24cEFdunTRxo0b9dRTT+ngwYMaM2ZM0GsDAACoLwK6FDt58mQVFRVJkt5++23169dPY8eOlWEYmjdvXlALlKSCggItWbJEFy9elM1mU4cOHbRx40bP6Ft+fr5Onz7t2b5nz55auHChpkyZooEDB8rhcOiJJ56oldoAAADqi4CeY1edI0eOqHXr1pZ5VyzPsQPgK55jB8Bf9eo5dtVJJvwAAACElDWG1wAAAOB/sDt37pxuueUWz+QJAAAA1A9+B7uoqCgVFRVZ5l46AAAAqwgond11112aNm1asGsBAADAdQho8sSFCxe0Z88eRUVFqWXLllUe+rtnz56gFAcAAADfBRTssrOzFRcXJ0nKzc0NZj0AAAAIUEDBrrCwMNh1AAAA4DoxAwIAAMAiAg52S5YsUevWrRUbG6vdu3dLksaMGaNly5YFrTgAAAD4LqBgN2nSJI0fP17h4eEqKSlRSUmJJOnMmTOaOXNmMOsDAACAjwIKdkuXLtXo0aP15ZdferUPGTJEp0+fDkphAAAA8E9Awa60tFSjRo2q0p6YmKiKiorrLgoAAAD+CyjYORwO7dq1q0r7ypUr1aBBg+suCgAAAP4L6HEnffr00fTp09WoUSNJ0sGDB7VmzRotX75cw4YNC2qBAAAA8I1hmqYZSMfu3btXGbXr0aOHtm/fHpTCQs3tdsvpcsmdlSVncnKoywFQj+XlSYmJl76fOiUlJIS2HgD1n9vtlsvlUlFRkZxOZ9D2G9CInSTt3LlTBQUF2rRpk8rLy9W/f381btw4aIUBAADAPwEHO0mKj4+vdhIFAAAA6l7AwW7evHn64x//qNOnT+vKq7lfffXVdRcGAAAA/wQU7Hr16qVPPvlE0dHRio2NlWEYwa4LAAAAfgoo2G3btk3PPfecfvWrXwW7HgAAAAQooOfYmaapxx57LNi1AAAA4DoEFOy6du2q2bNnB7sWAAAAXAefL8V26dLF872iokIff/yx4uLi1KJFC4WFhXltu2fPnuBVCAAAAJ/4HOyOHj3qtexyuSRJ2dnZwa0IAAAAAfE52BUWFnq+f/rpp+ratascDu/uFRUV+uyzz4JXHQAAAHwW0D129913nw4dOlSl/ciRI7rvvvuuuygAAAD4L6BgV5O8vLxg7g4AAAB+8Os5dpdPoHj00UcVGRnpWS4vL1dWVpZiY2ODVx0AAAB85lewu3wCxYkTJ2S32z3LdrtdzZs316JFi4JXHQAAAHzmV7CrnEDRtm1bffzxx2rWrFmtFAUAAAD/BXSP3eHDh1VeXq6BAwcqJSVFqampeuSRR/R///d/wa4PAAAAPgoo2L377rtq3bq1Nm3apOLiYrndbm3cuFGtWrXSe++9F+waAQAA4IOAgt348eOVnJyss2fPKicnRzk5OSopKVFSUpLGjh0b7BoBAADgg4CCndvt1htvvKGIiAhPW0REhBYsWCC32x204iTp/Pnz6tGjh8LCwmQYhsLCwtS7d29dvHixxj4LFy6UYRhVPps2bQpqbQAAAPVJQMHOMAzt27evSvsXX3whwzCuu6jLDRw4ULt27dLUqVO1fft2Pf/88/r444/12GOPXbPv5s2btW/fPs/nwQcfDGptAAAA9Ylfs2IrdezYUdOmTVNubq5GjBghm82mFStWaNmyZbrzzjuDWuD+/fvVpk0bzZw5U5LUo0cPrV69Wnv37r1m39TUVLVs2TKo9QAAANRXAY3Y7dy5U7fffrsWLVqktLQ03XPPPVq8eLHuuOMOZWRkBLXAzp076+jRo9qyZYskac2aNfrmm280YMCAa/Zt06aN7Ha7GjZsqAULFgS1LgAAgPomoBG7mJgY7d27VwUFBcrIyJBpmkpPT1d8fHyw69OmTZvUvXt3PfTQQ562vn37avHixTX2SUlJ0ciRI9WvXz+dPXtWixYt0sSJExUWFqbx48dX28ftdnvdH1hcXCxn8A4DAACg1hmmaZqhLuJqnn/+eS1btkxjx47V/fffr61bt+rNN9/U008/rV//+tc+7ycxMVGGYSg3N7fa9enp6VVGG01J7qwsOZOTr+cQAFhcXp6UmHjp+6lTUkJCaOsBUP+53W65XC4VFRXJ6QzeUFK9D3YOh0NDhw7VmjVrPG0PPvigtm/frrKyMp/306dPH23btq3GPtWN2LVr355gB+CaCHYA/FVbwS6gS7F1qaKiwuudtNKl99L6m0czMzMVFRVV43qn0+n1hw32Y1sAAABqW70PdklJSVqzZo1SUlL04IMPasOGDdq6dau6du3q2aZbt27Ky8vTkSNHJElDhgxRamqqevfurXPnzmnu3Lk6efKkJk2aFKrDAAAAqHU+X4rt0qWLzzvds2dPwAVdKScnRwMGDNAXX3yh8vJyORwO3Xvvvdq8ebNiYmIkXZr9WlBQoDNnzkiSHn74YW3dulUXL16UYRiKjY3VT37yE82YMcPn33W73XK6XFyKBXBNXIoF4K+QX4o9evRo0H7UH02aNNHnn39+1W2ysrK8lnnDBAAAuBn5HOwKCwtrsw4AAABcJ5+Dna+XYg3D0O7duwMuCAAAAIGp95diAQAA4BsuxQIAAFhEQO+KBQAAQP1zXc+xW79+vfbv36/S0lKv9tmzZ19XUQAAAPBfQMHuk08+Uf/+/XX+/Plq1xPsAAAA6l5Al2KHDx+uuLg4HTx4UJK0YcMGLV26VNHR0Vq8eHFQCwQAAIBvAhqxy8/P15o1a9SuXTtJl97dOnbsWJWWlmry5MkaN25cUIsEAADAtQU8eSI+Pl6S5HA4lJmZKUnq3LlzlfvtAAAAUDcCGrGLjY3Vli1blJ6erqZNm2rOnDmKjIzU/PnzFR4eHuwaAQAA4IOARuwmT56s8vJySdLbb78tt9utsWPH6tixY0ycAAAACJGARuymTp3q+Z6enq6ysjIdOXJErVu3ls3Go/EAAABC4bqeY3e55OTkYO0KAAAAAWB4DQAAwCL8Dnbnzp3TLbfcoi1bttRGPQAAAAiQ38EuKipKRUVF3EsHAABQzwSUzu666y5NmzYt2LUAAADgOgQ0eeLChQvas2ePoqKi1LJlS0VFRXmt37NnT1CKAwAAgO8CCnbZ2dmKi4uTJOXm5gazHgAAAAQooGBXWFgY7DoAAABwnQKeAbFkyRK1bt1asbGx2r17tyRpzJgxWrZsWdCKAwAAgO8CCnaTJk3S+PHjFR4erpKSEpWUlEiSzpw5o5kzZwazPgAAAPgooGC3dOlSjR49Wl9++aVX+5AhQ3T69OmgFAYAAAD/BBTsSktLNWrUqCrtiYmJqqiouO6iAAAA4L+Agp3D4dCuXbuqtK9cuVINGjS47qIAAADgv4Bmxfbp00fTp09Xo0aNJEkHDx7UmjVrtHz5cg0bNiyoBQIAAMA3hmmaZiAdu3fvXmXUrkePHtq+fXtQCgs1t9stp8sld1aWnMnJoS4HQD2WlyclJl76fuqUlJAQ2noA1H9ut1sul0tFRUVyOp1B229AI3aStHPnThUUFGjTpk0qLy9X//791bhx46AVBgAAAP8EHOwkKT4+vtpJFAAAAKh7AU2eaNu2rebNm8cMWAAAgHokoGBXXFysyZMnKywsTHfffbfef//9YNcFAAAAPwUU7HJzc/X111/riSeeUFZWlh5//HGFh4erb9++2rFjR7BrBAAAgA8Cfldsy5Yt9bvf/U5nzpzR3//+dz344IPKyMjQv/3bvwWzPgAAAPgo4GBX6dy5c1q7dq327dunCxcuyGa77l0CAAAgAAGnsAULFig1NVUxMTGaO3euIiMj9corr6isrCyY9en8+fPq0aOHwsLCZBiGwsLC1Lt3b128ePGq/d544w1FRUV5+owYMSKodQEAANQ3AQU7u92uiRMnqqioSBMmTFBhYaEOHz6syZMny+G4rieoVDFw4EDt2rVLU6dO1fbt2/X888/r448/1mOPPVZjn23btmnChAlKSUnRhg0bNGLECK1atUqTJk0Kam0AAAD1SUBvnvjRj36kn/3sZ2rdunVt1OQlMTFRLpdLX331laetadOmCg8P19GjR6vtc++992rv3r1eo4ft27dXdna2iouLffpd3jwBwFe8eQKAv2rrzRMBjdj97ne/k81m08CBA5WSkqLU1FQNHjxY//d//xe0wip17txZR48e1ZYtWyRJa9as0TfffKMBAwbU2OfLL79Uu3btvNoGDhyokpISnTt3rto+brdbJ06c8HxOnjwZvIMAAACoAwEFu3fffVetW7fWpk2bVFxcLLfbrQ8++ECtWrXSe++9F9QCN23apK5du+qhhx6SYRgaPny4+vTpo8WLF9fYp7S0VAlX/C9zUlKSJHmN/F1u0KBBat68uefTvn374B0EAABAHQgo2I0fP17Jyck6e/ascnJylJOTo5KSEiUlJWns2LFBLXDChAn6xz/+ofHjx+v3v/+9nnvuOW3dulWjR4++aj/DMLyWK9+SUdOs3fXr1ys7O9vzOXjwYHAOAAAAoI4ENNPB7XZr1apVioiI8LRFRERowYIFGjx4cNCKk6Rly5Zp6NChWrRokSRp2LBhysrK0rvvvqtf//rX1faJjIzUqVOnvNq+/vprSVKbNm2q7eN0Or2ucbvd7iBUDwAAUHcCGrEzDEP79u2r0v7FF19UGSm7XhUVFbLb7V5tdrtdV5vzkZqaqszMTK+2jRs3KiYmRlFRUUGtDwAAoL4IaMSuY8eOmjZtmnJzczVixAjZbDatWLFCy5Yt05133hnUApOSkrRmzRqlpKTowQcf1IYNG7R161Z17drVs023bt2Ul5enI0eOSJLmzZun+++/X126dNGsWbP0hz/8QQcPHtRPf/rToNYGAABQnwT0uJOSkhL16NGjyqhd586d9cknnwR12m5OTo4GDBigL774QuXl5XI4HLr33nu1efNmxcTESLp0ebWgoEBnzpzx9HvjjTc0ZcoUlZaWyuFw6NFHH9XKlSt9/l0edwLAVzzuBIC/autxJwEFu0oFBQXKyMiQaZpKT09XfHx80AoLNYIdAF8R7AD4q7aC3XW9JiI+Pl7Dhg0LVi0AAAC4DgG/KxYAAAD1C8EOAADAIq7rUuz69eu1f/9+lZaWerXPnj37uooCAACA/wIKdp988on69++v8+fPV7ueYAcAAFD3AroUO3z4cMXFxXleu7VhwwYtXbpU0dHRV32HKwAAAGpPQCN2+fn5WrNmjdq1ayfp0psgxo4dq9LSUk2ePFnjxo0LapEAAAC4toAnT1Q+s87hcHhe39W5c+cq99sBAACgbgQ0YhcbG6stW7YoPT1dTZs21Zw5cxQZGan58+crPDw82DUCAADABwGN2E2ePFnl5eWSpLfffltut1tjx47VsWPHmDgBAAAQIgGN2PXu3Vtdu3aVJKWnp6usrExHjhxR69at9dlnnwW1QAAAAPgmoBG7++67T4cOHfJqS05O1pEjR3TfffcFpTAAAAD4J6hvnsjLywvm7gAAAOAHvy7FdunSxfP90UcfVWRkpGe5vLxcWVlZio2NDV51AAAA8Jlfwe7o0aOe7ydOnJDdbvcs2+12NW/eXIsWLQpedQAAAPCZX8GusLBQktS2bVt9/PHHatasWa0UBQAAAP8FNCv28OHDwa4DAAAA1ymgYFdp/fr12r9/f5W3TfAsOwAAgLoXULD75JNP1L9/f50/f77a9QQ7AACAuhfQ406GDx+uuLg4HTx4UJK0YcMGLV26VNHR0Vq8eHFQCwQAAIBvAhqxy8/P15o1a9SuXTtJl2bEjh07VqWlpZo8ebLGjRsX1CIBAABwbQE/oDg+Pl6S5HA4lJmZKUnq3LlzlfvtAAAAUDcCGrGLjY3Vli1blJ6erqZNm2rOnDmKjIzU/PnzFR4eHuwaAQAA4IOARuwmT56s8vJySdLbb78tt9utsWPH6tixY0ycAAAACJGARuymTp3q+Z6enq6ysjIdOXJErVu3ls0W1NfPAgAAwEfX9Ry7yyUnJwdrVwAAAAiAz8GuS5cuPu90z549ARUDAACAwPkc7I4ePeq1fObMGUlSZGSkJHlmw8bFxQWnMgAAAPjF5xviCgsLPZ+ePXsqMTFRR48e1blz53Tu3DkdPXpUjRs3Vo8ePWqzXgAAANQgoHvsNm7cqLVr16p169aettatW2vZsmX6wQ9+ELTiAAAA4LuAprBWVFQoKyurSvvRo0dVUVFx3UUBAADAfwGN2CUlJemll15STk6OHn/8cUnS6tWrtWjRIiUlJQW1QAAAAPgmoGD32WefKT09XQsWLNCCBQs87R06dNBHH30UtOIAAADgu4CCXXx8vA4cOKC8vDxt27ZNFRUVSk9PV0JCQrDrAwAAgI/8usfulltu0fHjxz3LCQkJ+sEPfqDHHntMCQkJOnTokMLCwoJepMPhkGEYVT4dO3asdvuFCxdWu/2mTZuCXhsAAEB94deI3ZkzZ1RSUuJZdrvdcjqdnuXvvvtOFy9eDF51//LFF1/ou+++8yxv3rxZL730kp5++umr9tu8ebNuu+02z3JqamrQawMAAKgvAn6l2B//+Ec9+uijSktL07Zt22r1HbHt2rXzWv7xj38sh8Oh559//qr9UlNT1bJly1qrCwAAoD4JKI0tWbJEw4YNU8uWLbVr1y41atRI//znP4NdW7VKSkq0b98+9erV65phsk2bNrLb7WrYsKHXJI/quN1unThxwvM5efJkMMsGAACodX6P2P3iF7/QypUrNWjQIK1bt067d+9W7969dccdd2jcuHG1UaOXadOmyTRNzZ07t8ZtUlJSNHLkSPXr109nz57VokWLNHHiRIWFhWn8+PHV9hk0aJAyMjK82sygVg4AAFC7DNM0fc4vhmFIkv7jP/5Dy5Yt87RfuHBB9913n/bs2SNJ8mOXfouPj5fdbtepU6f86peYmCjDMJSbm1vterfbLbfb7VkuLi5Wu/bt5c7KkjM5+bpqBmBteXlSYuKl76dOSTwgAMC1uN1uuVwuFRUVec1XuF5+XYpt06aN5syZ4xXqJKlBgwbavXu3Xn75ZbVp0yZoxV1p586dOn369DUnTVTnjjvuUGFhYY3rnU6nmjVr5vk0bdr0ekoFAACoc36N2IVaenq6tm/frrNnzyoiIsKvvs2aNdPZs2evGu4u53a75XS5GLEDcE2M2AHwV22N2AU8K7auXbx4UTt27FDXrl2rhLpu3bopLy9PR44ckSQNGTJEqamp6t27t86dO6e5c+fq5MmTmjRpUihKBwAAqBM3TLCbN2+eysvLNWvWrCrr8vPzdfr0ac9yWVmZ5s+fr7lz58owDMXGxmrmzJmaMWNGXZYMAABQp26oS7F1iUuxAHzFpVgA/qoXkycAAABQfxHsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALIJgBwAAYBEEOwAAAIsg2AEAAFgEwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARRDsAAAALOKGCHYOh0OGYVT5dOzYscY+b7zxhqKiomQYhsLCwjRixIg6rBgAAKDu3RDB7osvvtC+ffs8n1deeUWS9PTTT1e7/bZt2zRhwgSlpKRow4YNGjFihFatWqVJkybVZdkAAAB1yjBN0wx1Ef7q3LmzDhw4oLKyMtlsVbPpvffeq71796qsrMzT1r59e2VnZ6u4uNin33C73XK6XHJnZcmZnBy02gFYT16elJh46fupU1JCQmjrAVD/ud1uuVwuFRUVyel0Bm2/N8SI3eVKSkq0b98+9erVq9pQJ0lffvml2rVr59U2cOBAlZSU6Ny5c3VRJgAAQJ1zhLoAf02bNk2maWru3Lk1blNaWqqEK/6XOSkpSZL01VdfqVOnTlX6uN1uud1uz3JxcbGCl58BAABq3w0X7FasWKGEhATdddddV93OMAyv5YqKCkmqcZRv0KBBysjI8Gq74a5RAwCAm9oNFex27typ06dPa8qUKVfdLjIyUqdOnfJq+/rrryVJbdq0qbbP+vXrq4zYqX376ysYAACgDt1QwW7q1Kmy2WyaPn36VbdLTU3V3r17vdo2btyomJgYRUVFVdvH6XR63bx4ecgDAAC4EdwwkycuXryoHTt2qGvXroqIiPBa161bNyVfNnN13rx5unDhgrp06aKNGzfqqaee0sGDBzVmzJi6LhsAAKDO3DAjdvPmzVN5eblmzZpVZV1+fr5Onz7tWe7Zs6cWLlyoKVOmaODAgXI4HHriiSc0b968uiwZAACgTt2Qz7GrCzzHDoCveI4dAH/xHDsAAABcFcEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFkGwAwAAsAiCHQAAgEUQ7AAAACyCYAcAAGARBDsAAACLINgBAABYBMEOAADAIgh2AAAAFnFDBLvdu3erdevWstlsMgxDkZGR+t3vflfj9gsXLpRhGFU+mzZtqsOqAQAA6pYj1AVcy7Fjx5SWlqbWrVvrrbfeUtu2bfXpp5+qSZMm1+y7efNm3XbbbZ7l1NTU2iwVAAAgpOp9sHviiScUHR2tw4cPe9p69OjhU9/U1FS1bNmytkoDAACoV+r9pdjPP/9cycnJatasmWw2m6KiojRq1Cif+rZp00Z2u10NGzbUggULrrqt2+3WiRMnPJ+TJ08Go3wAAIA6U+9H7C5cuKDPP/9c3bp107x587Rx40atWLFCERERevPNN6vtk5KSopEjR6pfv346e/asFi1apIkTJyosLEzjx4+vts+gQYOUkZHh1WYG/WgAAABqj2GaZr3OL4ZhKCYmRsXFxZ62O++8U0ePHvVqu5bExEQZhqHc3Nxq17vdbrndbs9ycXGx2rVvL3dWlpzJyYEfAADLy8uTEhMvfT91SkpICG09AOo/t9stl8uloqIiOZ3OoO233o/Y2e32KhMl2rdvrwMHDvi1nzvuuEPbtm2rcb3T6fT6w14e8gAAAG4E9f4eu2bNmlUZZTt06JCioqL82k9mZqbffQAAAG4k9T7YzZo1S263W3379tWHH36o//zP/9Tnn3+ukSNHerbp1q2bki+7XDpkyBBNmTJFW7du1bp169StWzedPHlSo0ePDsUhAAAA1Il6fyn2xz/+sY4cOaJXX31VW7duVYMGDTRy5EgtW7bMs01+fr5Onz7tWS4rK9P8+fM1d+5cGYah2NhYzZw5UzNmzAjFIQAAANSJej95IlTcbrecLheTJwBcE5MnAPirtiZP1PtLsQAAAPANwQ4AAMAiCHYAAAAWQbADAACwCIIdAACARdT7x52EWkGBofOxoa4CQH2Wnx/qCgDgEoLdNXRMS9S5UBcBAADgAy7FAkCQxMZK8fGhrgLAzYwRu2v44m+nFNM6KdRlALgBxMdLNv53GUAIEeyuIT7elJOnyAMAgBsA/28JAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFOEJdQH1lmqYkqbi4WHK7Q1wNAACwEve/skVl3ggWgl0NcnJyFCdJnTuHuBIAAGBVOTk5crlcQdsfwa4G0dHRkqR//vOfatasWYirwbWcPHlS7du318GDB9W0adNQl4Or4FzdWDhfNw7O1Y3lxIkT6tChgydvBAvBrgY226XbD51Op5xOZ4irwbVUDmnHxsZyvuo5ztWNhfN14+Bc3Vgqz1Fl3ggWJk8AAABYBMEOAADAIgh2NXA6nbr//vsZzr5BcL5uHJyrGwvn68bBubqx1Nb5Msxgz7MFAABASDBiBwAAYBEEOwAAAIsg2AEAAFjETR3sHn/8cYWFhckwDEVFRWnJkiVX3f6NN95QVFSUDMNQWFiYRowYUUeVQvLvfE2ePFmNGjWSzWaTYRiKjY3V7Nmz67Dam5u//2xV+uUvfynDMBQZGVnLFeJy/p4vt9ut7t27y+FweP59+NRTT9VRtTc3f8/V2LFjFRkZKcMwZLfb1bZtWx0+fLiOqr15LV68WImJibLb7TIMQ1OmTLlmn6BlDPMm9fzzz5uSzFGjRpkbNmwwO3XqZEoyd+3aVe32GRkZpiSzU6dO5oYNG8xRo0aZksyf/vSndVz5zcnf89WpUyezf//+5ttvv23+5S9/Mbt162ZKMleuXFnHld98/D1XlY4fP246HA6zUaNGZkRERB1Vi0DOV+PGjc3o6GjzlVdeMbdv327+5je/MX/1q1/VYdU3J3/P1dKlS01J5tChQ82MjAxz6dKlZnh4uHnbbbfVceU3n1mzZpndu3c3J02aZEoyX3755atuH8yMcdMGu+joaLN9+/ZebQ0aNDDT0tKq3f6ee+4xGzRo4NXWrl07MyYmptZqxP/n7/mqTnh4uNmrV69gl4YrBHqumjdvbvbo0cO8//77CXZ1yN/z9bOf/cyUZGZlZdVFebiMv+dqwIABpsPh8GobNmyYabfba61GVOVLsAtmxrgpL8WWlJTo7Nmz+v73v+/V3q5dO2VmZlbb58svv1S7du282gYOHKiSkhKdO3eu1mpFYOfrShcvXtTFixfVqFGj2igR/xLoufr3f/93nT59Wlu3bq3tEnGZQM7X6tWrdcstt+iHP/yh7Ha7GjRooLvvvlvffvttXZR80wrkXA0cOFAXL17UrFmzVFFRoQMHDuivf/2rvve979VFyfBDMDPGTRnsvvrqK0lSUlKSV3tCQkKNf8DS0lIlJCR4tVX2r9wfakcg5+tKgwcPVkVFhWbOnBns8nCZQM7V1q1b9fbbb2vt2rWKiIio9Rrx/wVyvnJzc1VYWKhjx45p+fLlmjp1qvbu3au0tLRar/dmFsi5eu655/STn/xEM2fOlN1uV8eOHRUZGandu3fXer3wTzAzhiNoVd2ADMPwWjZNs0rb1bavqKiQFPwX+KJ6/p6vSuPHj9emTZv0yiuvqEOHDrVVHi7j67m6cOGCHnnkET3++OPq169fXZWHK/jzz5b5r2fa/+Mf/1CLFi0kSWfPntW8efP07bffqmHDhrVb7E3On3O1fv16LVy4UA8//LCeeuopHTp0SD//+c/VqVMnBiTqoWBljJsykVQOQx85csSrPT8/v8bZeJGRkTp16pRX29dffy1JatOmTfCLhEcg56vSCy+8oCVLlmjGjBmaPHlyrdWIS/w9V998843OnTunVatWyTAMGYahjIwMnT9/XoZh6LXXXquTum9WgfyzFRcXJ4fD4Ql1ktSzZ09J0p49e2qpUgRyriZMmKDbbrtNH3zwgX7wgx9o6tSpeu2113T48GHt3bu3tkuGH4KZMW7KYBcTE6Po6Gh98MEHXu2ZmZlVrnFXSk1NrXIfw8aNGxUTE6OoqKhaqxWBnS/p0kjdokWL9PLLL3MJto74e66aNm2qtWvXen06dOigBg0aaO3atRo5cmRdlX5TCuSfrW7duunixYvKzc31tO3atUuS1KVLl9or9iYXyLkqKyurMtrjcFy6UFc5GoT6IagZw+/pFhZROW38ySefNDds2GB27tzZlGTu2LHDNE3TTEtLM5OSkjzbV05Fvuuuu8wNGzaYTz75JI87qUP+nq9x48aZkszhw4eb+/bt83yOHz8eqkO4afh7rq7ErNi65e/5+uabb0y73W42bdrUXLdunblo0SIzLCzMTElJCdUh3DT8PVdPP/20Kcl8/PHHzY8//thctmyZGRUVZUZHR4fqEG4a33zzjbl69Wpz9erVpiRz8ODB5urVqz2PpqnNjHHTBjvTNM3hw4ebdrvdlGRGRkaaixYt8qxLTk42XS6X1/YLFy40IyMjTUmmw+Ewn3jiiTqu+Obmz/lyuVympCqf5OTkEFR+8/H3n63LEezqnr/n64MPPjAbNmxoSjLtdrvZpUsX8/Tp03Vc9c3J33M1bNgwMzw83JRk2mw2s1WrVuY//vGPOq765vP6669f9b9BtZkxDNP8152wAAAAuKHdlPfYAQAAWBHBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAUAQPfPMMzIMo1b2HRcXp86dO9fKvuvj7wLwH8EOQNDVFASmTJlSa6HnRnLs2DElJSXJMAwZhqGkpCQdP37cs37hwoUyDMOrLZT27NlT5eXzAOonR6gLAICbzT333KPi4mL9z//8jyTp+eef1z333KNTp06FuLLqJScnh7oEAD5ixA5AyKSnpysyMlJjxoyRw+GQYRhq0aKFcnJyPNvExcXpzjvv1D333CObzSa73a709HSv/QwePFgREREyDEMOh0O33367cnNzPesrL49Onz5dDRo0kGEYatasmfLy8jR69Gg5HA7ZbDbdcccdunDhgqdfSUmJ7rnnHtntdhmGoZiYGC1cuNDrt5955hlP7U2aNLlmONu4caMKCgq0dOlSPfvss3r22We1ZMkS5eXl6c9//rN27NihF198UZLUqlUrGYahNm3aePpXVFRc9W9xpXfeeUeNGjWSzWaTYRiKi4vTe++951lfOTq4ZMkST9vAgQNls9m0d+9ezzm4fAT28ccf9/wdbTabmjVrdtUaANQhEwCCzOVymZ06darS/vLLL5uX/2vn/vvvNyWZTZo0MdeuXWsuXrzYtNls5n333ee1L0lmenq6+Ze//MUcPXq0KcmcM2eOZ5tHHnnEfO2118yMjAxz/vz5ZoMGDcwOHTp41j/99NOmJLNhw4bmypUrzUWLFpmGYZiNGjUymzdvbq5bt86cNm2aKcl8/vnnPf1atmxpxsbGmosXLzY//PBDc8CAAaYk8y9/+Ytpmqa5fPlyU5LZr18/c/PmzebQoUNNwzDMq/2r9cknn6x2vSTzqaeeMsvKysxJkyaZkszNmzeb+/btM48fP+7z3+JK8+fPN8eMGWNu2LDB3LBhg/m9733PtNls5smTJz3bdO3a1bTb7ebx48fN999/35RkTp482escVJ7Pd955x5Rkjhs3ztyxY4e5cuVKc+jQoTX+PoC6RbADEHT+BrsrQ0Z0dLTXvpxOp9d+oqOjzXvvvbfG33/xxRdNwzA8y5XB7sMPP/S0tWvXzpRkfvPNN562Ro0ame3atTNN0zQ//PBDU5K5Z88er33fcsstZrdu3UzTvBT84uPjvdY3b978qsGuT58+ZlhYWJX2sLAws2/fvqZpmubrr79uSjK//vprr20C+VtcqayszJRkTps2zdNWXFxsRkZGms2bNzfDw8PNlJSUKr9beT4rQ+fl5wxA/cGlWAAhFR4eriZNmniWmzRporKyMq9tWrRo4bUcGxurb7/91rO8YMECNWrUyHPJ9PXXX5dpmsrLy/Pq17t3b8/3W2+9VeHh4WrcuLGnzeVy6cyZM5IuXTKVpC5dungmORiGocLCQp04cUKSlJeXp44dO3r9xt133+3vn8DDl4kl1/pbXOmf//yn2rdv77l0Gh4eLkn66quvPNvExMRo9erVys7OVnl5ubZt21bj/iZMmKCIiAg1a9ZMSUlJGjt2rAoKCq5ZN4C6weQJAEEXERGhkpKSKu35+flV2q4MM4ZhyDRNrzaHo+q/qioqKiRJO3fu1MSJE9W5c2e98sorat68uVavXq23335bpaWlNdZYGdRq+u3y8nJJ0qZNm9SgQQOv7W699VZJqlKnL5o2barvvvuuSvt3333nFXBrcrW/RXV69eqls2fPaurUqerUqZNiYmLUp0+fKuH5D3/4g6RLx33s2DElJCRUu78mTZqosLBQixYt0u9//3v9+te/1vLly3X48GG1bNnymvUDqF2M2AEIuhYtWig7O7tK+2effabo6Oig/taf/vQnSdLf//53PfPMM+rXr1+1v+2vhx9+WJJ05MgRPfDAA16fO+64Q5KUmJioAwcOePXbs2fPVfc7bNgwSdJvf/tbT9tbb70lSXr00UclSZGRkZLkNZEjUPn5+Ro5cqRmzJihwYMHKyYmpkog/eijj/Tuu+/qqaeeUqNGjfTQQw/p4sWLNe4zIiJCkydP1t///nedPHlS3333nZYuXXrdtQK4fgQ7AEG3YMEClZWVqWPHjlqzZo22bNmixx57TAcOHNCzzz4b1N+qvPT52GOP6ZNPPtGYMWP08ccfX/d++/Xrp1atWunFF1/U5MmTtW3bNr3zzjvq37+/Zs2aJUn67//+b+Xn5+vhhx/Wli1b9Oijj14zVH7/+99XfHy8xo4dq+XLl2v58uUaN26cEhIS1L9/f0mXLv9K0quvvqrMzEyvGb7+ioyM1P/+7/9q48aNeuutt9S3b1+v9RcuXNDgwYPVpEkT/eY3v9GHH36ooqIiDR48uNr9TZ8+XcOGDdP777+vnTt36oUXXpAkde/ePeAaAQRRSO/wA2BZK1asMBs1auSZJRoVFWWOHz/ea5v777/fjIiI8Gp75JFHTLvd7lmubiJG48aNzeTkZM/y4MGDTZvNZkoyGzVqZD733HNekw8qJ09c67eTk5PNxo0be5bPnj1r9uzZ03Q4HKYk02azmbfddpv5+9//3rPNk08+adrtdlOSmZiYaH7/+9+/6uQJ0zTNrKwss1WrVqYkU5LZqlWrKhMlevfu7TmmymP15W9xpZUrV5pRUVGmJDMsLMz8yU9+YtrtdvORRx4xTdM0e/XqZdpsNvOrr77y9JkyZYopyVy9enWV3126dKnpcrk85zUiIsKcMGHCVY8XQN0xTDOAm0QAAABQ73ApFgAAwCIIdgAAABZBsAMAALAIgh0AAIBFEOwAAAAsgmAHAABgEQQ7AAAAiyDYAQAAWATBDgAAwCIIdgAAABZBsAMAALAIgh0AAIBF/D/i10CG+1SAugAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAI7CAYAAAAwBuUoAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/KElEQVR4nO3deVxU9f7H8feAqIOAayjuikmglluZZi6tZHpzyT0XtEXt4nqlvL9MLc1MLfdWE/W6pm1ilnrdKqlcswRT0RJ3pQTBBZH5/cFl8ggqwzmIg6/n4zEPnO+cOd/PcK/Xz31/v3OOzeFwOAQAAADLeOR3AQAAAAUNDRYAAIDFaLAAAAAsRoMFAABgMRosAAAAi9FgAQAAWIwGCwAAwGI0WAAAABajwQIAALAYDRYAAIDFaLAAAECBNX36dJUtW1aenp6y2WwaMWLEDd8zdepUeXt7y2azycvLS926dXN5XhosAABQYP3111+68847NWzYsBwdv2nTJg0ePFhBQUFasWKFunXrpkWLFmn48OEuzWu7JW72/NBD0vffSykpUqFCGWMDB0offihduCB5eEh33y2tWiWVK3f9cx08KFWvLr38sjR+fN7XDgAA3ILNZtPLL7+s8dfpDxo1aqSdO3fq4sWLzrGQkBDFx8fr7NmzOZ6rkKlKrbB9u7R+vTR06N/N1YAB0rvvSkFB0vPPS9u2SQsXSrVqSQkJ1z9ftWpSixbS5MnS//2f5OOT5x8BAIDb2YULF5Samppvc/n5+cnPz8+S8+/Zs0fBwcGGsTZt2uitt97SuXPn5O3tnaPz5H+D1b9/RkI1YULG89RU6f33pdKlpT17/j6uRAlp1izptdekV1+9/jmnT5fq1JFeekmaOTPPSgcA4HZ34cIFVatWTcePH78p83l5eenSpUuGsebNm2vDhg2WnP/8+fPy9/c3jFWvXl2StHfvXtWtWzdH58nfBis5WdqyRWrY8O/0avZsKT1dunpD2cSJGQ3WokU3brBq15buuEP6z39osAAAyEOpqak6fvy44uPjLUuRriUpKUmVKlVSTEyMfH19neNWz2uz2QzP09PTJUkeHjnfup6/DVZkpORwSK1b/z323XcZPx95xHist3fG4/DhnJ27YcOMPVt//CFVqWJJuQAAIHtWLtPdSIUKFfJsLrvdrhMnThjGfv/9d0lSjRo1cnye/P0W4VdfZfxs3/7vsVOnMn5WrZr1eLtdumLT2XW1aJHxc/783FYHAAByyOFw3JRHXrvrrrsUGxtrGIuKipKPj0+O919J+d1gHTuW8bNmzayvXSuGuyq2u6b/rZdq/37X6wIAAAXC8ePHtWTJEi1ZskSSFBsbqyVLlig6OlqS1LhxYwUGBjqPnzhxolJTU9WgQQNFRUUpLCxMMTEx6tevn0vz5u8S4YULGT8LF/577I47Mn4eOJCxl+pK588bj72ezLXZlBRzNQIAgBu6GQlTbs6/ePFiDRkyxPn8iy++0BdffKHAwEDt379fp06dUsIVVyho1qyZpkyZohEjRqhNmzYqVKiQunbtqokTJ7o0b/4mWKVKZfw8efLvsWbNMn7+97/GYy9ckM6dkypWzNm54+MzfgYEmKsRAAC4rcGDB2e71Lj/fytc+/fv15kzZwzvGTRokM6dOyeHw6FLly5p4cKFLs+bvw1WnToZPzdt+nssLCxjefDqDxMRkfGze/ecnXvHjoyfmQ0bAADIMwVlD5ZV8rfBCgvL+Pn553+PFS6ccXHR06el4GBpyhSpZ09pxoyMxOuVV4znsNkyrpF1te++y3jtyg30AAAAN0H+7sFq1Ejy85NWrzaOv/tuxnWxPvpIGjLk71vlfP218bjMi5oVL24cT0+Xdu/OSMhcuGYFAADInVt1D1Z+yf/u4/nnMy7NsHWrcXz69IxN7Q6HdPmytHNn1vsQvv9+xs+33zaOT56c8R7uRQgAAPJB/t/sOT09I4GqVk3atcu19957b0Zz9r8LgDmVLCmVLWu81Q4AALBcUlKSihcvrtOnT9+UK7mXKVNGiYmJN+2iprmV/wmWh4c0b15GOpWW5tp7t2zJ2lwdPCjdc4+0fLllJQIAALgi/xssSWrXLmMfViELtoRVqyZt2CDVqmX+XICbiY+P14ABA1SzZk3Z7XaVKlVKderU0XPPPaf4zEuXSBo9enSWe23lp1utHgCu41uERvm7yR2AZQ4fPqz69eurRIkSGjZsmIKCgpSYmKiYmBgtXbpUBw4cUKVKlSRJzz77rEJDQ/O5YgAouGiwgALiww8/1OnTp/XTTz+pWrVqzvG2bdvq3//+t/Nu8JJUsWJFVczpRXsBIAf4FqHRrbFECMC0hIQEeXh4yN/fP9vXPa64ZEl2S3IXL17UsGHDVK5cOXl7e6tZs2batm2bqlatqt69ezuPi4yMlM1m0/r169W/f3+VKVNGpUuXVvv27XX06FHDOZcsWaLHHntMAQEBstvtCg4O1ssvv6wUbmEFoICjwQIKiMaNGys9PV3t27fXN998o6SkJJfeHxYWpilTpigsLExffPGFOnTooHbt2mW5hUSmZ599Vl5eXlq4cKHeeustbdiwQc8884zhmH379qlVq1aaPXu2vv76aw0ePFhLly5VmzZtcvsxAdyi2INlxBIhUEB069ZN3377rT788EOtXr1aNptNd911l0JDQzVw4EBVrVr1mu+NiYnRokWL9NJLL2n8/64f9+ijj6ps2bLq2rVrtu8JDQ3VtGnTnM///PNPRURE6Pjx4yr3v2vWvXLFnRccDoceeOABBQcHq3nz5tq1a5fuvvtuCz45ANx6SLCAAsJms+m9997TgQMHNGvWLIWFhenSpUt65513VKtWLW3cuPGa7818rVOnTobxp59+WoWu8e3ef/zjH4bnmc3SH3/84Rw7cOCAunXrpnLlysnT01NeXl5q3ry5JCk2Ntb1DwnglkWCZUSCBRQwVapUUf/+/Z3Ply5dqq5du2r48OH66aefsn1PQkKCJKls2bKG8UKFCql06dLZvufq8SJFikiSzp8/L0lKTk7Wgw8+qKJFi2rs2LGqWbOmvL29FR8fr/bt2zuPA4CCiAYLKOA6deqk8ePH69dff73mMZnN0okTJ1ShQgXneFpamrP5ctW6det09OhRbdiwwZlaSbrmni4A7o1vERqxRAgUEMeOHct2PDk5WfHx8Spfvvw139usWTNJGd/6u9KyZcuU5uodFv4n81uKmclWpvcz7yEKAAUYCRZQQIwbN07ff/+9OnfurLp168put+vgwYOaMWOGEhISNHHixGu+t1atWuratasmT54sT09PPfTQQ9q9e7cmT56s4sWLGy7xkFNNmjRRyZIl1a9fP40aNUpeXl5asGCBfv75ZzMfE8AtigTLiAYLKCB69OghSVq8eLEmTpyoxMRElSpVSg0aNNBXX32lJ5544rrvnzNnjgICAjR79my98847qlu3rpYuXarQ0FCVKFHC5XpKly6tlStXatiwYXrmmWdUrFgxPfXUU1qyZInq16+fm48IAG7D5nCndhDATbV582Y98MADWrBggbp165bf5QC4BSUlJal48eI6evSo/Pz88nyu8uXLKzExMc/nMosEC4Akac2aNYqOjlaDBg1kt9v1888/680339Sdd96p9u3b53d5AG5xLBEa0WABkCT5+flp9erVmjJlis6ePasyZcroiSee0Pjx41W0aNH8Lg8A3AoNFgBJUqNGjfTdd9/ldxkA3BQJlhGXaQAAALAYCRYAADCNBMuIBAsAAMBi+ZJgpaen6+jRo/L19XVe7RkAAJjjcDh09uxZlS9fPlcXCDY7NwnW3/KlwTp69KgqVaqUH1MDAFDgxcfHq2LFivldxm0tXxosX1/f/JgWAIDbQn78O0uCZZQve7BYFgQAIO/w72z+41uEAADANBIsI75FCAAAYDESLAAAYBoJlhEJFgAAgMVIsAAAgCXcKWHKayRYAAAAFiPBAgAAprEHy4gECwAAwGIkWAAAwDQSLCMSLAAAAIvRYAEAAFiMJUIAAGAaS4RGJFgAAAAWI8ECAACmkWAZkWABAABYjAQLAACYRoJlRIIFAABgMRIsAABgGgmWEQkWAACAxUiwAACAaSRYRiRYAAAAFiPBAgAAppFgGZFgAQAAWIwECwAAmEaCZUSCBQAAYDESLAAAYBoJlhEJFgAAgMVIsAAAgGkkWEYkWAAAABYjwQIAAKaRYBmRYAEAAFiMBgsAAMBiLBECAADTWCI0IsECAACwGAkWAAAwjQTLiAQLAADAYiRYAADANBIsIxIsAAAAi5FgAQAA00iwjEiwAAAALEaCBQAATCPBMiLBAgAAsBgJFgAAsIQ7JUx5jQQLAADAYiRYAADANPZgGZFgAQAAWIwECwAAmEaCZUSCBQAAYDESLAAAYBoJlhEJFgAAgMVIsAAAgGkkWEYkWAAAABajwQIAALAYS4QAAMA0lgiNSLAAAAAsRoIFAABMI8EyIsECAACwGAkWAAAwjQTLiAQLAADAYiRYAADANBIsIxIsAAAAi5FgAQAA00iwjEiwAAAALEaCBQAATCPBMiLBAgAAsBgJFgAAMI0Ey4gECwAAwGI0WAAAwLTMBCuvH7nRpUsXeXl5yWazydvbWzNmzLju8QMGDJDdbpfNZpOnp6fuvPNO7du3z6U5abAAAECBNWjQIC1ZskTdunXTihUrFBQUpPDwcEVHR2d7/KxZs/Tuu++qVatW2rhxo6ZPn674+Hg1b97cpXltjnxY0ExKSlLx4sVv9rQAANwWEhMT5efnd1Pmyvw3fePGjfLx8cnTuZKTk9W8eXOXPp+Pj4+qVKmi3bt3O8eKFCmi+vXrZ9tktW7dWt98840uXbrkHHv66af1+eefKy0tLce1kmABAIACKTk5WSkpKWrdurVhPDg4WLGxsdm+p02bNkpLS9OYMWOUnp6uX3/9VWvXrlXNmjVdmptvEQIAANNu5rcIjxw5oqSkJOe4n59ftonW3r17JUnVq1c3jPv7+ysmJibbOV544QXt3btXo0eP1ujRoyVJ5cqV09atW12qlQQLAAC4lZCQEFWqVMn5+Mc//nHd4202m+G5w+HIMpbpyy+/1JQpU9SqVSt98sknGjt2rM6cOaO6deu6VCMJFgAAcCsxMTHy9fV1Pr/WfqzMZb24uDjD+KlTp2S327N9z+DBgxUQEKCVK1c6x0qWLKkXX3xRO3fuzHGjRYIFAABMu5mXaahQoYIqVqzofFyrwfLx8VGxYsUMzZIkxcbGKjg4ONv3XLx4UR4exvaoUKGMPCo9PT3Hvw8aLAAAUGD17dtXu3fvVlhYmKKiolS/fn2lpqZq0qRJkqTGjRsrMDDQefwTTzyh+Ph4de3aVRs2bNC7776rIUOGqFixYqpfv36O52WJEAAAmHar3ipn6tSpOnHihObPn6/IyEjZ7XZNmzZNDzzwgKSM5cKEhATn8R999JHOnDmjzz77TIsXL5aHh4cqV66sTz75xKV5abAAAECBtnjx4mu+tn///ixjy5YtMz0nDRYAADDtVk2w8gt7sAAAACxGggUAACzhTglTXiPBAgAAsBgJFgAAMI09WEYkWAAAABYjwQIAAKaRYBmRYAEAAFiMBAsAAJhGgmVEggUAAGAxEiwAAGAaCZYRCRYAAIDFSLAAAIBpJFhGJFgAAAAWI8ECAACmkWAZkWABAABYjAQLAACYRoJlRIIFAABgMRosAAAAi7FECAAATGOJ0IgECwAAwGIkWAAAwDQSLCMSLAAAAIuRYAEAANNIsIxIsAAAACxGggUAAEwjwTIiwQIAALAYCRYAADCNBMuIBAsAAMBiJFhw2cyZMw3PX3zxxXyqBDfL1f+v0Waz5VMlyEv83YYZJFhGJFgAAAAWI8ECAACmkWAZkWABAABYjAQLLmNfxu2HPVe3B/5uwwwSLCMSLAAAAIuRYAEAANNIsIxIsAAAACxGggUAAEwjwTIiwQIAALAYDRYAAIDFWCIEAACWcKclvLxGggUAAGAxEiwAAGAam9yNSLAAAAAsRoIFAABMI8EyIsECAACwGAkWAAAwjQTLiAQLAADAYiRYAADANBIsIxIsAAAAi5FgAQAA00iwjEiwAAAALEaCBQAATCPBMiLBAgAAsBgJFgAAMI0Ey4gECwAAwGIkWAAAwDQSLCMSLAAAAIuRYAEAANNIsIxIsAAAACxGgwUAAGAxlggBAIBpLBEakWABAABYjAQLAACYRoJlRIIFAABgMRIsAABgGgmWEQkWAACAxUiwAACAaSRYRiRYAAAAFiPBAgAAppFgGZFgAQAAWIwECwAAmEaCZUSCBQAAYDESLAAAYBoJlhEJFgAAgMVIsAAAgGkkWEYkWAAAABYjwQIAAKaRYBmRYAEAAFiMBAsAAFjCnRKmvEaCBQAAYDEaLAAAAIuxRAgAAExjk7sRCRYAAIDFSLAAAIBpJFhGJFgAAAAWI8ECAACmkWAZkWABAABYjAQLAACYRoJlRIIFAABgMRIsAABgGgmWkcsJ1vbt2/XLL784n3/xxRdq27at/v3vfys1NdXS4gAAANyRyw3WCy+8oL1790qSDhw4oC5dusjb21uffPKJIiIiLC8QAADc+jITrLx+uAuXG6y9e/eqbt26kqRPPvlEzZo108KFCxUZGanly5dbXR8AAIDbcXkPlsPhUHp6uiRp7dq1at26tSSpUqVKOn36tLXVAQAAt8AeLCOXE6yGDRtq7Nixmj9/vjZu3Kgnn3xSknTw4EGVLVvW8gIBAADcjcsJ1pQpU9S9e3d9/vnn+r//+z/VqFFDkrRs2TI1adLE8gIBAMCtjwTLyOUE6+6779Yvv/yixMREjRo1yjk+ceJEzZ0719LiAAAAzOrSpYu8vLxks9nk7e2tGTNmXPf4pKQkPfDAAypUqJBsNpu8vLwUFhbm0pyWXQeraNGiVp0KAAC4mVs1wRo0aJCWLFminj17qmPHjho5cqTCw8PVoEEDNW7cONv3BAUF6ezZs3rjjTfUpEkT7du3z+VLUeWowSpVqpT27t2rMmXKqGTJkrLZbNc89s8//3SpAAAAgLwye/ZshYSEOFfZWrdurSJFimjo0KGKjo7OcvzYsWN1/Phx7d+/X4GBgZKkpk2bujxvjhqsd955R76+vs4/X6/BAgAAt5+bmWAdOXJESUlJznE/Pz/5+fllOT45OVkpKSnOKx5kCg4OVmxsbLZzLF68WCVLllT37t21ZcsWeXp66u6779bq1atVqlSpHNeaowarV69ezj/37t07xycHAACwWkhIiOF58+bNtWHDhizHZV4YvXr16oZxf39/xcTEZHvu48eP66+//tLBgwf10Ucf6dChQ3r99dd1//33O8+XEy7vwZo9e7b69u2bZTwtLU0jR47U+PHjXT0lAABAjsXExDhX1iRlm15d6eqVN4fDcc3VuMyUbMuWLapcubIkKSUlRRMnTtSff/6Z4xTL5W8RDhs2TB06dDDstdqzZ4/uu+8+LV261NXTAQCAAuBm3iqnQoUKqlixovNxrQarZs2akqS4uDjD+KlTp2S327N9T4kSJVSoUCFncyVJzZo1kyRt27Ytx78PlxusHTt26MSJE6pTp47WrFmjmTNnqn79+qpdu7Z27tzp6ukAAADyhI+Pj4oVK6aVK1caxmNjYxUcHJztexo3bqy0tDQdP37cObZ582ZJUoMGDXI8t8sNVrVq1bRp0yY9/fTTCg0N1ZAhQ/Txxx9r3rx5hrgOAADcPm7Vmz337dtXu3fvVlhYmKKiolS/fn2lpqZq0qRJkjIaqsxvC0rSpEmT5OnpqYYNG+rLL7/U9OnTNWnSJAUFBVm/yf1qUVFRWrRokZo0aaLffvtNH374oZo1a6by5cvn5nQAAAB5YurUqTpx4oTmz5+vyMhI2e12TZs2TQ888ICkjOXChIQE5/HlypXTl19+qR49euipp56Sp6en6tatq9WrV7s0r8sJ1gsvvKBOnTopIiJCmzZt0q5du1SkSBHVqVOHPVgAANymbtUES8q49EJaWpocDofOnTun8PBw52v79+/XmTNnDMe3atVKCQkJcjgcSktL09atW11Kr6RcJFjff/+9fvzxR91zzz2SMjq9r776SjNnzlSfPn3UqVMnV08JAABQoLjcYG3btk1FihTJMv7iiy/qkUcesaQoAADgXm7VW+XkF5eXCLNrrjIFBQWZKgYAAKAgyNUm92XLlmnp0qU6dOhQlpsfbt++3ZLCAACA+yDBMnI5wZo2bZrCwsLk7++vHTt26L777lPp0qV14MABPfHEE3lRIwAAgFtxucGaNWuWPvjgA82YMUOFCxdWRESE1qxZo4EDByoxMTEvagQAALe4W/lbhPnB5Qbr0KFDatKkiSTJbrfr7NmzkqQePXpo0aJF1lYHAADghlxusMqVK+e8IFeVKlX0ww8/SJIOHjzoVp0lAACwDgmWkcsN1kMPPaQVK1ZIyrj8/JAhQ/Too4+qc+fOateuneUFAgAAuBuXv0X4wQcfKD09XZLUr18/lSpVSt99953atGmjfv36WV4gAABwD+6UMOU1lxssDw8PeXj8HXx16tSJq7cDAABcIVfXwQIAALgS18EycnkPFgAAAK6PBAsAAJhGgmVEggUAAGAxEiwAAGAaCZZRjhqsevXqyWaz5eiE3OwZAADc7nLUYLVt29b55wsXLmjWrFkKCQlR48aNJUk//PCDdu/erQEDBuRJkQAAAO4kRw3WqFGjnH9+9tlnNXDgQL3++utZjomPj7e2OgAA4BZYIjRyeZP7J598op49e2YZf+aZZ7R8+XJLigIAAHBnLjdYdrtd3333XZbx7777TkWLFrWkKAAA4F642bORy98iHDx4sPr3769t27bp/vvvl5SxB+vjjz/Wq6++anmBAAAA7sblBuvll19W9erVNXXqVC1cuFCSFBwcrMjISO5JCADAbYo9WEa5ug4WN3gGAAC4tlxfaDQ1NVUnT55Uenq6Ybxy5cqmiwIAAO6FBMvI5QZr37596tOnjzZv3mwYdzgcstlsunz5smXFAQAAuCOXG6zevXurUKFCioqKUkBAQI6v8A4AAAouEiwjlxusnTt3atu2bbrrrrvyoh4AAAC353KDFRISotOnT+dFLQAAwE2RYBm5fKHRCRMmKCIiQhs2bFBCQoKSkpIMDwAAgNudywnWI488Ikl6+OGHDeNscgcA4PZFgmXkcoO1fv36vKgDAACgwHC5wWrevHle1AEAANwYCZaRy3uwAAAAcH05brAuXbqkiIgI1ahRQ/fdd5/mzJljeP3EiRPy9PS0vEAAAHDry0yw8vrhLnLcYI0bN07z5s1Tv3799Nhjj2nIkCF64YUXDMe40wcHAADIKzneg7VgwQJ99NFHat26tSQpLCxMTzzxhMLCwvTxxx9LEld1BwDgNsUeLKMcJ1hHjhxR7dq1nc8DAwO1YcMGRUdHq0ePHlyeAQAA4H9y3GCVK1dOcXFxhrHy5ctr3bp12rJli3r16mV5cQAAAO4oxw3WQw89pIULF2YZz2yyfv/9dyvrAgAAboRN7kY53oM1cuRI7dmzJ9vXKlSooE2bNmn16tWWFQYAAOCuctxgValSRVWqVLnm6wEBASwTAgBwm2KTuxEXGgUAALCYy7fKAQAAuBoJlhEJFgAAgMVIsAAAgGkkWEY0WHDZ1f8F5wr+QMHA323AOjlqsEqWLJnjv2h//vmnqYIAAIB7cqeEKa/lqMGaMmWK888JCQkaO3asHn/8cTVu3FiSFB0drW+++UYjR47MkyIBAADcSY4arCuvb9WhQwe99tpr+uc//+kcGzhwoGbMmKG1a9dqyJAh1lcJAABuaezBMnL5W4TffPONQkNDs4w//vjjWrt2rSVF4dZms9kMDwAFA3+3Aeu43GCVLl1an332WZbxzz//XKVLl7akKAAA4F64F6GRy98iHDNmjPr27asNGzY492D98MMP+vrrr/XRRx9ZXiAAAIC7cbnB6t27t4KDgzVt2jR9+umncjgcCgkJ0ffff69GjRrlRY0AAOAWxx4so1xdB6tRo0ZasGCB1bUAAAAUCLm6VU5cXJxeeeUVdevWTSdPnpQkff3119q9e7elxQEAAPfAHiwjlxusjRs3qk6dOvrxxx+1fPlyJScnS5J27dqlUaNGWV4gAACAu3G5wXr55Zc1duxYrVmzRoULF3aOt2zZUtHR0ZYWBwAA3AMJlpHLDdYvv/yidu3aZRm/4447lJCQYElRAAAA7szlBqtEiRI6duxYlvEdO3aoQoUKlhQFAADgzlxusLp166aXXnpJx48fl81mU3p6ur7//nv961//Us+ePfOiRgAAcItjidDI5QZr3Lhxqly5sipUqKDk5GSFhISoWbNmatKkiV555ZW8qBEAAMCtuHwdLC8vLy1YsECvvfaaduzYofT0dNWrV0933nlnXtQHAADcABcaNcrVhUYlKTAwUIGBgVbWAgAAUCC43GA5HA4tW7ZM69ev18mTJ5Wenm54/dNPP7WsOAAA4B5IsIxcbrAGDRqkDz74QC1btlTZsmVls9nyoi4AAAC35XKD9Z///EeffvqpWrVqlRf1AAAAN0SCZeTytwiLFy+u6tWr50UtAAAABYLLDdbo0aM1ZswYnT9/Pi/qAQAAbojrYBm5vETYsWNHLVq0SP7+/qpataq8vLwMr2/fvt2y4gAAANyRyw1W7969tW3bNj3zzDNscgcAAJLYg3U1lxuslStX6ptvvlHTpk3zoh4AAAC353KDValSJfn5+eVFLQAAwE2RYBm5vMl98uTJioiI0O+//54H5QAAALg/lxOsZ555RufOnVNgYKC8vb2zbHL/888/LSsOAAC4BxIsI5cbrClTpuRBGQAAAAWHyw1Wr1698qIOAADgxkiwjFxusK50/vx5Xbp0yTDGBngAAHC7c7nBSklJ0UsvvaSlS5cqISEhy+uXL1+2pDAAAOA+SLCMXP4WYUREhNatW6dZs2apSJEi+uijjzRmzBiVL19e8+bNy4saAQAA3IrLCdaKFSs0b948tWjRQn369NGDDz6oGjVqqEqVKlqwYIG6d++eF3UCAAC4DZcTrD///FPVqlWTlLHfKvOyDE2bNtWmTZusrQ4AALgFbvZs5HKDVb16dedFRkNCQrR06VJJGclWiRIlrKwNAADALbm8RBgWFqaff/5ZzZs314gRI/Tkk09q+vTpSktL09tvv50XNQIAgFscm9yNXG6whgwZ4vxzy5YttWfPHm3dulWBgYG65557LC0OAADAHZm6DpYkVa5cWZUrV7aiFgAA4MbcKWHKa7lqsP773//qv//9r06ePKn09HTDax9//LElhQEAALgrlxusMWPG6LXXXlPDhg0VEBAgm82WF3UBAAA3wh4sI5cbrPfee0+RkZHq0aNHXtQDAADg9lxusFJTU9WkSZO8qAUAALgpEiwjl6+D9eyzz2rhwoV5UQsAAECB4HKCdeHCBX3wwQdau3at7r77bnl5eRle51pYAADcfkiwjFxusHbt2qW6detKkn799VfDa2x4BwAAyEWDtX79+ryoAwAAuDESLCOX92ABAADg+lxOsFJSUvTmm29e80KjBw4csKw4AADgHkiwjFxusJ599llt3LhRPXr04EKjAADgltelSxctX75caWlpstvteuutt/TPf/7zhu979913NWDAABUtWlTnz593aU6XG6xVq1Zp5cqVeuCBB1x9KwAAKKBu1QRr0KBBWrJkiXr27KmOHTtq5MiRCg8PV4MGDdS4ceNrvu/QoUMaOHCgSpcurZSUFJfndXkPVsmSJVWqVCmXJwIAALjZZs+erZCQEM2dO1etW7fWjh07VLhwYQ0dOvS672vatKnuv/9+1a5dO1fzutxgvf7663r11Vd17ty5XE0IAAAKnswEK68frkhOTlZKSopat25tGA8ODlZsbOw139enTx8lJCRozZo1ufpdSLlYIpw8ebLi4uJUtmxZVa1aNcuFRrdv357rYgAAAG7kyJEjSkpKcj738/OTn59fluP27t0rSapevbph3N/fXzExMdmee82aNYqMjNSqVatUtGjRXNfocoPVtm3bXE8GAABgVkhIiOF58+bNtWHDhmsef/UX8hwOR7Zf0ktNTVXbtm3VpUsXPf7446ZqdLnBGjVqlKkJAQBAwXMzN7nHxMTI19fXOZ5deiVJNWvWlCTFxcUZxk+dOiW73Z7l+GPHjuncuXNatGiRFi1aZHjNZrNp0qRJGjZsWI5qdbnBAgAAyE8VKlS4ZlN1JR8fHxUrVkwrV67UhAkTnOOxsbGqX79+tuf99NNPDWMjR47Uvn37tHjxYpeuoJDjTe4eHh7y9PTM8ihZsqTuv//+LAUBAIDbx624yV2S+vbtq927dyssLExRUVGqX7++UlNTNWnSJElS48aNFRgYKEkqVKiQ2rVrZ3iUKVNGHh4eateunfz9/XM8b44TrM8++yzb8TNnzuinn37SM888o7lz56pjx445nhwAACAvTZ06VSdOnND8+fMVGRkpu92uadOmOdOoU6dOKSEhwfJ5bQ6LFkxnzpypefPm6ccff7zhsUlJSSpevLgV0wIAgKskJibmaAnNCpn/pvfo0UOFCxfO07lSU1M1f/78m/r5csuymz0/9thjzq9DAgAA3M4s2+R+/vx5U9eLAAAA7utWvVVOfrEswfrwww9Vr149q04HAADgtnKcYF3rnj2JiYnaunWr4uLi9O2331pWGAAAcB8kWEY5brB27NiR7bifn59CQ0M1YMAAValSxbLCAAAA3FWOG6z169fnZR0AAMCNkWAZWbYHCwAAABm4VQ4AADCNBMuIBAsAAMBiJFgAAMA0EiwjEiwAAACLkWABAADTSLCMSLAAAAAsRoIFAABMI8EyIsECAACwGAkWAACwhDslTHmNBAsAAMBiNFgAAAAWY4kQAACYxiZ3IxIsAAAAi5FgAQAA00iwjEiwAAAALEaCBQAATCPBMiLBAgAAsBgJFgAAMI0Ey4gECwAAwGIkWAAAwDQSLCMSLAAAAIuRYAEAANNIsIxIsAAAACxGggUAAEwjwTIiwQIAALAYCRYAADCNBMuIBAsAAMBiJFgAAMA0EiwjEiwAAACLkWABAADTSLCMSLAAAAAsRoMFAABgMZYIAQCAaSwRGpFgAQAAWIwECwAAmEaCZUSCBQAAYDESLAAAYBoJlhEJFgAAgMVIsAAAgGkkWEYkWAAAABYjwQIAAKaRYBmRYAEAAFiMBAsAAJhGgmVEggUAAGAxEiwAAGAaCZYRCRYAAIDFSLAAAIBpJFhGJFgAAAAWI8ECAACWcKeEKa+RYAEAAFiMBAsAAJjGHiwjEiwAAACL0WABAABYjCVCAABgGkuERjRYcNnMmTMNz1988cV8qgQ3y9X/o2az2fKpEuQl/m4D1qHBAgAAppFgGbEHCwAAwGIkWAAAwDQSLCMaLLiMfRm3H/Zc3R74uw1YhwYLAACYRoJlxB4sAAAAi5FgAQAA00iwjEiwAAAALEaCBQAATCPBMiLBAgAAsBgJFgAAMI0Ey4gECwAAwGIkWAAAwDQSLCMSLAAAAIuRYAEAANNIsIxIsAAAACxGggUAAEwjwTIiwQIAALAYDRYAAIDFWCIEAACmsURoRIIFAABgMRIsAABgGgmWEQkWAACAxUiwAACAaSRYRiRYAAAAFiPBAgAAppFgGZFgAQAAWIwECwAAmEaCZUSCBQAAYDESLAAAYBoJlhEJFgAAgMVIsAAAgCXcKWHKayRYAAAAFiPBAgAAprEHy4gECwAAwGI0WAAAwLTMBCuvH7nRpUsXeXl5yWazydvbWzNmzLjmsRERESpdurQ8PDxks9nk6+urcePGuTwnDRYAACiwBg0apCVLlqhbt25asWKFgoKCFB4erujo6GyPX7NmjRo1aqQ5c+Zo9erVqlOnjl555RUtWrTIpXltjnxY0ExKSlLx4sVv9rQAANwWEhMT5efnd1Pmyvw3vW7duvL09MzTuS5fvqydO3e69Pl8fHxUpUoV7d692zlWpEgR1a9f/5pN1tWKFi2qJk2aaN26dTmulU3uAADArRw5ckRJSUnO535+ftk2XMnJyUpJSVHr1q0N48HBwYqNjc3RXGlpaUpLS1Pp0qVdqpEGCwAAuJWQkBDD8+bNm2vDhg1Zjtu7d68kqXr16oZxf39/xcTE5Giup556Sunp6Ro9erRLNdJgAQAA027mZRpiYmLk6+vrHL/RcqHNZstynqvHshMeHq6vvvpKEyZMUK1atVyqlQYLAAC4lQoVKuRoD1bNmjUlSXFxcYbxU6dOyW63X/e9gwYN0owZMzRq1ChFRES4XCPfIgQAAKbdipdp8PHxUbFixbRy5UrDeGxsrIKDg6/5vvDwcE2bNk0vv/yyy0uDmWiwAABAgdW3b1/t3r1bYWFhioqKUv369ZWamqpJkyZJkho3bqzAwEDn8eHh4ZoxY4Y6d+6srl27ateuXdq1a5cOHTrk0rxcpgEAgAImPy7TUKdOnZtymYZffvnF5c/XpUsXLVu2TJcvX5bdbteECRMUHh4uSapRo4ZOnz6tM2fOSJJKlCihxMTELOcIDAzU/v37czwne7AAAECBtnjx4mu+dnXTlNlomUWDBQAATONmz0bswQIAALAYCRYAADCNBMuIBAsAAMBiJFgAAMA0EiwjEiwAAACLkWABAADTSLCMSLAAAAAsRoIFAABMI8EyIsECAACwGAkWAAAwjQTLiAQLAADAYiRYAADANBIsIxIsAAAAi5FgAQAA00iwjEiwAAAALEaDBQAAYDGWCAEAgGksERqRYAEAAFiMBAsAAJhGgmVEggUAAGAxEiwAAGAaCZYRCRYAAIDFSLAAAIAl3ClhymskWAAAABYjwQIAAKaxB8uIBAsAAMBiJFgAAMA0EiwjEiwAAACL0WC5mfXr1+udd95x6T3vv/++EhIS5HA4dM899+TqHLlxs+YBAOS/zAQrrx/uosA2WP369dPPP/+sxMREJSYmavPmzQoNDTUc079/fx04cEDnz5/X1q1b1bRp03yqNu+Ehoaqd+/eat26tcqVK6dff/1V7du318iRI/O7NAAACqwC22AdPnxYL7/8sho2bKiGDRtq3bp1+uKLLxQSEiJJ6tSpk6ZMmaJx48apXr16+vbbb7Vq1SpVqlTJ5blKlCihYsWKWf0RLBEYGKhjx44pOjpaJ06c0OXLl/XXX38pOTn5ptcSEBAgT0/Pmz4vACDvkWAZFdgGKyoqSqtWrdK+ffu0b98+vfLKK0pOTtb9998vSRo6dKhmz56t2bNna8+ePRoyZIji4+PVv3//HJ3f09NTrVq10pIlS3Ts2DEFBgY6Xzt48KAGDRpkOH7Hjh0aNWqU8/n69es1depUTZgwQQkJCTp27JjhdUny9vbW3LlzdfbsWR09elRDhw7NUsfw4cMVFxenc+fOaefOnerQoYPztTlz5mjGjBmqUqWKHA6HDh486Jz7yqW7nNRyo7lyUutzzz2nw4cPa9KkSapdu/Y1f7cAALi7AttgXcnDw0OdO3dWsWLFFB0dLS8vLzVo0ECrV682HLd69Wo1adLkuueqXbu2Jk6cqMOHD2vevHlKSEhQy5YttWvXLpfr6tWrl1JSUtSoUSNFRETo1Vdf1SOPPOJ8feLEiWrZsqXatWunxx57TC1atFCDBg2cr48dO1ZhYWHq37+/atWqpXfeeUf/+c9/1KxZM0nSoEGDNHLkSMXHx6tcuXK69957c13Ljea6Ua2SNGHCBA0cOFBBQUHavn27tm3bpoEDB6pMmTIu/+4AALcWEiyjAn2Zhtq1ays6OlpFixZVcnKy2rVrp9jYWAUEBKhQoUI6ceKE4fgTJ06oXLlyWc5TqlQpde/eXb1791atWrW0atUqDRgwQFFRUbp06VKu69u1a5dee+01SdL+/fv1z3/+Uw8//LDWrl2rYsWKqW/fvurZs6fWrl0rKaMJOnz4sKSMxGjo0KF66KGH9MMPP0jKSM6aNm2qF154QZs2bVJSUpLOnj2ry5cvZ/msrtRyo7m2bdt23VozXbx4UZ988ok++eQT3XHHHerWrZt69eqliRMn6quvvtLcuXO1YsUKXb58Ode/UwAAbgUFusH67bffVLduXZUoUUIdOnTQ3Llz1bx5c505c0ZS1utp2Gy2bLvj8PBwjR49Wps2bVKNGjWyNA65dXXqdezYMfn7+0vK2DtVpEgRRUdHO1//66+/9Ntvv0mSQkJCZLfbtWbNGsM5ChcurB07dlhay43mulGt2Tl16pSmTp2qqVOnKjQ0VJGRkWrbtq3q1q2rn3/+2eX6AQD5i+tgGRXoBuvSpUuKi4uTJG3btk333nuvBg0apPDwcKWlpWVJq/z9/bNNej744ANdunRJvXr1UkxMjJYvX6758+dr/fr12f6HnZ6eLpvNZhjz8vLKtr4rORwOeXhkrNpe/f6rZR735JNP6siRI4bXLl68eN33Zud6tdxortKlS7s8n4+Pj55++mn16NFDzZo108aNGzV8+HDFxMS4fC4AAG41t8UerEw2m01FihTRpUuXtG3bNj366KOG1x999FFt3rw5y/uOHTumN954Q0FBQXr88cd18eJFLV++XH/88YfGjx/v/GZiplOnTikgIMD53NfXV9WqVXOp1v379ys1NdW5KV/K+LZizZo1JUkxMTG6cOGCKleurLi4OMPDqoQt043mulGtmTw8PBQaGqoFCxboxIkTGjFihNatW6fq1avrkUce0fz5800tuQIAcKsosAnWuHHjtGrVKsXHx8vX11ddunRRixYtnNfCevvttzV//nxt3bpV0dHRev7551W5cmW999571z1vdHS0oqOjNWjQILVt21a9evXSv/71L9WrV0+//vqrJGndunXq3bu3VqxYob/++kuvv/66y/uKUlJSNHv2bE2cOFEJCQk6ceKExo0bp/T0dElScnKyJk2apHfeeUceHh767rvv5OfnpyZNmig5OVnz5s3LxW8tezmZ63q1Zvr3v/+tYcOGaenSpXrkkUcMS4oAAPfGEqFRgW2wypYtq/nz5ysgIECJiYnatWuXQkNDnZuwly5dqtKlS+vVV19VQECAfv31V7Vq1UqHDh3K0fkvXryoJUuWaMmSJQoICDBcV2r8+PGqXr26oqKilJiYqJEjR7qcYEkZl0Xw8fHRl19+qbNnz2ry5MkqXry48/WRI0fq5MmTGjFihKpXr64zZ85o+/bteuONN1ye60ZuNNeNapWk+fPna+LEiblawgQAwJ3YHPnQDiYlJWX5xxcAAFgjMTFRfn5+N2WuzH/Ty5cv79yzm1fS09N19OjRm/r5cuu22oMFAABwMxTYJUIAAHDzsAfLiAQLAADAYgUuwdqyZUu2V2OH+zh+/Ph1b+sDALj1kGAZFbgGq1y5cqpYsWJ+lwEAAG5jBa7BOn78eH6XAJP4zxAA3A8JllGBa7BYWgIAAPmtwDVYAADg5iPBMuJbhAAAABYjwQIAAKaRYBmRYAEAAFiMBAsAAJhGgmVEggUAAGAxEiwAAGAaCZYRCRYAAIDFSLAAAIBpJFhGJFgAAAAWo8ECAACwGEuEAADANJYIjUiwAAAALEaCBQAALOFOCVNeI8ECAACwGAkWAAAw7WakV+6UkJFgAQAAWIwECwAAmEaCZUSCBQAAYLF8SbDcqQMFAMDd5Me/syRYRvmSYJ09ezY/pgUA4LbAv7P5L18SrPLlyys+Pl6+vr6y2Wz5UQIAAAWOw+HQ2bNnVb58+XyZuyDMYZV8abA8PDxUsWLF/JgaAIACrXjx4vldAsS3CAEAgAVIsIz4FiEAAIDFSLAAAIBpJFhGJFgAciQyMlIlSpTI7zIsUZA+C4BbEw0W4IIWLVpo8ODBWcY///xzvhErady4cWrSpIm8vb1dbmB+//132Ww27dy5M09qu1Lnzp21d+/ePJ8HuJ04HI6b8nAXNFgALJOamqqOHTuqf//++V3Kddntdvn7++d3GQAKMBosIA+MHj1adevW1fz581W1alUVL15cXbp0MVz8r0WLFho4cKAiIiJUqlQplStXTqNHjzac5+2331adOnVUrFgxVapUSQMGDFBycrLz9cylrqioKAUFBcnb21tPP/20UlJSNHfuXFWtWlUlS5ZUeHi4Ll++7HxfamqqIiIiVKFCBRUrVkyNGjXShg0bDHNHRkaqcuXK8vb2Vrt27ZSQkHDDzz1mzBgNGTJEderUyfb1v/76S927d9cdd9whu92uO++8U3PmzJEkVatWTZJUr1492Ww2tWjRIttzXL58WX379lW1atVkt9sVFBSkqVOnOl+/cOGCatWqpeeff945dvDgQRUvXlwffvih4feW6eeff1bLli3l6+srPz8/NWjQQFu3br3h5wXwNxIsIza5A3kkLi5On3/+uaKiovTXX3+pU6dOevPNNzVu3DjnMXPnztXQoUP1448/Kjo6Wr1799YDDzygRx99VFLGNeOmTZumqlWr6uDBgxowYIAiIiI0a9Ys5znOnTunadOmafHixTp79qzat2+v9u3bq0SJEvrqq6904MABdejQQU2bNlXnzp0lSWFhYfr999+1ePFilS9fXp999plCQ0P1yy+/6M4779SPP/6oPn366I033lD79u319ddfa9SoUaZ/JyNHjlRMTIxWrVqlMmXKaP/+/Tp//rwk6aefftJ9992ntWvXqlatWipcuHC250hPT1fFihW1dOlSlSlTRps3b9bzzz+vgIAAderUSUWLFtWCBQvUqFEjtWrVSm3atFGPHj3UsmVLPffcc9mes3v37qpXr57effddeXp6aufOnfLy8jL9eQHcxhwAcqx58+aOQYMGZRn/7LPPHFf+dRo1apTD29vbkZSU5BwbPny4o1GjRoZzNW3a1HCee++91/HSSy9dc/6lS5c6Spcu7Xw+Z84chyTH/v37nWMvvPCCw9vb23H27Fnn2OOPP+544YUXHA6Hw7F//36HzWZzHDlyxHDuhx9+2DFixAiHw+FwdO3a1REaGmp4vXPnzo7ixYtfs7YrzZkzJ9tj27Rp4wgLC8v2PQcPHnRIcuzYsSNHc1xpwIABjg4dOhjG3nrrLUeZMmUc4eHhjnLlyjlOnTp1zfp8fX0dkZGRLs8LwOFITEx0SHLY7XaHt7d3nj7sdrtDkiMxMTG/P/YNsUQI5JGqVavK19fX+TwgIEAnT540HHP33Xcbnl99zPr16/Xoo4+qQoUK8vX1Vc+ePZWQkKCUlBTnMd7e3goMDHQ+L1u2rKpWrSofHx/DWOZ5t2/fLofDoZo1a8rHx8f52Lhxo+Li4iRJsbGxaty4saG2q5/nRv/+/bV48WLVrVtXERER2rx5c67O895776lhw4a644475OPjow8//FCHDh0yHDNs2DAFBQVp+vTpmjNnjsqUKXPN8w0dOlTPPvusHnnkEb355pvO3wOAnHOwRGhAgwW4wM/PT4mJiVnGz5w5Iz8/P8PY1UtMNptN6enpOT7mjz/+UKtWrVS7dm0tX75c27Zt08yZMyVJly5duu45rnfe9PR0eXp6atu2bdq5c6fzERsb69zLlFf/I/bEE0/ojz/+0ODBg3X06FE9/PDD+te//uXSOZYuXaohQ4aoT58+Wr16tXbu3KmwsDClpqYajjt58qR+++03eXp6at++fdc95+jRo7V79249+eSTWrdunUJCQvTZZ5+5/PkAIBN7sAAX3HXXXVq1alWW8S1btigoKMjSubZu3aq0tDRNnjxZHh4Z/19o6dKlps9br149Xb58WSdPntSDDz6Y7TEhISH64YcfDGNXP8+tO+64Q71791bv3r314IMPavjw4Zo0aZJzz9WVm/Gz8+2336pJkyYaMGCAcyy7xKlPnz6qXbu2nnvuOfXt21cPP/ywQkJCrnnemjVrqmbNmhoyZIi6du2qOXPmqF27drn8lMDt52akS+6UYNFgAS4YMGCAZsyYoRdffFHPP/+87Ha71qxZo9mzZ2v+/PmWzhUYGKi0tDRNnz5dbdq00ffff6/33nvP9Hlr1qyp7t27q2fPnpo8ebLq1aun06dPa926dapTp45atWqlgQMHqkmTJnrrrbfUtm1brV69Wl9//fUNz33o0CH9+eefOnTokC5fvuy8plWNGjXk4+OjV199VQ0aNFCtWrV08eJFRUVFKTg4WJLk7+8vu92ur7/+WhUrVlTRokWzvWltjRo1NG/ePH3zzTeqVq2a5s+fry1btji/hShJM2fOVHR0tHbt2qVKlSpp1apV6t69u3788ccsm+fPnz+v4cOH6+mnn1a1atV0+PBhbdmyRR06dDDxWwZwu2OJEHBB1apV9e233youLk6PPfaY7r33XkVGRioyMlIdO3a0dK66devq7bff1oQJE1S7dm0tWLBA48ePt+Tcc+bMUc+ePZ37lP7xj3/oxx9/VKVKlSRJ999/vz766CNNnz5ddevW1erVq/XKK6/c8Lyvvvqq6tWrp1GjRik5OVn16tVTvXr1nJc8KFy4sEaMGKG7775bzZo1k6enpxYvXixJKlSokKZNm6b3339f5cuX11NPPZXtHP369VP79u3VuXNnNWrUSAkJCYY0a8+ePRo+fLhmzZrl/DwzZ87UmTNnNHLkyCzn8/T0VEJCgnr27KmaNWuqU6dOeuKJJzRmzBjXfqnAbY49WEY2hztVCwAAbilJSUkqXry4ChcunOd3tHA4HEpNTVViYmKWfa+3GpYIAQCAaezBMmKJEAAAwGIkWAAAwDQSLCMSLAAAAIuRYAEAANNIsIxIsAAAACxGggUAAEwjwTIiwQIAALAYCRYAADCNBMuIBAsAAMBiNFgAAMC0W/lehF26dJGXl5dsNpu8vb01Y8aM6x4/depUeXt7y2azycvLS926dXN5ThosAABQYA0aNEhLlixRt27dtGLFCgUFBSk8PFzR0dHZHr9p0yYNHjxYQUFBWrFihbp166ZFixZp+PDhLs3LzZ4BAECuZd7s+WZy5WbPPj4+qlKlinbv3u0cK1KkiOrXr59tk9WoUSPt3LlTFy9edI6FhIQoPj5eZ8+ezXGNJFgAAKBASk5OVkpKilq3bm0YDw4OVmxsbLbv2bNnj4KDgw1jbdq0UXJyss6dO5fjuWmwAACAWzly5IgOHz7sfCQlJWV73N69eyVJ1atXN4z7+/tfs1k6f/68/P39DWOZ7888X05wmQYAAJBrhQsXVrly5XT8+PGbMp+Xl5dCQkIMY82bN9eGDRuu+R6bzWZ47nA4soxd7/j09HRJkodHznMpGiwAAJBrRYsW1cGDB5WamnpT5rtw4UKWua61H6tmzZqSpLi4OMP4qVOnZLfbs32P3W7XiRMnDGO///67JKlGjRo5rpNN7gAAoMDy8fFR1apV9euvvzrHXN3kXqtWLR06dIhN7gAAAJLUt29f7d69W2FhYYqKilL9+vWVmpqqSZMmSZIaN26swMBA5/ETJ05UamqqGjRooKioKIWFhSkmJkb9+vVzaV4SLAAAUKB16dJFy5Yt0+XLl2W32zVhwgSFh4dLylj2O336tM6cOeM8furUqRoxYoTOnz+vQoUKqWPHjlq4cKFLc9JgAQAAWIwlQgAAAIvRYAEAAFiMBgsAAMBiNFgAAAAWo8ECAACwGA0WAACAxWiwAAAALEaDBQAAYDEaLAAAAIvRYAEAAFiMBgsAAMBiNFgAAAAW+3/fdZw+fPaMDwAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "\n", - "diffraction.calibration = 1e-2\n", - "pattern = diffraction.get_diffraction_pattern(shape = (128,128),\n", - " sigma = 0)\n", - "\n", - "strained_diffraction.calibration = 1e-2\n", - "pattern2 = strained_diffraction.get_diffraction_pattern(shape = (128,128),\n", - " sigma = 0)\n", - "pxm.signals.Diffraction2D([pattern, pattern2]).plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "Define a distorted structure and simulate diffraction. Note that this structure is fairly unphysical but it does give us something to fit to." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAENCAYAAABTviwWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAATpklEQVR4nO3df4xUd90v8M+ylOGHy2rhgXRl+ZWnkcraQAFzW7Bq2tAINTYmjTag2FafolBAEqXYqikVNk1MQ2JlzRJDMMiPmMAjGrRiDW1JW0uX0labgEgtm1LCUzW7VJJtgXP/uLfcu7bADnxnZs/M65WcP3qyc+adBt55c2Z2pi7LsiwAABIYUOkAAED1MCwAgGQMCwAgGcMCAEjGsAAAkjEsAIBkDAsAIBnDAgBIZmC5n/Ds2bNx7NixaGhoiLq6unI/PdS8LMvi5MmT0dTUFAMG5OPfFnoDKq+v3VH2YXHs2LFobm4u99MC/6azszPGjBlT6Rh9ojeg/7hYd5R9WDQ0NERExKyYEwPjinI/PdS80/FO7I1d5/4u5oHegMrra3eUfVi8extzYFwRA+sUBJTd//12oDy9pKA3oB/oY3fk4wVWACAXDAsAIBnDAgBIxrAAAJK5pGGxbt26mDBhQgwePDimTZsWTz31VOpcQJXRG1Abih4W27Zti2XLlsX9998fL7zwQnziE5+Iz3zmM3H06NFS5AOqgN6A2lH0sHjkkUfi7rvvjq9+9atxzTXXxNq1a6O5uTna2tpKkQ+oAnoDakdRw+Ltt9+Ojo6OmD17dq/zs2fPjqeffvp9H9PT0xPd3d29DqB26A2oLUUNizfffDPOnDkTo0eP7nV+9OjRcfz48fd9TGtrazQ2Np47fCwv1Ba9AbXlkt68+e+fupVl2Xk/iWvlypXR1dV17ujs7LyUpwRyTm9AbSjqI71HjhwZ9fX17/lXxokTJ97zr5F3FQqFKBQKl54QyDW9AbWlqDsWgwYNimnTpsXu3bt7nd+9e3fccMMNSYMB1UFvQG0p+kvIli9fHl/60pdi+vTpcf3110d7e3scPXo0Fi5cWIp8QBXQG1A7ih4WX/jCF+Lvf/97rFq1Kt54441oaWmJXbt2xbhx40qRD6gCegNqR12WZVk5n7C7uzsaGxvjU/E5X38MFXA6eyf2xC+jq6srhg8fXuk4faI3oPL62h2+KwQASMawAACSMSwAgGQMCwAgGcMCAEjGsAAAkjEsAIBkDAsAIBnDAgBIxrAAAJIxLACAZAwLACAZwwIASMawAACSMSwAgGQMCwAgGcMCAEjGsAAAkjEsAIBkDAsAIBnDAgBIxrAAAJIxLACAZAwLACAZwwIASMawAACSGVjpAEQ8duxApSNwmW5pmlLpCNSYrl3/WZLrvvPf/1GS60ZEjGx/pmTXfvO/ri/Jda+47X9Kct2IiMY5h0t27UpyxwIASMawAACSMSwAgGQMCwAgGcMCAEjGsAAAkjEsAIBkihoWra2tMWPGjGhoaIhRo0bFbbfdFgcPHixVNqBK6A6oHUUNiyeeeCIWLVoUzz77bOzevTtOnz4ds2fPjn/961+lygdUAd0BtaOoT9787W9/2+u/N2zYEKNGjYqOjo648cYbkwYDqofugNpxWR/p3dXVFRERV1555Xl/pqenJ3p6es79d3d39+U8JVAFLtYdegPy65LfvJllWSxfvjxmzZoVLS0t5/251tbWaGxsPHc0Nzdf6lMCVaAv3aE3IL8ueVgsXrw4XnrppdiyZcsFf27lypXR1dV17ujs7LzUpwSqQF+6Q29Afl3SSyH33ntv7Ny5M5588skYM2bMBX+2UChEoVC4pHBAdelrd+gNyK+ihkWWZXHvvffGjh07Ys+ePTFhwoRS5QKqiO6A2lHUsFi0aFFs3rw5fvnLX0ZDQ0McP348IiIaGxtjyJAhJQkI5J/ugNpR1Hss2traoqurKz71qU/FVVddde7Ytm1bqfIBVUB3QO0o+qUQgGLpDqgdvisEAEjGsAAAkjEsAIBkDAsAIJnL+q6QWtK16z9Ldu3/daB016ZMdpXmso1zDpfmwpTFY8cOlOzaeiP/SvXn45amKSW5bl+5YwEAJGNYAADJGBYAQDKGBQCQjGEBACRjWAAAyRgWAEAyhgUAkIxhAQAkY1gAAMkYFgBAMoYFAJCMYQEAJGNYAADJGBYAQDKGBQCQjGEBACRjWAAAyRgWAEAyhgUAkIxhAQAkM7DSAfLinf/+j0pHoCYdrnQAgKK4YwEAJGNYAADJGBYAQDKGBQCQjGEBACRjWAAAyRgWAEAylzUsWltbo66uLpYtW5YoDlDt9AZUt0seFvv27Yv29va49tprU+YBqpjegOp3ScPirbfeinnz5sX69evjQx/6UOpMQBXSG1AbLmlYLFq0KObOnRs333zzRX+2p6cnuru7ex1A7dEbUBuK/q6QrVu3xv79+2Pfvn19+vnW1tZ48MEHiw4GVA+9AbWjqDsWnZ2dsXTp0ti0aVMMHjy4T49ZuXJldHV1nTs6OzsvKSiQT3oDaktRdyw6OjrixIkTMW3atHPnzpw5E08++WQ8+uij0dPTE/X19b0eUygUolAopEkL5I7egNpS1LC46aab4uWXX+517s4774xJkybFihUr3lMOAHoDaktRw6KhoSFaWlp6nRs2bFiMGDHiPecBIvQG1BqfvAkAJFP0b4X8uz179iSIAdQSvQHVyx0LACAZwwIASMawAACSMSwAgGQu+82btWJk+zOVjgAA/Z47FgBAMoYFAJCMYQEAJGNYAADJGBYAQDKGBQCQjGEBACRjWAAAyRgWAEAyhgUAkIxhAQAkY1gAAMkYFgBAMoYFAJCMYQEAJGNYAADJGBYAQDKGBQCQjGEBACRjWAAAyRgWAEAyhgUAkMzASgfIizf/6/pKR6AGjWx/ptIRAIrijgUAkIxhAQAkY1gAAMkYFgBAMoYFAJCMYQEAJFP0sHj99ddj/vz5MWLEiBg6dGhMmTIlOjo6SpENqCK6A2pDUZ9j8c9//jNmzpwZn/70p+M3v/lNjBo1Kv7617/GBz/4wRLFA6qB7oDaUdSwePjhh6O5uTk2bNhw7tz48eNTZwKqjO6A2lHUSyE7d+6M6dOnx+233x6jRo2KqVOnxvr16y/4mJ6enuju7u51ALWl2O7QG5BfRQ2LI0eORFtbW1x99dXx2GOPxcKFC2PJkiXxs5/97LyPaW1tjcbGxnNHc3PzZYcG8qXY7tAbkF9FDYuzZ8/GddddF2vWrImpU6fGPffcE1/72teira3tvI9ZuXJldHV1nTs6OzsvOzSQL8V2h96A/CpqWFx11VXx0Y9+tNe5a665Jo4ePXrexxQKhRg+fHivA6gtxXaH3oD8KmpYzJw5Mw4ePNjr3KFDh2LcuHFJQwHVRXdA7ShqWHzzm9+MZ599NtasWROHDx+OzZs3R3t7eyxatKhU+YAqoDugdhQ1LGbMmBE7duyILVu2REtLSzz00EOxdu3amDdvXqnyAVVAd0DtKOpzLCIibr311rj11ltLkQWoYroDaoPvCgEAkjEsAIBkDAsAIBnDAgBIpug3b9aqK277n0pHoBa1VzoAQHHcsQAAkjEsAIBkDAsAIBnDAgBIxrAAAJIxLACAZAwLACAZwwIASMawAACSMSwAgGQMCwAgGcMCAEjGsAAAkjEsAIBkDAsAIBnDAgBIxrAAAJIxLACAZAwLACAZwwIASMawAACSMSwAgGQGVjpAXjTOOVyyaz927EDJrk153NI0pdIR6IdK+udiV+kuTXlUa2+4YwEAJGNYAADJGBYAQDKGBQCQjGEBACRjWAAAyRQ1LE6fPh0PPPBATJgwIYYMGRITJ06MVatWxdmzZ0uVD6gCugNqR1GfY/Hwww/HT37yk9i4cWNMnjw5nn/++bjzzjujsbExli5dWqqMQM7pDqgdRQ2LZ555Jj73uc/F3LlzIyJi/PjxsWXLlnj++edLEg6oDroDakdRL4XMmjUrHn/88Th06FBERLz44ouxd+/emDNnznkf09PTE93d3b0OoLYU2x16A/KrqDsWK1asiK6urpg0aVLU19fHmTNnYvXq1XHHHXec9zGtra3x4IMPXnZQIL+K7Q69AflV1B2Lbdu2xaZNm2Lz5s2xf//+2LhxY/zwhz+MjRs3nvcxK1eujK6urnNHZ2fnZYcG8qXY7tAbkF9F3bH41re+Fffdd1988YtfjIiIj33sY/Haa69Fa2trLFiw4H0fUygUolAoXH5SILeK7Q69AflV1B2LU6dOxYABvR9SX1/vV8aAC9IdUDuKumPx2c9+NlavXh1jx46NyZMnxwsvvBCPPPJI3HXXXaXKB1QB3QG1o6hh8aMf/Si++93vxje+8Y04ceJENDU1xT333BPf+973SpUPqAK6A2pHUcOioaEh1q5dG2vXri1RHKAa6Q6oHb4rBABIxrAAAJIxLACAZAwLACCZot68SWnc0jSl0hGAnGmcc7hEVy7VdUtrZPszpblwe2kuW83csQAAkjEsAIBkDAsAIBnDAgBIxrAAAJIxLACAZAwLACAZwwIASMawAACSMSwAgGQMCwAgGcMCAEjGsAAAkjEsAIBkDAsAIBnDAgBIxrAAAJIxLACAZAwLACAZwwIASMawAACSGVjuJ8yyLCIiTsc7EVm5nx04He9ExP/7u5gHegMqr6/dUfZhcfLkyYiI2Bu7yv3UwP/n5MmT0djYWOkYfaI3oP+4WHfUZWX+Z8vZs2fj2LFj0dDQEHV1dRf82e7u7mhubo7Ozs4YPnx4mRJeHpnLQ+ZLl2VZnDx5MpqammLAgHy8GlrtvRGRz9wyl0d/ydzX7ij7HYsBAwbEmDFjinrM8OHDc/MH4F0yl4fMlyYvdyreVSu9EZHP3DKXR3/I3JfuyMc/VwCAXDAsAIBk+vWwKBQK8f3vfz8KhUKlo/SZzOUhM+eT1//Pecwtc3nkLXPZ37wJAFSvfn3HAgDIF8MCAEjGsAAAkjEsAIBk+u2wWLduXUyYMCEGDx4c06ZNi6eeeqrSkS6otbU1ZsyYEQ0NDTFq1Ki47bbb4uDBg5WO1Wetra1RV1cXy5Ytq3SUi3r99ddj/vz5MWLEiBg6dGhMmTIlOjo6Kh3rvE6fPh0PPPBATJgwIYYMGRITJ06MVatWxdmzZysdrSrlqTvy3hsR+ekOvVFGWT+0devW7IorrsjWr1+fvfLKK9nSpUuzYcOGZa+99lqlo53XLbfckm3YsCH705/+lB04cCCbO3duNnbs2Oytt96qdLSLeu6557Lx48dn1157bbZ06dJKx7mgf/zjH9m4ceOyr3zlK9kf//jH7NVXX81+//vfZ4cPH650tPP6wQ9+kI0YMSL79a9/nb366qvZL37xi+wDH/hAtnbt2kpHqzp5644890aW5ac79EZ59cth8fGPfzxbuHBhr3OTJk3K7rvvvgolKt6JEyeyiMieeOKJSke5oJMnT2ZXX311tnv37uyTn/xkvy6HLMuyFStWZLNmzap0jKLMnTs3u+uuu3qd+/znP5/Nnz+/QomqV967Iy+9kWX56g69UV797qWQt99+Ozo6OmL27Nm9zs+ePTuefvrpCqUqXldXV0REXHnllRVOcmGLFi2KuXPnxs0331zpKH2yc+fOmD59etx+++0xatSomDp1aqxfv77SsS5o1qxZ8fjjj8ehQ4ciIuLFF1+MvXv3xpw5cyqcrLpUQ3fkpTci8tUdeqO8yv4lZBfz5ptvxpkzZ2L06NG9zo8ePTqOHz9eoVTFybIsli9fHrNmzYqWlpZKxzmvrVu3xv79+2Pfvn2VjtJnR44ciba2tli+fHl85zvfieeeey6WLFkShUIhvvzlL1c63vtasWJFdHV1xaRJk6K+vj7OnDkTq1evjjvuuKPS0apK3rsjL70Rkb/u0Bvl1e+Gxbv+/auRsyy76Ncl9xeLFy+Ol156Kfbu3VvpKOfV2dkZS5cujd/97ncxePDgSsfps7Nnz8b06dNjzZo1ERExderU+POf/xxtbW39tiC2bdsWmzZtis2bN8fkyZPjwIEDsWzZsmhqaooFCxZUOl7VyWt35KE3IvLZHXqjzCr7Ssx79fT0ZPX19dn27dt7nV+yZEl24403VihV3y1evDgbM2ZMduTIkUpHuaAdO3ZkEZHV19efOyIiq6ury+rr67PTp09XOuL7Gjt2bHb33Xf3Ordu3bqsqampQokubsyYMdmjjz7a69xDDz2UfeQjH6lQouqU5+7IS29kWT67Q2+UV797j8WgQYNi2rRpsXv37l7nd+/eHTfccEOFUl1clmWxePHi2L59e/zhD3+ICRMmVDrSBd10003x8ssvx4EDB84d06dPj3nz5sWBAweivr6+0hHf18yZM9/z63iHDh2KcePGVSjRxZ06dSoGDOj9V62+vj4fvzaWI3nsjrz1RkQ+u0NvlFmll837efdXxn76059mr7zySrZs2bJs2LBh2d/+9rdKRzuvr3/961ljY2O2Z8+e7I033jh3nDp1qtLR+qy/v7M7y/7Pr7cNHDgwW716dfaXv/wl+/nPf54NHTo027RpU6WjndeCBQuyD3/4w+d+bWz79u3ZyJEjs29/+9uVjlZ18tYd1dAbWdb/u0NvlFe/HBZZlmU//vGPs3HjxmWDBg3Krrvuun7/61cR8b7Hhg0bKh2tz/p7ObzrV7/6VdbS0pIVCoVs0qRJWXt7e6UjXVB3d3e2dOnSbOzYsdngwYOziRMnZvfff3/W09NT6WhVKU/dUQ29kWX56A69UT6+Nh0ASKbfvccCAMgvwwIASMawAACSMSwAgGQMCwAgGcMCAEjGsAAAkjEsAIBkDAsAIBnDAgBIxrAAAJIxLACAZP43tQaPoFCiiHQAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "from skimage.draw import disk\n", - "distortion_x = np.zeros((10, 10))\n", - "distortion_y = np.zeros((10, 10))\n", - "\n", - "xx, yy = disk(center=(5, 5), radius=4, shape=(20, 20))\n", - "\n", - "distortion_x[xx,yy]= np.abs(np.abs(xx-10)-5)\n", - "distortion_y[xx,yy]= np.abs(np.abs(yy-10)-5)\n", - "\n", - "fig, axs = plt.subplots(1, 2)\n", - "axs[0].imshow(distortion_x)\n", - "axs[1].imshow(distortion_y)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[########################################] | 100% Completed | 107.51 ms\n" - ] - } - ], - "source": [ - "data = np.empty((10,10,128,128))\n", - "\n", - "for ind in np.ndindex((10,10)):\n", - " dx = distortion_x[ind]*.1\n", - " dy = distortion_y[ind]*.1\n", - " latt = diffpy.structure.lattice.Lattice(3+dx,3+dy,3,90,90,90)\n", - " atom = diffpy.structure.atom.Atom(atype='Ni',xyz=[0,0,0],lattice=latt)\n", - " structure = diffpy.structure.Structure(atoms=[atom],lattice=latt)\n", - " diffraction = ediff.calculate_ed_data(structure, reciprocal_radius=5.,\n", - " max_excitation_error=0.025,\n", - " with_direct_beam=True)\n", - " diffraction.calibration = 1e-2\n", - " data[ind] = diffraction.get_diffraction_pattern((128,128),sigma=4)\n", - "\n", - "dp = pxm.signals.ElectronDiffraction2D(data)\n", - "\n", - "dp = dp.shift_diffraction(7,8) #shifting diffraction patterns to simulate real_effects\n", - "\n", - "dp = dp+np.random.random((10,10,128,128))*.1" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAI7CAYAAABGPFejAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABAX0lEQVR4nO3de1hU5d7/8c9AIBIHNRJTQQLJrRVpuzT8lVbbPOXTQUNrFx7yVJYm+YhZbctqZ9qu3GptNUytrMw0KVIzt2Ke0/BQqZlEHiBUEMFAE2F+f3Q5TxNozKwFswber+ua63LW6f4Omn773PdaY7Pb7XYBAADA43w8XQAAAAB+Q2MGAABgETRmAAAAFkFjBgAAYBE0ZgAAABZBYwYAAGARNGYAAAAWQWMGAABgERd5ugAAAODdTp8+rTNnztTYeP7+/goICKix8WoSjRkAAHDb6dOndfnllys3N7fGxmzSpImysrJqZXNGYwYAANx25swZ5ebm6tChQwoJCan28YqKihQREaEzZ87QmAEAAFQmODhYwcHB1T5Obf+Kbxb/AwAAWASJGQAAMMxut9dImkViBgAAgBpBYgYAAAwjMTMHiRkAAIBFkJgBAADDSMzMQWIGAABgETRmAAAAFsFUJgAAMIypTHOQmAEAAFgEiRkAADCMxMwcJGYAAAAWQWIGAAAMIzEzB4kZAACARZCYAQAAw0jMzEFiBgAAYBEkZgAAwDASM3OQmAEAAFgEiRkAADCMxMwcJGYAAAAWQWIGAAAMIzEzB4kZAACARdCYAQAAWARTmQAAwDCmMs1BYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFiBgAADCMxMweJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYhEcSs/LycuXk5Cg4OFg2m80TJQAAUOvY7XadPHlSTZs2lY9PzWYvJGbm8EhjlpOTo+YREZ4Y2jQ5Pj66plEjT5fhsosu8u7Z69LSUk+X4DY/Pz9Pl1BnefNf5MHBwZ4uwW2nT5/2dAmGePPfl+vWrVPz5s09XQbc4JE/def+oimTdKSGO3qjwsvL5evpIgAAuABvbujrOo80ZuemL4/4+Oi68HBPlOC2bUeOqGl5uafLAADgvDy1TMib02mr8K64CgAAoBbz3gl0AABgGSz+NweJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFiBgAADCMxMweJGQAAgEXQmAEAgFpr+vTpCg8Pl6+vr2w2m8aPH+/YV1JSog4dOiggIEA2m02+vr6KiYlRRkZGpdcqLy/XpZdeWuE6kpSVlaXo6GjZbDbZbDZFR0frwIEDLtdLYwYAAAw7N5VZEy9XFBQUKDY2VmPGjKmwLy8vT/v379fDDz+sZcuWadasWTpy5IhuuummSq/Vu3fv835BfPv27ZWTk6NZs2Zp1qxZysnJUfv27V2qVWKNGQAAqMUmTJigCRMmSJJefvllp32RkZHKz8932ubn56eBAwdq06ZNio+Pd2z/8MMPlZaWpoyMDF1zzTVO56SlpSkvL08pKSkaPHiwJMnHx0dDhw7V8uXL1aNHjyrXS2IGAAAMq+nELDs7W4cPH3a8ioqKTPkcR44ckSRFREQ4tuXl5SkxMVHJycmKi4urcM7ixYslydGUSdKQIUMkSYsWLXJpfBIzAADgddq0aeP0vnPnzkpPTzd0zRMnTmjixImKiopS8+bNHdtvuukmRUVF6cUXX6z0vOzsbPn5+VXY7ufnp+zsbJdqoDEDAACG1fTjMnbv3q3g4GDH9pCQEEPXLSkpUevWrWW327Vu3TrH9qeeekqZmZk6ePCgW9c935q082EqEwAAeJ1mzZqpefPmjpeRxqykpEQtW7bUiRMntHPnTqe0bNmyZSotLdVll13muONSkl566SU1aNDAUUtpaWmF65aWlqpp06Yu1UJiBgAADPPWB8yea8qOHz+u7du3KzY21mn//PnzlZmZ6bStd+/e6t27tx577DFJUp8+fTRv3jzNnTtXgwYNkiTNmTNHkpSQkOBSPTRmAACg1srNzdXatWsd7/fs2aOFCxcqMjJS7dq1U0xMjI4dO6b33ntPpaWl2rVrlyQpOjpaQUFBiouLq3TB/xVXXKFOnTpJknr16qWwsDCNGDFCZWVlkqSRI0eqcePGLt2RKdGYAQAAE1g1Mfvggw+UlJTkeJ+amqrU1FTFxMRo3rx5ys3NlST169fP6bzXXntNo0ePrvI4mzdvVpcuXTR06FBJUlRUlFs3I9CYAQCAWmv06NEXbLDcaSYrOycmJkZZWVkuX+uPaMwAAIBhVk3MvA13ZQIAAFgEiRkAADCMxMwcJGYAAAAWQWMGAABgEUxlAgAAw5jKNAeJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFiBgAADCMxMweJGQAAgEWQmAEAAFPU9jSrJpCYAQAAWASNGQAAgEUwlQkAAAxj8b85SMwAAAAsgsQMAAAYRmJmDo82ZuHl5dp25IgnS3BZeHm5p0sAAAC1lEcbM19JTb200bHZbAoKCvJ0GXWON/+f0q+//urpEtzm4+Pdqx68uf7i4mJPl+C2evXqeboEQwICAjxdglchMTOHxxqzHC/+i9Jms+mYr6+nywAAALWMxxqzdmFhnhrasMDAQE+XAACApZCYmcN7YysAAIBahrsyAQCAYSRm5iAxAwAAsAgSMwAAYBiJmTlIzAAAACyCxAwAABhGYmYOEjMAAACLoDEDAACwCKYyAQCAYUxlmoPEDAAAwCJIzAAAgGEkZuYgMQMAALAIEjMAAGAYiZk5SMwAAAAsgsQMAAAYRmJmDhIzAAAAiyAxAwAAhpGYmYPEDAAAwCJIzAAAgGEkZuYgMQMAALAIGjMAAACLYCoTAAAYxlSmOUjMAAAALILEDAAAGEZiZg4SMwAAAIsgMQMAAIaRmJmDxAwAAMAiSMwAAIBhJGbmIDEDAACwCBIzAABgitqeZtUEEjMAAACLIDEDAACGscbMHCRmAAAAFkFiBgAADCMxMweJGQAAgEXQmAEAAFgEU5kAAMAwpjLNQWIGAABgESRmAADAMBIzc5CYAQAAWASJGQAAMIzEzBwkZgAAABZBYgYAAAwjMTMHiRkAAIBFkJgBAADDSMzM4bHGLCgoyFNDG3bixAlPl+C20tJST5dgSE5OjqdLcNsnn3zi6RLclpub6+kSDAkMDPR0CW67/fbbPV2C2+644w5Pl2BIUVGRp0tAHURiBgAADCMxMwdrzAAAACyCxgwAAMAimMoEAACGMZVpDhIzAAAAiyAxAwAAhpGYmYPEDAAAwCJIzAAAgGEkZuYgMQMAALAIEjMAAGAYiZk5SMwAAAAsgsQMAAAYRmJmDhIzAAAAiyAxAwAAhpGYmYPEDAAAwCJozAAAgGHnErOaeLli+vTpCg8Pl6+vr2w2m8aPH+/YV1JSog4dOiggIEA2m02+vr6KiYlRRkaG45jMzEzFxcXJ399fNptNF110ka655hodPHjQaZysrCxFR0fLZrPJZrMpOjpaBw4ccPnnSGMGAABqrYKCAsXGxmrMmDEV9uXl5Wn//v16+OGHtWzZMs2aNUtHjhzRTTfd5Dhm165dys/P17hx4/Tf//5XkydP1p49e9SxY0ena7Vv3145OTmaNWuWZs2apZycHLVv397lelljBgAAaq0JEyZowoQJkqSXX37ZaV9kZKTy8/Odtvn5+WngwIHatGmT4uPjdffdd+vuu+927L/11luVnZ2t1157TadPn1ZAQIDS0tKUl5enlJQUDR48WJLk4+OjoUOHavny5erRo0eV6yUxAwAAhtX0VGZ2drYOHz7seBUVFZnyOY4cOSJJioiIOO8x+fn5stlsCggIkCQtXrxYkhxNmSQNGTJEkrRo0SKXxicxAwAAXqdNmzZO7zt37qz09HRD1zxx4oQmTpyoqKgoNW/evNJjfvjhBy1YsMBpKjM7O1t+fn4VjvXz81N2drZLNdCYAQAAw2r6cRm7d+9WcHCwY3tISIih65aUlKh169ay2+1at25dpcccPnxY7dq1U8OGDbVy5coqXddms7lUB40ZAADwOs2aNTPcjJ1TUlKili1b6sSJE9q1a1elaVlOTo5at24tf39//fDDDwoMDHSqpbS0tMI5paWlatq0qUu1sMYMAACYwmqPyqiKc03Z8ePHlZGRodjY2ArHHD58WK1atZKvr6/27dunBg0aOO3v06ePJGnu3LmObXPmzJEkJSQkuFQPiRkAAKi1cnNztXbtWsf7PXv2aOHChYqMjFS7du0UExOjY8eO6b333lNpaal27dolSYqOjlZQUJBycnL0l7/8RWVlZUpNTVVOTo5ycnIkSX/5y1/k7++vXr16KSwsTCNGjFBZWZkkaeTIkWrcuLFLd2RKNGYAAMAEVv1Kpg8++EBJSUmO96mpqUpNTVVMTIzmzZun3NxcSVK/fv2cznvttdc0evRoffjhhyouLpYk/e1vf3M6Zt26dbrxxhslSZs3b1aXLl00dOhQSVJUVJRbNyPQmAEAgFpr9OjRGj169Hn3/1mj92fnnxMTE6OsrCwXq6uIxgwAABhm1cTM27D4HwAAwCJIzAAAgGEkZuYgMQMAALAIGjMAAACLYCoTAAAYxlSmOUjMAAAALILEDAAAGEZiZg4SMwAAAIsgMQMAAIaRmJmDxAwAAMAiSMwAAIBhJGbmIDEDAACwCBIzAABgGImZOUjMAAAALILEDAAAGEZiZg4SMwAAAIsgMQMAAIaRmJmDxAwAAMAiaMwAAAAswmNTmUVFRZ4a2jBfX19Pl+C2/Px8T5dgyJEjRzxdgtsOHDjg6RLcVlpa6ukSDCkuLvZ0CW4rKyvzdAlu27Jli6dLMCQ2NtbTJXgVpjLNQWIGAABgESz+BwAAhpGYmYPEDAAAwCJIzAAAgGEkZuYgMQMAALAIEjMAAGAYiZk5SMwAAAAsgsQMAAAYRmJmDhIzAAAAiyAxAwAAhpGYmYPEDAAAwCJozAAAACyCqUwAAGAYU5nmIDEDAACwCBIzAABgGImZOUjMAAAALILEDAAAmKK2p1k1gcQMAADAIkjMAACAYawxMweJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFjBgAAYBFMZQIAAMOYyjQHiRkAAIBFkJgBAADDSMzMQWIGAABgESRmAADAMBIzc7icmGVkZOibb75xvE9NTdVdd92lJ598UmfOnDG1OAAAgLrE5cZs+PDh2rdvnyTpxx9/1L333qvAwEAtWrRIycnJphcIAACs71xiVhOv2szlxmzfvn1q27atJGnRokXq1KmT3nvvPc2bN0+LFy82uz4AAIA6w+U1Zna7XeXl5ZKkVatWqVevXpKkiIgI5eXlmVsdAADwCqwxM4fLidl1112nF154Qe+8847Wrl2r22+/XZKUlZWl8PBw0wsEAACoK1xOzKZOnar7779fS5cu1VNPPaWWLVtKkj766CN17NjR9AIBAID1kZiZw+XGLC4uzumuzHNefvll+fr6mlIUAABAXWTac8wCAgLMuhQAAECdVKXGrFGjRtq3b5/CwsLUsGFD2Wy28x57/Phx04oDAADegalMc1SpMXvttdcUHBzs+PWFGjMAAAC4p0qN2YABAxy/HjhwYHXVAgAAvBSJmTlcflzGnDlzKt1+9uxZjR8/3nBBAAAAdZXLjdmYMWPUp08fp7Vke/fuVfv27fXhhx+aWhwAAPAOfCWTOVxuzLZv364jR47o6quv1hdffKHXX39d1157ra666irt2LGjGkoEAACoG1x+XMbll1+uL7/8UklJSerevbt8fX319ttv695773XpOmVlZa4ObRne/Ly2801Fe4v9+/d7ugS3bdmyxdMluO3IkSOeLsGQkJAQT5fgtsDAQE+X4LZzN415q9qezJiNNWbmcDkxk6S0tDS9//776tixoxo0aKA333xTOTk5ZtcGAABQp7jcmA0fPlx9+/ZVcnKyvvzyS+3atUv16tXT1VdfzRozAADqKNaYmcPlqcwNGzZoy5YtuuaaayRJTZo00bJly/T666/rwQcfVN++fU0vEgAAoC5wuTH7+uuvVa9evQrbH3nkEXXp0sWUogAAgHdhjZk5XJ7KrKwpO6dVq1aGigEAAKjL3PoS848++kgffvihDh48qDNnzjjty8jIMKUwAADgPUjMzOFyYjZt2jQNGjRIjRs31vbt29W+fXtdcskl+vHHH9WjR4/qqBEAAKBOcLkxe+ONNzR79mzNmDFD/v7+Sk5O1hdffKFRo0apsLCwOmoEAACoE1xuzA4ePKiOHTtKkurXr6+TJ09KkhITE/X++++bWx0AAPAaPCrDOJcbsyZNmig/P1+S1KJFC23evFmSlJWVVSd+YAAAANXF5cbs1ltv1aeffipJGjx4sJKSknTbbbepX79+uvvuu00vEAAAWB8PmDWHy3dlzp49W+Xl5ZKkhx56SI0aNdL69ev1P//zP3rooYdMLxAAAKCucLkx8/HxkY/P/wVtffv25Wn/AADUcTwuwxxufYk5AAAAzOfWA2YBAAB+j8TMHCRmAAAAFkFiBgAADCMxM4dbj8s4ceJEhe1FRUW69dZbzagJAACgTnK5MUtPT6/wxeWSdPr0aa1bt86UogAAgHex6nPMpk+frvDwcPn6+spms2n8+PGOfSUlJerQoYMCAgJks9nk6+urmJgYZWRkOF2jqKhIcXFx8vHxkc1mU5MmTbR161anY7KyshQdHS2bzSabzabo6GgdOHDA5Z9jlacyd+3a5fj17t27lZub63hfVlamFStWqFmzZi4XAAAAUF0KCgoUGxurAQMG6OWXX3bal5eXp/379+vhhx9W165dlZ2drdGjR+umm25ScXGx47j4+Hjt3btXL730kiIiIjRixAh16tRJhYWF8vf3lyS1b99eJ0+e1KxZsyRJo0aNUvv27XXkyBGX6q1yY9a2bVtHF1jZlGX9+vU1ffp0lwYHAACoThMmTNCECRMkqUJjFhkZ6fiayXP8/Pw0cOBAbdq0SfHx8Tp48KB2796tUaNGKTk5WZLUqlUr/fWvf9XLL7+sp556SmlpacrLy1NKSooGDx4s6bfnvg4dOlTLly9Xjx49qlxvlacys7KylJmZKbvdrq+++kpZWVmOV3Z2toqKivTggw9WeWAAAFB71PRUZnZ2tg4fPux4FRUVmfI5ziVcERERkqRFixZJkkaPHu045tprr1VAQIBWrlwpSVq8eLEkOZoySRoyZIjT+VVV5cSsRYsWkuT4OiYAAABPadOmjdP7zp07Kz093dA1T5w4oYkTJyoqKkrNmzeXJP3444+SpMsvv9zp2MDAQB09elTSb02in59fhev5+fkpOzvbpRpcXvw/f/58ffbZZ473ycnJatCggTp27OjWIjcAAOD9ajox2717tw4dOuR4ffLJJ4bqLykpUevWrWW326t8M6PNZjPlmN9zuTF78cUXVb9+fUnSpk2bNGPGDE2ZMkVhYWFKSkpy9XIAAAAua9asmZo3b+54hYSEuH2tkpIStWzZUidOnNDOnTsdaZkkRUdHS/ptSdcfz7n00ksdtZSWlla4bmlpqZo2bepSLS43ZocOHVLLli0lSUuXLtU999yjYcOGadKkSTwuAwCAOsqqj8v4M+easuPHjysjI0OxsbFO+xMSEiRJ06ZNc2zbsWOHTp8+ra5du0qS+vTpI0maO3eu45g5c+Y4nV9VLj/5PygoSPn5+YqMjNTKlSsdKVlAQIBOnTrl6uUAAACqTW5urtauXet4v2fPHi1cuFCRkZFq166dYmJidOzYMb333nsqLS11PB4sOjpaQUFBioyMVJs2bTR9+nQ1bdpUzZs31yOPPKKAgACNHTtWktSrVy+FhYVpxIgRKisrkySNHDlSjRs3dumOTMmNxuy2227TkCFD1K5dO+3bt0+33367JOm7775TVFSUq5cDAAC1gFW/kumDDz5wWmqVmpqq1NRUxcTEaN68eY7nsvbr18/pvNdee81xJ+aGDRvUqVMnjRs3Tna7XY0bN9by5csdzzCTpM2bN6tLly4aOnSoJCkqKsqtmxFcbsxef/11Pf300zp06JAWL16sSy65RJL09ddf67777nO5AAAAgOoyevRop0dd/FFVGr0GDRo4PWi/MjExMRXWobnD5casQYMGmjFjRoXtEydONFwMAADwTlZNzLyNy4v/z6ekpERffvmlWZcDAACoc1xOzM7nhx9+0C233OJY9AYAAOoOEjNzmJaYAQAAwJgqJ2aNGjW64H6SMgAA6i4SM3NUuTH79ddf9fDDD+vqq6+udP+BAwe4AQAAAMCAKjdmbdu2VUREhAYMGFDp/p07d9KYAQAAGFDlxuz222/XiRMnzru/UaNG6t+/vxk1AQAAL8NUpjmq3Jg9+eSTF9wfERHh9B1RAAAAcI1pj8sAAAB1F4mZOXhcBgAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYRJUSs4YNG8pms1XpgsePHzdUEAAA8D4kZuaoUmM2depUx6/z8/P1wgsvqFu3boqPj5ckbdq0SZ9//rn+8Y9/VEuRAAAAdUGVGrPffw1Tnz599Nxzz+nRRx91bBs1apRmzJihVatWKSkpqUoDN2zY0MVSreOXX37xdAluy8/P93QJhhQXF3u6BLd5c5rs4+Pdqx5OnTrl6RLcVlpa6ukS3Pbzzz97ugRDvP3PvSfU9jSrJrj8p+7zzz9X9+7dK2zv1q2bVq1aZUpRAAAAdZHLjdkll1yijz/+uML2pUuX6pJLLjGlKAAAgLrI5cdlTJw4UYMHD1Z6erpjjdnmzZu1YsUKpaSkmF4gAACwPhb/m8PlxmzgwIFq3bq1pk2bpiVLlshut6tNmzbasGGDOnToUB01AgAA1AluPWC2Q4cOWrBggdm1AAAAL0ViZg63bjnJzMzU008/rb///e86evSoJGnFihX67rvvTC0OAACgLnG5MVu7dq2uvvpqbdmyRYsXL3Y8OmLXrl165plnTC8QAABY37nErCZetZnLjdkTTzyhF154QV988YX8/f0d22+55RZt2rTJ1OIAAADqEpfXmH3zzTd67733Kmy/9NJLvf7hpQAAwD2sMTOHy4lZgwYNKn2a8/bt29WsWTNTigIAAKiLXG7M/v73v2vcuHHKzc2VzWZTeXm5NmzYoP/93/9V//79q6NGAABgcawxM4fLjdk///lPRUZGqlmzZvrll1/Upk0bderUSR07dtTTTz9dHTUCAADUCS6vMfPz89OCBQv03HPPafv27SovL1e7du0UGxtbHfUBAAAvwBozc7j1gFlJiomJUUxMjJm1AAAA1GkuN2Z2u10fffSR1qxZo6NHj6q8vNxp/5IlS0wrDgAAeAcSM3O43Jg99thjmj17tm655RaFh4fLZrNVR10AAAB1jsuN2bvvvqslS5aoZ8+e1VEPAABAneVyYxYaGqro6OjqqAUAAHgppjLN4fLjMp599llNnDhRp06dqo56AAAA6iyXE7OEhAS9//77aty4saKiouTn5+e0PyMjw7TiAACAdyAxM4fLjdnAgQP19ddf64EHHmDxPwAAgIlcbsw+++wzff7557rxxhurox4AAOCFSMzM4fIas4iICIWEhFRHLQAAAHWay43ZK6+8ouTkZP3000/VUA4AAPBGfIm5OVyeynzggQdUUlKimJgYBQYGVlj8f/z4cdOKAwAAqEtcbsymTp1aDWUAAABvxhozc7jcmA0YMKA66gAAAKjzXG7Mfu/UqVMqLS112saNAQAA1D0kZuZwefF/cXGxHn30UTVu3FhBQUFq2LCh0wsAAADucbkxS05O1urVq/XGG2+oXr16SklJ0cSJE9W0aVO9/fbb1VEjAABAneDyVOann36qt99+WzfffLMefPBB3XTTTWrZsqVatGihBQsW6P7776+OOgEAgIUxlWkOlxOz48eP6/LLL5f023qyc4/HuPHGG/Xll1+aWx0AAEAd4nJjFh0d7Xi4bJs2bfThhx9K+i1Ja9CggZm1AQAAL8EDZs3hcmM2aNAg7dy5U5I0fvx4x1qzpKQkjR071vQCAQAA6gqX15glJSU5fn3LLbdo79692rZtm2JiYnTNNdeYWhwAAPAOrDEzh6HnmElSZGSkIiMjzagFAACgTnOrMfvvf/+r//73vzp69KjKy8ud9r311lumFAYAALwHiZk5XG7MJk6cqOeee07XXXedLrvsMtlstuqoCwAAoM5xuTGbOXOm5s2bp8TExOqoBwAAeKnanmbVBJfvyjxz5ow6duxYHbUAAADUaS43ZkOGDNF7771XHbUAAAAvxXPMzOHyVObp06c1e/ZsrVq1SnFxcfLz83Pa/+qrr5pWHAAAQF3icmO2a9cutW3bVpL07bffOu3jRgAAAOom7so0h8uN2Zo1a6qjDgAAgDrP5TVmAAAAqB4uJ2bFxcV66aWXzvuA2R9//NG04gAAgHdgKtMcLjdmQ4YM0dq1a5WYmMgDZgEAAEzkcmO2fPlyffbZZ/p//+//GRr49OnThs73pHr16nm6BLeFhIR4ugRDLrvsMk+X4Lb69et7ugS3lZaWeroEQ7y5/j/OSniT1q1be7oEQw4cOODpErwKiZk5XF5j1rBhQzVq1Kg6agEAAKjTXG7Mnn/+eU2YMEElJSXVUQ8AAPBCPGDWHC5PZb7yyivKzMxUeHi4oqKiKjxgNiMjw7TiAAAA6hKXG7O77rqrGsoAAADejDVm5nC5MXvmmWeqow4AAIA6z+XGDAAA4I9IzMxR5cX/Pj4+8vX1rfBq2LChbrjhBi1ZsqQ66wQAAKj1qpyYffzxx5VuP3HihL766is98MADmj9/vhISEkwrDgAAeAcSM3NUuTG78847z7tvwIABatOmjf71r3/RmAEAALjJtC8x79q1q/bt22fW5QAAAOoc0xb/nzp1SgEBAWZdDgAAeBGmMs1hWmL25ptvql27dmZdDgAAoM6pcmL2+OOPV7q9sLBQ27ZtU2ZmptatW2daYQAAwHuQmJmjyo3Z9u3bK90eEhKi7t27a8SIEWrRooVphQEAANQ1VW7M1qxZU511AAAAL0ZiZg7T1pgBAADAGL6SCQAAGEZiZg4SMwAAAIsgMQMAAIaRmJmDxAwAANRa06dPV3h4uHx9fWWz2TR+/Hin/cnJyQoLC5OPj49sNpsWLlxY4Rq7du1SdHS04xqBgYEaM2aM0zFZWVmKjo6WzWaTzWZTdHS0Dhw44HK9NGYAAMCwc4lZTbxcUVBQoNjY2AqN1DlFRUWKi4tTYmLiea9xyy236OjRo0pJSdGaNWvUsWNHvfrqq3r//fcdx7Rv3145OTmaNWuWZs2apZycHLVv396lWiUaMwAAUItNmDBB69ev15QpUyrdP3PmTK1evVpDhw497zWOHz+uBx54QIMGDdLNN9+sVatWyWaz6fPPP5ckpaWlKS8vT6+//rqGDRumYcOGacaMGTp69KiWL1/uUr00ZgAAwDCrJmZmuOSSS/Txxx8rMzNTZ8+e1ahRo2S329W/f39J0uLFiyVJgwcPdpwzZMgQSdKiRYtcGovF/wAAwOtkZ2erqKjI8T4kJEQhISHVMlZGRoauvfZatWzZ0rFt0qRJuvXWWx21+Pn5VTjPz89P2dnZLo1FYwYAALxOmzZtnN537txZ6enp1TJWr169dPr0aU2ZMkUtWrTQf/7zH40fP16xsbHq06fPBc+12WwujUVjBgAADKvpx2Xs3r1bwcHBju3VlZatXr1a33zzjZYuXao777xTktS3b181atRI//jHP9SnTx81a9ZMpaWlFc4tLS1V06ZNXRqPNWYAAMDrNGvWTM2bN3e8qqsxKygokCT5+vo6bffx8XE0iedSs7lz5zr2z5kzR5KUkJDg0ngkZgAAwDCrPmA2NzdXa9eudbzfs2ePFi5cqMjISMXHxyszM1Pbtm3T3r17JUkbN26UJLVu3VpxcXHq0aOH/Pz8dP/992vq1Klq0aKFXnvtNeXn52vkyJGSfpvqDAsL04gRI1RWViZJGjlypBo3bqwePXq4VC+NGQAAqLU++OADJSUlOd6npqYqNTVVMTEx2r9/vyZNmuRItyRp2rRpmjZtmmPNWmBgoD777DMNHDhQgwcPlt1uV0BAgIYPH65nnnnGcd7mzZvVpUsXx2M3oqKi3FrzRmMGAABMYcWvSxo9erRGjx593v0pKSlKSUm54DVuu+22P727MiYmRllZWe6U6IQ1ZgAAABZBYgYAAAyz6hozb0NiBgAAYBEkZgAAwDASM3OQmAEAAFgEiRkAADCMxMwcJGYAAAAWQWMGAABgEUxlAgAAw5jKNAeJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFuGxxCwsLMxTQxtWVFTk6RLcNnz4cE+XYMi3337r6RLcVlpa6ukS3Hb27FlPl2CIv7+/p0twW//+/T1dgttCQkI8XYIhrVq18nQJXoXEzBwkZgAAABbBGjMAAGAYiZk5SMwAAAAsgsQMAAAYRmJmDhIzAAAAi6AxAwAAsAimMgEAgGFMZZqDxAwAAMAiSMwAAIBhJGbmIDEDAACwCBIzAABgGImZOUjMAAAALILEDAAAGEZiZg4SMwAAAIsgMQMAAIaRmJmDxAwAAMAiSMwAAIBhJGbmIDEDAACwCBIzAABgGImZOUjMAAAALILGDAAAwCKYygQAAIYxlWkOEjMAAACLIDEDAACmqO1pVk0gMQMAALAIEjMAAGAYa8zMQWIGAABgESRmAADAMBIzc5CYAQAAWASJGQAAMIzEzBwkZgAAABZBYgYAAAwjMTMHiRkAAIBF0JgBAABYBFOZAADAMKYyzUFiBgAAYBEkZgAAwDASM3OQmAEAAFgEiRkAADCMxMwcJGYAAAAWQWIGAAAMIzEzB4kZAACARZCYAQAAw0jMzEFiBgAAYBEkZgAAwDASM3OQmAEAAFiExxKzvLw8Tw1tWGlpqadLcFtUVJSnSzBk+/btni7BbREREZ4uwW0FBQWeLsGQJk2aeLoEt/n7+3u6BLddc801ni7BkJMnT3q6BK9CYmYOEjMAAACLoDEDAACwCBb/AwAAw5jKNAeJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFiBgAADCMxMweJGQAAgEWQmAEAAMNIzMxBYgYAAGARNGYAAAAWwVQmAAAwRW2fZqwJJGYAAAAWQWIGAAAMY/G/OUjMAAAALILEDAAAGEZiZg4SMwAAAIsgMQMAAIaRmJmDxAwAANRa06dPV3h4uHx9fWWz2TR+/Hin/cnJyQoLC5OPj49sNpsWLlxY6XVmz56thg0bymazyWazqUGDBjp+/Lhjf1ZWlqKjox37o6OjdeDAAZfrpTEDAACGnUvMauLlioKCAsXGxmrMmDGV7i8qKlJcXJwSExPPe43Zs2dr+PDh6tChg5YuXaqVK1dq8ODBuuii/5t4bN++vXJycjRr1izNmjVLOTk5at++vUu1SkxlAgCAWmzChAmaMGGCJOnll1+usH/mzJmSpPXr1+vtt9+u9BqPP/64brzxRq1YscKx7bbbbnP8Oi0tTXl5eUpJSdHgwYMlST4+Pho6dKiWL1+uHj16VLleEjMAAGBYTSdm2dnZOnz4sONVVFRULZ/ru+++U3FxscLDwxUcHCwfHx81aNBAb7zxhuOYxYsXS5KjKZOkIUOGSJIWLVrk0ng0ZgAAwOu0adNGERERjtcdd9xRLeNs2rRJkrRkyRIlJCRowYIFio6O1iOPPKIvvvhC0m9Nop+fX4Vz/fz8lJ2d7dJ4TGUCAADDavquzN27dys4ONixPSQkpFrGKysrkyTdcMMNeuuttyRJ9913n+rXr68JEyY4TWlWxmazuTQejRkAAPA6zZo1q7Zm7Pdat24tSbrmmmuctl966aX6+eefHbWUlpZWOLe0tFRNmzZ1aTymMgEAAM7jxhtvlI+Pj7799lun7Xl5eY6mq0+fPpKkuXPnOvbPmTNHkpSQkODSeCRmAADAMKs+YDY3N1dr1651vN+zZ48WLlyoyMhIxcfHKzMzU9u2bdPevXslSRs3bpT0W1IWFxcnHx8f3XHHHVq6dKnGjBmjnj176tlnn9WpU6f0wgsvSJJ69eqlsLAwjRgxwjH1OXLkSDVu3NilOzIlyWb3wCN0i4qKHNGgN6osrvQW9evX93QJhmzfvt3TJbgtNTXV0yW4raCgwNMlGNKkSRNPl+C2Ll26eLoEt3Xo0MHTJRhy8uRJT5fgth9//LFGpvmk3/5NDw0N1VVXXSVfX99qH6+srEzffvutCgsLq/QZp06dqqSkpArbY2JitH//fg0ZMsSRbv1e586dlZ6e7njfvXt3rVq1SmVlZQoKCtLkyZM1YsQIx/7MzEx16dJFP/30kyQpKipK6enpatGihUufj8QMAAAYZtXEbPTo0Ro9evR596ekpCglJeVPr/P7Z5hVJiYmRllZWS7VVhnWmAEAAFgEiRkAADDMqomZtyExAwAAsAgSMwAAYBiJmTlIzAAAACyCxAwAABhGYmYOEjMAAACLIDEDAACGkZiZg8QMAADAImjMAAAALIKpTAAAYBhTmeYgMQMAALAIEjMAAGAYiZk5SMwAAAAswmOJ2dmzZz01tGGhoaGeLsFtPj7e3Ytfe+21ni7BbYWFhZ4uwW3BwcGeLsEQm83m6RLcNmnSJE+X4LZTp055ugRDvP3PfU0jMTOHd/8rDQAAUIuwxgwAABhGYmYOEjMAAACLIDEDAACGkZiZg8QMAADAIkjMAACAKWp7mlUTSMw86N1339VTTz3l0jnPP/+8tm7dqh9++EGtW7d26xruePvtt/Xkk09W+zgAANRltSYxGzVqlHr27KnY2FidPn1aW7du1fPPP6/MzExPl2aaTp06qXfv3nrggQd06NAhFRQU6JFHHvHqZ8IBAGoH1piZo9YkZvHx8Zo7d6569uyphIQEXXTRRVq4cKECAwNdvlZoaKhb51W3yMhIHTt2TNu3b1deXp7KyspUWFio4uLiGq+lcePG8vX1rfFxAQCozWpNY3bfffdp4cKF+v7777V792499thjioiIUFxcXJXO9/X1VZcuXTR79mzt2rVLUVFRkqStW7dq2LBhTsd+8sknGjlypOP9u+++q3/84x9KTk7W1q1btXHjRqf9klS/fn1NmTJFO3bs0IYNG/Tggw9WWsfQoUO1evVqffPNN/rkk0/UvXt3SdLkyZP1zDPPqFmzZvrhhx+0Zs0ax9i/n8qsSi2SNGTIEK1atUo7d+5UamqqunXr5lTr5MmTlZGRoXXr1mnQoEEVzk9ISNDatWs1btw4XXHFFRf60QIAgCqqNVOZf3TuqzROnDhxweNat26tvn376p577tFFF12kTz75RH369NHu3btdGu/uu+/WW2+9pXvuuUft2rVzNDYbNmyQJI0bN0433HCDHnnkER07dkxjxozRlVdeqT179jiukZSUpG7dumnChAk6cOCArr/+ev3rX//S8ePH9fzzz+vgwYPq16+fevfurfLycrdrGT16tLp27apnn31WP/30k66//nq9/PLLOn78uLZu3ark5GR16NBBjz76qPLy8pSUlKSrrrpKe/fudYzx5ptv6scff9Sdd96pJUuWaN++fVq6dKk+/fRTFRQUuPSzAwB4P6YyzVFrG7PnnntOmzdvdmomzmnYsKH69Omjfv36qVWrVlq9erXGjRunL774QqWlpW6Nt3fvXs2YMUOSdODAAT3wwAOKj4/Xhg0bFBgYqISEBI0dO9bRHCUnJ2vdunWO8+vXr68HH3xQiYmJ2rFjhyTp0KFD+utf/6p7771Xjz/+uIqLi1VWVqa8vDy3a6lfv74GDRqkAQMGOMY5fPiw/vrXv6pfv3767rvvdM899yg5OVkbN26UJD3xxBNau3at0xhnzpzR8uXLtXz5cjVq1Ej/8z//o7vuuktjx47Vl19+qY8//lhr1qxRWVmZWz9PAADqolrZmE2aNEmtW7fWHXfcUen+wYMHa+zYsdq0aZNuuOEG5eTkGB7z+++/d3p/7NgxXXLJJZJ+Wxvm7++v7du3O/YXFhYqKyvL8b5ly5YKCAjQvHnznK7j5+fnlKoZreXcOG+99Val40RERMjf39/RtFVW6x8dP35c8+fP1/z589WpUydNmjRJXbp00Z133llpYwwAqH1IzMxR6xqzF198Ud26ddNdd92ln3/+udJj3nnnHZ09e1Z9+/bVunXrlJaWpo8++kjr16+v8Btut9tls9mctl10UcUf2x/vjLTb7fLx+W0J3x/Pr8y5Y4cNG6bc3FynfWfOnPnT812tZfjw4Tpy5EiFcRo0aODSWJJ08cUXq1u3brrzzjt13XXXaevWrZoyZUqtuiMWAICaUKsasxdffFE9e/bU3XffrYMHD573uCNHjmjq1KmaOnWqrrvuOvXr109z5szRL7/8oiVLlmjRokWO1Ck/P1+NGzd2nBsUFKTmzZu7VNeBAwd05swZtW3b1tEshoSEKCoqSl999ZUkaf/+/fr111912WWXObZVh8zMTP36669q2rSptm7dWmF/UVHReWv9/fE+Pj668cYbdccdd6hLly7Kzc1VamqqnnjiifM2xACA2ovEzBy1pjF76aWX1Lt3bw0YMEC//PKLLr30UknSyZMndfr06fOet23bNm3btk1PP/20evToob59+2r16tXq0qWL9uzZo/Xr16tfv35auXKlCgsLNW7cOJfXTZWUlOijjz7SuHHjdOLECeXl5enxxx93WsBfXFysOXPm6Mknn5SPj4++/vprBQUFqV27diopKdHHH3/s3g/mD4qLi/XWW29p/PjxstlsFcZZunSpFi9erLFjx6qgoED5+flKSkqq8B/CQw89pEGDBmn58uUaNGiQ0zQtAABwT61pzM490mHp0qVO20eNGqWFCxf+6fm//vqrli5dqqVLlyo8PNzxbLB///vfatGihd59910VFRVp8uTJuvzyy12ub/LkyQoMDNTMmTMdzdG5O0fPee2115Sfn6/hw4crIiJCJ0+e1HfffaeZM2e6PN6FTJ061TFO8+bNdfLkSe3evdsxzpQpUxQYGKj//Oc/Ki4u1ty5cxUUFOR0jdTUVKWkpLg8zQoAqJ1IzMxhs3vgExYVFSk2NramhzVNSEiIp0tw27m1Zt7q119/9XQJbissLPR0CW774/9EeJuqrPO0Km/+++bYsWOeLsGQ+vXre7oEt+3cubPG/uwUFRUpNDRUERERNfJvTHl5uQ4dOqTCwkKv/u/jfGpNYgYAADyHxMwc3h2fAAAA1CIkZgAAwDASM3PUusbs888/d3q8RXXw9nVa1S0vL099+vTxdBkAAHidWteYNW7cWE2bNvV0GQAAAC6rdY3Z0aNHq30MErML+7Pv8gQA1D5MZZqj1jVm3bp1q/YxvPn2XJpKAACsq9Y1ZgAAoOaRmJmD+AQAAMAiSMwAAIBhJGbmIDEDAACwCBIzAABgGImZOUjMAAAALILEDAAAGEZiZg4SMwAAAIsgMQMAAIaRmJmDxAwAAMAiSMwAAIBhJGbmIDEDAACwCBozAAAAi2AqEwAAGMZUpjlIzAAAACyCxAwAABhGYmYOEjMAAACLIDEDAACGkZiZg8QMAADAIkjMAACAKWp7mlUTPJKY8RsHAED14d9Z7+WRxOzkyZM6evSoJ4Y2hTfXDrjjxIkTni4BgAtOnjyp0NDQGh2zpprB2t50eqQxa9q0qQ4dOqTg4GDZbDZPlAAAQK1jt9t18uRJNW3a1NOlwE0eacx8fHzUvHlzTwwNAECtVtNJ2TkkZubgrkwAAACLoDEDAACwCBozAH9q3rx5atCgQbVc++abb9bo0aOr5dpWHBeorc49YLYmXrUZjRlQRef7h3zp0qXcxCKpoKBAiYmJCg0NVWhoqBITE53u5kxPT5fNZrPMHZ5LlizR888/7+kyAMAJjRkAU/z973/Xjh07tGLFCq1YsUI7duxQYmKip8s6r0aNGik4ONjTZQC1BomZOWjMAJM9++yzatu2rd555x1FRUUpNDRU9957r06ePOk45uabb9aoUaOUnJysRo0aqUmTJnr22WedrvPqq6/q6quv1sUXX6yIiAiNGDFCv/zyi2P/uenFtLQ0tWrVSoGBgbrnnntUXFys+fPnKyoqSg0bNtTIkSNVVlbmOO/MmTNKTk5Ws2bNdPHFF6tDhw5KT093GnvevHmKjIxUYGCg7r77buXn51/wM+/Zs0crVqxQSkqK4uPjFR8frzfffFNpaWn6/vvv9dNPP+mWW26RJDVs2FA2m00DBw50nF9eXn7Bn8Ufbd26VbfddpvCwsIUGhqqzp07KyMjw7E/PT1d/v7+WrdunWPbK6+8orCwMP3888+O34PfJ6BvvPGGYmNjFRAQoPDwcN1zzz0XrAEAqgONGVANMjMztXTpUqWlpSktLU1r167VSy+95HTM/PnzdfHFF2vLli2aMmWKnnvuOX3xxReO/T4+Ppo2bZq+/fZbzZ8/X6tXr1ZycrLTNUpKSjRt2jR98MEHWrFihdLT09W7d28tW7ZMy5Yt0zvvvKPZs2fro48+cpwzaNAgbdiwQR988IF27dqlhIQEde/eXT/88IMkacuWLXrwwQc1YsQI7dixQ7fccoteeOGFC37eTZs2KTQ0VB06dHBsu+GGGxQaGqqNGzcqIiJCixcvliR9//33+vnnn/Xvf/+7yj+LPzp58qQGDBigdevWafPmzYqNjVXPnj0dze+5pisxMVGFhYXauXOnnnrqKb355pu67LLLKlxv27ZtGjVqlJ577jl9//33WrFihTp16nTBzwzAGYmZSewAqqRz5872xx57rML2jz/+2P77/5SeeeYZe2BgoL2oqMixbezYsfYOHTo4XevGG290us71119vHzdu3HnH//DDD+2XXHKJ4/3cuXPtkuz79+93bBs+fLg9MDDQfvLkSce2bt262YcPH2632+32/fv32202mz07O9vp2n/729/s48ePt9vtdvt9991n7969u9P+fv362UNDQ89b2z//+U97bGxshe2xsbH2F1980W632+1r1qyxS7IXFBQ4HePOz+KPzp49aw8ODrZ/+umnjm2//vqrvV27dva+ffvar7zySvuQIUMqjHvu93Px4sX2kJAQp98zAFVTWFhol2QPCgqyBwcHV/srKCjILsleWFjo6Y9eLUjMgGoQFRXltH7psssuq/BVXnFxcU7v/3jMmjVrdNttt6lZs2YKDg5W//79lZ+fr+LiYscxgYGBiomJcbwPDw9XVFSUgoKCnLadu25GRobsdruuuOIKBQUFOV5r165VZmampN+mJePj451q++P7ylR2A4Tdbq/SjRF/9rP4o6NHj+qhhx7SFVdc4bjZ4JdfftHBgwcdx/j7++vdd9/V4sWLderUKU2dOvW817vtttvUokULRUdHKzExUQsWLFBJScmf1g3g/9hJzEzhkSf/A94oJCREhYWFFbafOHFCISEhTtv8/Pyc3ttsNpWXl1f5mAMHDqhnz5566KGH9Pzzz6tRo0Zav369Bg8erNLS0gte40LXLS8vl6+vr77++mv5+vo6HXeumXPnL70mTZroyJEjFbYfO3ZM4eHhf3p+VX5evzdw4EAdO3ZMU6dOVYsWLVSvXj3Fx8frzJkzTsdt3LhRknT8+HEdP35cF198caXXCw4OVkZGhtLT07Vy5UpNmDBBzz77rLZu3VptjwkBgMqQmAFV9Je//EXbtm2rsH3r1q1q1aqVqWNt27ZNZ8+e1SuvvKIbbrhBV1xxhXJycgxft127diorK9PRo0fVsmVLp1eTJk0kSW3atNHmzZudzvvj+z+Kj49XYWGhvvrqK8e2LVu2qLCwUB07dpT0W4IlyelGBHetW7dOo0aNUs+ePXXllVeqXr16ysvLczomMzNTSUlJevPNN3XDDTeof//+F2z2LrroInXp0kVTpkzRrl279NNPP2n16tWGawXqChIzc9CYAVU0YsQIZWZm6pFHHtHOnTu1b98+vf7665ozZ47Gjh1r6lgxMTE6e/aspk+frh9//FHvvPOOZs6cafi6V1xxhe6//371799fS5YsUVZWlrZu3arJkydr2bJlkqRRo0ZpxYoVmjJlivbt26cZM2ZoxYoVF7xu69at1b17dw0dOlSbN2/W5s2bNXToUPXq1cvRtLZo0UI2m01paWk6duyY0x2mrmrZsqXeeecd7dmzR1u2bNH999+v+vXrO/aXlZUpMTFRXbt21aBBgzR37lx9++23euWVVyq9XlpamqZNm6YdO3bowIEDevvtt1VeXm56ww0Af4bGDKiiqKgorVu3TpmZmeratauuv/56zZs3T/PmzVNCQoKpY7Vt21avvvqqJk+erKuuukoLFizQpEmTTLn23Llz1b9/f40ZM0atWrXSHXfcoS1btigiIkLSb3dTpqSkaPr06Wrbtq1Wrlypp59++k+vu2DBAl199dXq2rWrunbtqri4OL3zzjuO/c2aNdPEiRP1xBNPKDw8XI8++qjbn+Gtt95SQUGB2rVrp8TERI0aNUqNGzd27P/nP/+pn376SbNnz5b021RrSkqKnn76ae3YsaPC9Ro0aKAlS5bo1ltvVevWrTVz5ky9//77uvLKK92uEahrSMzMYbPX9k8IAACqTVFRkUJDQ1W/fv0a+RYUu92uU6dOqbCwsML63tqAxf8AAMCwmsp5anuexFQmAACARdCYAQAAWARTmQAAwDCmMs1BYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAACg1po+fbrCw8Pl6+srm82m8ePHO+1PTk5WWFiYfHx8ZLPZtHDhwvNeq7y8XJdeemml18nKylJ0dLRsNptsNpuio6N14MABl+ulMQMAAIZZ9SuZCgoKFBsbqzFjxlS6v6ioSHFxcUpMTPzTa/Xu3fu8327Qvn175eTkaNasWZo1a5ZycnLUvn17l2qVaMwAAEAtNmHCBK1fv15TpkypdP/MmTO1evVqDR069ILX+fDDD5WWlqZVq1ZV2JeWlqa8vDy9/vrrGjZsmIYNG6YZM2bo6NGjWr58uUv10pgBAADDajoxy87O1uHDhx2voqKiavtseXl5SkxMVHJysuLi4irsX7x4sSRp8ODBjm1DhgyRJC1atMilsVj8DwAAvE6bNm2c3nfu3Fnp6enVMtZNN92kqKgovfjii5Xuz87Olp+fX4Xtfn5+ys7OdmksGjMAAGBYTd+VuXv3bgUHBzu2h4SEVMt4Tz31lDIzM3Xw4EG3zj/fmrTzYSoTAAB4nWbNmql58+aOV3U1ZsuWLVNpaakuu+wyxx2XkvTSSy+pQYMGjlpKS0srnFtaWqqmTZu6NB6NGQAAwHnMnz9fS5YscXpJv92h+cknn0iS+vTpI0maO3eu47w5c+ZIkhISElwaj6lMAABgmFUfMJubm6u1a9c63u/Zs0cLFy5UZGSk4uPjlZmZqW3btmnv3r2SpI0bN0qSWrdurbi4OMfrj6644gp16tRJktSrVy+FhYVpxIgRKisrkySNHDlSjRs3Vo8ePVyq12av7Y/QBQAA1aaoqEihoaFO03zV6dydmYWFhVWavpw6daqSkpIqbI+JidH+/fs1ZMgQR7r1exe6mcBms+mJJ57QpEmTHNsyMzPVpUsX/fTTT5KkqKgopaenq0WLFlX7YOeuTWMGAADcda4xk1xf6O6Oc21LVRszb8MaMwAAAItgjRkAADAFk3DGkZgBAABYBI0ZAABwm7+/v5o0aVKjYzZp0kT+/v41OmZNYfE/AAAw5PTp0zpz5kyNjefv76+AgIAaG68m0ZgBAABYBFOZAAAAFkFjBgAAYBE0ZgAAABZBYwYAAGARNGYAAAAWQWMGAABgETRmAAAAFvH/AclbmLBkno+ZAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAI1CAYAAAAKDIRYAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADBQklEQVR4nO29ebxeVXX//0nClDBEICRhJoAgUSkIFgIoUquiRVAQkdEiVCsKVBDQKpOFqgjKVKQqBaQo8GVwAhVkqkVEQBCRKBLmhAzMs5Hk/v7Ij9vPed9knTzchzxJ+LxfL17kuec856y99tr7nrvX56w9pK+vr08hhBBCCKFrDO21ASGEEEIIixt5wAohhBBC6DJ5wAohhBBC6DJ5wAohhBBC6DJ5wAohhBBC6DJ5wAohhBBC6DJ5wAohhBBC6DJL9NqAEEIIISzavPjii5o5c+YCu99SSy2lZZZZZoHd75WQB6wQQgghvGJefPFFjRs3TlOnTl1g9xw7dqzuu+++hfohKw9YIYQQQnjFzJw5U1OnTtVDDz2kFVZY4VW/39NPP60111xTM2fOXKgfsBYODdbf/Z209NLSSy81f37QQdLw4dKQIdKwYdKmm0qDfUI+/3xppZXmXHPIEGm11aTrrmue8/Ofzzl2/vmDu1cIIYTwGmGFFVZYYP8tCvT+Aeu3v5WuvVb69KelJWxB7YADpNNOk9ZeWzrpJOkjH5Fuv1164xtf+b2uuELaay9p1izpmGOkww6THn9ceuc7pYkT/++897xHWn996VOfeuX3CiGEEF5D9PX1LbD/FgWG9Hyz5y22kG65RfrLX/7vAWvmzDkrVyuuKD366P+d+6lPSWecIR17rHTUUZ3fa801pcmTpQcflNZYY87PbrhB2mYb6W//Vrrppv8797//W9p7b+nMM6VPfOKVty+EEEJYjHn66ac1cuRIPfnkkwssRfi6171OTz311EK9mtXbFaxnn5VuvlnabLPm6tVZZ0mzZ0t77NE8/2tfm/P/73+/83u9+KL08MPSG97wfw9XkrT11tLKK0u33dY8f6+9pKWWkk44ofN7hRBCCK8xsoLVpLcPWOecI/X1STvs0Pz5//7vnP///d83fz5ixJz/Hn6483tde+2c/2+88cBj48ZJf/2r9OSTzZ+//vXSfffNedgLIYQQQphPevuAdcUVc/6/887Nn8+YMef/66wz8DvDh89JJ3bKgw/O+f/o0QOPrbTSnP/ff3/z55ttNucB8Gc/6/x+IYQQwmuIrGA16e0D1iOPzPn/BhvM/fjQeZg3ZMgrv2f1Xd7v5VTiH/7wyu8XQgghhNccvX3AevHFOf9faqnmz1dZZc7/77134HdeeGHg+fPDWmvN+f+0aQOPPf5485yXWW65Of9/5pnO7xdCCCG8hsgKVpPePmC9nJqbPr3587e/fc7/r766+fMXX5Sef74pUp9ftttuzv9///uBx+67T1pySel1r2v+/OUVNj54hRBCCCEU9PYB681vnvP///mf5s/33XdOuu5732v+/PDD5/x/zz07v9cyy8wp0zBxojRlyv/9/MYbpccek97yloHf+eMf5/z/ne/s/H4hhBDCa4isYDXp7QPWvvvO+f8PftD8+VJLSR//+JwaWBttJJ18srTPPtLpp89Z9friF5vnDxkycPVpbpx55hzR+vjx0pe+JB1xxJyVraFDpbPPHnj+HXfMEdWPG/cKGhdCCCGE1yq93Ytwiy2kFVaQrrxy4LFvfnNObazvfEf6zGfmPARtvPHAN/pe3jpn5Mj2+73vfdJ5583Zgufoo+f8bNVV5xQV3WijgdedNk3accfO2xVCCCG8xlhQq0tZwZpfPv7xOWUZbrll4LHTTpsjau/rm7O9ze23S2PHNs/5z/+c8/+vf33+7rfXXnNE7X19c/6bMmXOXojkc5+b8/+TT57floQQQgghSFoYtsqZPXvO6tO4cXNScp3y1rfOeUBjDavB8OKLc1bWtt1Wuuqq7l03hBBCWMx4eauc6dOnL7CtckaPHp2tctotGCp997tzVqZeeqnz7998c3cfriTpN7+Zsz/h//t/3b1uCCGEEF4T9P4BS5I++ME5OqwleisJ6+ftb5euuWb+hPMhLEQ89NBDOuCAA7TBBhto+PDhWmmllfTmN79Z//RP/6SHHnqo/7xjjjlGQwZTsLfLLGz2hBA6J28RNllInmhCCIPl4Ycf1lve8ha97nWv06GHHqoNN9xQTz31lO666y5ddNFFuvfee7XmmmtKkvbff39tv/32PbY4hBAWX/KAFcJiwre//W09+uij+s1vfqNxVlrkAx/4gP71X/9Vs23T8jXWWENrvJKCvSGEEOaLhSNFGEIYNI899piGDh2q0XPb0FzSUNtrc24pub/85S869NBDNXbsWI0YMUJvf/vbdeutt2qdddbRP/7jP/afd84552jIkCG69tpr9clPflKjRo3SyiuvrJ133llTvIivpAsvvFDvfve7teqqq2r48OHaaKON9LnPfU7PPfdc9xoeQlgoSIqwSR6wQlhMmDBhgmbPnq2dd95ZP//5z/X000939P19991XJ598svbdd1/98Ic/1C677KIPfvCDevLJJ+d6/v77768ll1xS3/ve93TCCSfouuuu01577dU4589//rPe97736ayzztLPfvYz/cu//Isuuugivf/973+lzQwhhEWCpAhDWEzYY4899Mtf/lLf/va3deWVV2rIkCF6wxveoO23314HHXSQ1llnnXl+96677tL3v/99HXHEEfryl78sSXrXu96lMWPGaPfdd5/rd7bffnudeuqp/Z8ff/xxHX744Zo6darG/v/16r5ouy709fVp66231kYbbaRtt91Wd9xxhzbeeOMutDyEsDCQQqNNsoIVwmLCkCFDdOaZZ+ree+/VGWecoX333Vd//etf9Y1vfENvfOMbdf3118/zuy8f+/CHP9z4+Yc+9CEtMY+3e3fELgcvPyw98MAD/T+79957tccee2js2LEaNmyYllxySW277baSpIkTJ3beyBBCWETIA1YIixlrr722PvnJT+qss87Sn//8Z1144YV68cUXddhhh83zO4899pgkacyYMY2fL7HEElp55ZXn+h3+fOmll5YkvfDCC5KkZ599Vm9729t000036bjjjtN1112nm2++WZdeemnjvBDC4sHCqsE67bTTNGbMGA0bNkxDhgzR5z//+dbvnHLKKRoxYoSGDBmiJZdcUnvssUfH/sgDVgiLOR/+8Ie18cYb684775znOS8/LE2bNq3x85deeqn/4atTrrnmGk2ZMkX/9V//pf33319vf/vbtfnmm2v55Zd/RdcLIYRXwhNPPKHXv/71OvTQQ+fr/P/5n//Rv/zLv2jDDTfUj3/8Y+2xxx76/ve/X/6ROjfygBXCYsIjjzwy158/++yzeuihh7TaaqvN87tvf/vbJc1568+5+OKL9dIr2WFB6n9L8eWVrZf5z5f3Dw0hLFYsrCtYRx11lP73f/9XJ5xwwnydf9hhh2mppZbSbbfdph122EHnnnuuNtpoI5155pkd3Tci9xAWE44//njdcMMN2m233bTJJpto+PDhuu+++3T66afrscce09e+9rV5fveNb3yjdt99d5100kkaNmyY/u7v/k5/+MMfdNJJJ2nkyJGNEg/zy1ZbbaUVV1xR//zP/6yjjz5aSy65pM4//3z97ne/G0wzQwhBkjR58uTG29IrrLBCV/Ym/OMf/6iNNtqo8bP3v//9OuGEE/T8889rxIgR83WdPGCFsJiw9957S5IuuOACfe1rX9NTTz2llVZaSZtttpmuuOIKvfe97y2/f/bZZ2vVVVfVWWedpW984xvaZJNNdNFFF2n77bfX617BtlErr7yyLr/8ch166KHaa6+9tOyyy2qnnXbShRdeqLe85S2vpIkhhIWYBf0W4fjx4xs/33bbbXXdddcN+vovvPDCgHqC6667riTp7rvv1iabbDJf1xnSt6i87xhCWOD86le/0tZbb63zzz//FYk8QwiLP08//bRGjhyphx9+uCsrSPNzvzXWWEN33XVXQ9M5PytYQ4YM0ec+97n+cjRzY6mlltJ2222nn//85/0/++Y3v6kDDjhAv/vd7+a7vExWsEIIkqSrrrpKN954ozbbbDMNHz5cv/vd7/SVr3xFr3/967Xzzjv32rwQwkLOgl7BWn311V+VB7rhw4cPeOHn/vvvlyStv/76832dPGCFECTN+evvyiuv1Mknn6xnnnlGo0aN0nvf+159+ctf1jLLLNNr80IIYYHwhje8QbfffnvjZz/5yU+03HLLzbf+SsoDVgjh/2eLLbbQ//7v//bajBDCIsrCWsl96tSpjULLEydO1IUXXqi11lpLEyZM0IQJEzR9+nRNmjRJkvS1r31N2267rTbbbDMde+yxuuSSS3TXXXfps5/9bEf3jQYrhBBCCK+YlzVYDz744ALTYK211lp66qmn5ut+J598sj7zmc8M+Pl6662ne+65R+uvv74effTRxr6rp5xyij7/+c/rhRde0BJLLKFdd91V3/ve9zqyMw9YIYQQQnjFLOwPWL0iKcIQQgghDJqFNUXYK3rygDV79mxNmTJFyy+/fH+15xBCCCEMjr6+Pj3zzDNabbXVXlGB4NA9evKANWXKFL3hDW9o/GyppZbq//fs2bMbx/i06pvE+vekgdtyVN+dOXNm49jIkSMbn5999tl5XpdvVT3zzDP9/1522WXneR1JA4J+iSX+rxu4Ae6SSy7Z+OzLoS+++GJ5XW8f/fT88883Plf7wz333HONz7NmzWp85rWrY3/5y1/map8krbTSSvO0cdiwYY1j9JP70O/BY5IGLCnPmDFjnseIt53+Z6wtt9xy87S3LZ6eeOKJ/n/zrRX6wmOEbec2N24zC+lVcfrXv/61cazyv9RsH88dNWrUPO/bFtMep4wt70dpoE/dRvqf+y26T3nu8OHDG589TnlP+t/bw35ss7/yKW304xzbHL/+mcc4F/MPYvcF44ft83PpF58/+V3OgYw1jxnOvYwn3tfbS3/7+JWa7eOY9PFKG3mdp556qvGZ8eR2cI5k//icw2OTJk3SGmusoQVJVrCa9OTxNpu9hhBCCK8e+T3be3qygpW0YAghhPDq0Yvfs1nBatIzkTs735f7uVzPpU//LpdqH3/88cZnLif7+UwHcdndU4aPPvpo4xjTZp7eYuczvcJlbL8Wv0s/uS+43M300MorrzzP63DZ3dtHnzF1yrSBf2bqsUqb+Sux0sD2eJqgShXxu1xW5z56tN994RuHSgOX7/27jD1+9lTAiiuu2DjGdBBj3H3eFk/et2397OkHpnTY724/0xxM89Gn7kfGD2307/IY+71KZzFNRps8RpgOYrrUU1a8D+PLx13bWHcbGP9MkVdzGcc6Y6RKJ3LseHqLfmF/0Md+nP5m293mtnN93LXpiLx9tJ/frSQLPJepPJ+POP9X/czr0P+cc/w+jCemPL0/OMeE3pO3CEMIIYTQFRaV1aUFQV4xCCGEEELoMj1bwWIqyZfdPbUlDVxKd5jmaHuLx5dfuXTLc/1JfMyYMaVNft22N6H4do23l0//TJf60jrtZcrTl56rFBTv25bSYdurNAHTZv5d+oVt9/ZxaZ9pD19KZ1pv+vTpjc/0k/uGKTWmYjyVxM1AqzfrmBJse9vJU3JMRzDF4H5jWont8f5huocpQreR9rX5ydMVjAnGtPcH28r0ro93nst0CucC/8zvsj0ee2195fFGn1JawDRgJ7jNjHF+9rHFuZY2eaxxDHKuYl96v/O7lZ+qt1tpM+cfpqs9Rmgf3+7jfFS9qcxrVTHN2PP5irHF/mB8+XzEdDTnQY9pzj+9IBqsJlnBCiGEEELoMtFghRBCCGHQZAWrSVawQgghhBC6TM9WsKpqyG2VuD0nz3w2oQ7Dc9q8zyqrrNL47FoF5r6pafJrVXoUXldqtodt5Xddw0S9BzVlnvtvqybs51KfQr0ENVquP+B3q2rntJ/VnKt+pl9cl0TdAjUQbLtTVdmXmm2lVpC4Bq5NG0htiOuUqrISUlOX1HYf7zvqF3ldbyv7ij5mfHm/UxtSjR3ep9JQMrao12J7XAdXva4vNeOLfy3zs9+HY5vtcZsrPZA0sHREVVKAY8d90bZrg4/ZapcAqW57W9kbjzfaz/u4Vo1zCmPcdYe0jzHBuHU4p7B8gvct50D2s9vEY9RrcexUqzP8vek2Lgzb4mQFq0nveySEEEIIYTEjGqwQQgghDJqsYDXJClYIIYQQQpfp2QoW9ROVNoS58UqzRKoaWsyjs2ZKpeuhhsNz4cypUx/B9rjGpqoHw/syl09NkGs2OtmChD6ltqKykfXCqGPw+1CjQftdM0NtCH1KPYtD+6stSNpq1vhn1q+pah5VW8nMzUa3g9+ttpphTDBu3ee8LseK9wftpb+plfL+4XjgfT0mqnElNTUojAn2K/3k/cE5huf62GEMVPW2eB3639tOPQ3/KmedtbFjx/b/m7HGuHU7OK5Yh8znOY4r+r+qSdVWh8nnPfqUc4rTVl+r2r6KMU1Nlred8VPptxinjGmOZ4fxU2mOqT9jzPh9eN3Qe5IiDCGEEMKgSYqwSVKEIYQQQghdpmcrWEyv+BI3l0G5dOtL8m2vdTPd5UvCTBPwvr4UzWNc+vfj1avA0sBUpC9Fc2m5SjFwSbhaeuZSP5e/vXQBfcqtZphe9DRBWyrVl/Dph2oLnrbthvxclgFgOqLaEoNL8kznepzSL57CkZr+px9IFTN8LZ3t8b/meC5fyXeqtAxtqq4jDRx37lPayxj3tBT9VJXNYDqIfcdrVTHC+cjTXVVZEqkek1Xqjum2ti22fL7iX/BMw1b3YUxXZT7oY45Zprcczpnup6rcg9SMvWoLKqnZPs7pHOv87NfmnMi0n39mu5la9f6g/xlrvJbHLdO79AXb02uygtUkK1ghhBBCCF0mGqwQQgghDJqsYDXJClYIIYQQQpfp2QoWNUH+ej91DP56tVRveVFtuSA1n3ypBaG+wDUE1EdQc+IaFebc2/QG7gueS+2L66OYj6eGyc9te/3dtRbUzFCXwc+ue6i0UVLTbzyXWgTvO/qFGppqW5q20gsee/Rhpedq06q5foI6Qn6X2hHvd9pAbY5/5nUqrSNjoioJwu2FqIOhVsft57FKV8jSBNQL+Xc5T/A+jCf/TL0Nyx64/TxGvZP7ibFHG/w47edWXRzf3s/su6rEA/uKc5dfl9fhfUaNGtX47HMmY5px6ho52kT9nMc85xDex23kPVmSgvi1OEapIXO/0V7i9rdprji+fQxz/mfsuR1t28YtCLKC1SQrWCGEEEIIXSYarBBCCCEMmqxgNckKVgghhBBCl+nZChZz+a7DYM6deE6bGgFqRai/cd0DdQCsd+PfpT6LeXW3v6pfIw3Ufvm1qLugDsDbV23HQJt4XfrFtQiVvkmqt9lpw//yoA3Vdjj0A3UM/l3Wr6HmhxoOP06NA9vOfnfoB+8r6oN4XWotPGZoE+/jOiW2lVoR77sqDqWm1pH1eGgD+8P7gBom/vXpnzkmOe5cp8R+pE+pcapinPf12KQOjPdxGKeEGi2HcUs/VduCsQ5TVVeQc6brlGgfNYmcIz2u6Rdey31OHRj1Z655ZUxXPuTvDvqM82D1e6e6D8cV7+N9V/WNVNcaYwzQRh/Dlb0LiqxgNckKVgghhBBCl4kGK4QQQgiDJitYTbKCFUIIIYTQZXq2gsUctufZqzpRUl2zifWqqroh1DxQKzV69Oj+fzP3Tb2QX5eaB+oWqBPza1V7e0lNnQyf4qv2tOnN3CZqV/hd2ug20U+0yTUQ1V5xUtOP1H3xu+5Dan5YC63SmPE+1B65XoV+oq6w2uuPmhPa7LHH61T9zLZVmg1qQ9jPfi790qZrcz9RX8bx7ddu00Z5W6ldYVvZdz5XUK/CuljevjZtVLUPKb/rtZYYl+yPSutIH1Ir5W2nT3kf9yN9yutWejrGQKVr4xzC3wd+nBo41wZKzbHCOZxUNQmpSWRdu2ofzLb6YdW5/F3i7WVMU0PmMd1Wm2tBkBWsJlnBCiGEEELoMnnACiGEEELoMj1LEXKJ2Jdqufxdpc14zJeLpYHLvL4cW6WZ+F0u1XKZ3Zfk+QoylzO5FO1L+Eyn8DX1apmd9ldwKd2/y9f1mWKolqKrbVykph+53E28f+hDpueqUgv0YbWc37bVifctUxdMB7mN7Bt+ZorKfU7/V69ut5W+qLZbod/8PkxT0v/sZ09Bt6U5qu17mJKqtoqiD9l3Pu4Y/7yvxxP9z/Hr92H6n/OR+4LSB0oLGE+erqvKrEjN1BFjgPZ7X9ImSgnYz952xiVTeVXpCKbcqvIPnCM9NhmntJ++8DhokyxUUo5qnuMxylroC7eJMVBtU8bx2wuSImySFawQQgghhC6TMg0hhBBCGDRZwWqSFawQQgghhC7TsxUs5os9Z83cN1999s9jxoxpHKM+qDreto2Cf7dN7+Q2VyUo5nZf10RQv0W9gd+HT/GVDoB5fmo2XG9GDRb1ZtS6+Cv5fPXcX0vnfelT9rtrp+jvSofEc9u28vFYZN/xu67poGaDegm3g9dhX9Fm15K0aRIrvQc1Gx6Lbboqbx9jlnFK/LuD0TtV/czrsu+oNXLtC+/Da1XbjvC7bj+1RNRkedvbttTiOPPYY0xQq+b2c16rSgi0zb28r8cB459zl/ufcwpxm9v0r94eluZgjLM/fK7juYwf7x/OkRwPbhPHVbX9mdT8vUP9aKXTS5mGhY+sYIUQQgghdJlosEIIIYQwaLKC1SQrWCGEEEIIXaZnK1jMJXv+m3l/bivieWnqUagt4rU8n8/cN21yzQB1C9V2E22aHz59exuoA+B9q5pZ1Cq4bobXpd+8plObZoNaEb9vm2bDj/O61L1UfcV+rrQI1IVVGjlqKVhHx2EMsO2u4WCf04ZKF0O/0Eb3Bfu5qkvGOl5VvTNeh1ojHvfvUm9Z6XjoJ/ZdVYesTevoNtKn9FtVr63SY1Kbw372OaaqByYN1N94P7Ovqv6gXziWHPqUsIaTz0FsD+cj1yKxPhg1ZN531KJx/vG+a9MsVdvUMCbYd35uNa9JzTilH7j9EMeH1/1iv7Lf/TPP7QVZwWqSFawQQgghhC4TDVYIIYQQusKisrq0IOjZA1Ynr9lz+dWXffkKLFNHXE72pWcuh1fnMt3AV5J9Wbdta5xqmxemWrjE7UvP3EKCy8ejRo3q/zeXpXldbx+XvwnTBG4T+46pL/9cpTSlpl/YV0wFeCqP/ua5TOO4z9mvXoJCavq0k1IL9AO/S5vYX04VP/QhY9HTCIz3KvaYQmNag9/lOHRov/u8KishNdvDVGnbGPUUVpWmlOoyAowvt5n2VrFGG2g/fez2s238bkVVYoDtZoq8Ss23pc38WrSfNrlPOQZpg5/Lea0qvSM150yOB37Xxw5t4vzkMc628XNVtoFxSZvc/k5iICwY0iMhhBBCGDTRYDWJBiuEEEIIocvkASuEEEIIocv0LEVI/ZBDvQpfi3ao/ahet5aaOe22rRFcj0DNAHFdQNvr4tTqOJVfeC36idf1azHPX21X0vaqPzUQrk3gMeqfqi0kuOzrr3Lz1fJKk0XtCl/zpo6h0nDQT64/a3st2l89Z/y0aYBYnsBh+9wmxlqli2E/V36iX7gFEl+79zHLmKAGxfud/VxtScX44Wdum+LHqTViyRO3iTFAX7h2h/MN7a9KX/C79EWlYWJ7fHwwTjmfels5Nqg1It4+jsmqnAVjj/on9zGvS79V12HbqW30cccxWJUHYgxznvOxVOmmpIG+8H5mv7oGVJKmTZs2z+v2gqQIm2QFK4QQQgihy0TkHkIIIYRBkxWsJlnBCiGEEELoMj1bwaLewPP1zG9X2gTmyalhYl7dr0VtBXPlnvvntgnUuvh9qP3g0zZtdE1B2/Y3rhfidattFKjFoTbEfVptzyMN1Lq4zsE1AXO7j1+rapvU1DCxrdQ8uH6u2h5mbtdynQl1SNSRuB+pj2Dcui6JfqCGhrXFPN4YT2yP21TVHZOaGhTaxLZ6X1XbeUgDtzrxa1MHw3N97NDeqlYUtStVTEvN9lDXw1j0/qhqcfG6bXpFbx+vw7mKPvf7cKwQt6Ptr333MecfappYF8ttor6pqtXFeKeuzcc378n4cV9wXqaGjPHkNlJHSLwv2TeMcZ8jOa7oF/rcxz7bU22fxLmrF2QFq0lWsEIIIYQQukw0WCGEEEIYNFnBatKzBywu+/pyPtNxPNeXTau0mDTwdXdPIzDNwaVbT3dxGZepAF/6Z+qC7eF3/b4MHNrkS/ZMKbDMhC8fd7KjO22otrzg+dWrzVIzFUD/M0XrS/a8Dpf63f9MITDtVPmNKREuu/vSP2ONfvL2VFtDSQPTgJ5+5HermGbbmZ4YO3Zs/7+ZpmHcut/ayjJU15o+fXrjGNNblf/pJ/cLxxH7g233eYP3oU3uY6aCq7Q3xyDTlH6c8c85hjHudlRlJUjbVlE+T3BstM2v3gdMm1VzGW3gdT32GFtMm1X2t21L49fm/FNJIXhuVbqD8yV/H8yYMaPx2WOe8w/95LG4MJRpCE2yghVCCCGEQZMVrCbRYIUQQgghdJmsYIUQQghh0GQFq0nPHrCoy/C8etuWC54bZ869TUPgugfmt6mhcZhzr3QMPLftNfvq9eXqdXLm7iutFLUs1CW5VqTSWUgDX312bQIDn7oMt4N+oY3ez9RDVBo+2ksbqL9xX1SxJjV1MNTi0P/ePl6H2jpqgNynbdsneX8xLtnPrsdhCYHq1Xm2lTFQbUlFzQzx422lR3w8tG2TxXHomia2nVop7x/GD891O3is2n5ozJgxjWOMkap/GKcsE+BzA3WR7CtvK/Va1blSs+1tpRcqrWlVtod6M+L3bdvqivHkfctxxr6rth5j31WlI9ivbLufX/mF11pUHjpeS2QFK4QQQgiDJitYTaLBCiGEEELoMlnBCiGEEMKgyQpWk549YDGH7doR6rOot/FzqQlg3pw5bNcM8FiVn2ctHOoNXHPSpgujTsZz+2ussUbjGPVCriOhD9keP5f6FNbYcR+31VOpNChteiHqZqpj7ie2rdJRUc9ELQ71RH4tajZYs8brGFFLQbx2VBXv0sD2eX9Rg1Lpetj2anxUY0Nq6j14Lj+zNpePD/qJ+i2/L/Uq/Oz12xjD1MDxu25T2zY7PoEzfqjJcvt5XY6lSpvDz+w71/Sxr1inzMcz5y7i+i3OtdT8EPcNdWAcS16jjfFDn3rb2a8cS96+tu3POG/4tdp86ja31Wvzz3wYYIxwfPv4YH/QT5UuL/SepAhDCCGEELpMUoQhhBBCGDRJETbJClYIIYQQQpfp2QoWtQme76ZmgxoCz7Mzf+37B0oDay35fZivZw7e8/PUQ/C+Vf6b2gR+rvaSoybL7aAN1Hq5fqiqMSU1fU49Cq9LvY1rCqiL4Xe97dwPsar5Qu0BdRiu22NfMZ6odfH7UnNV1WRjzaBRo0Y1Pnudo2rvSmmgzmT11Vfv/3fbvmfenrZaSq6fa9tz0v3SVkuMPnU72vaS8+Od1jBzGJfUCvq16EPGotvEOYQx7nMZxzbb6mOWY4N9RT3dvO45t/tOnTq1/9+MS2pcffwyBqgVpC6pajvb5z7nuRz71f6C1Rhln7M99IVDbSBxm9s0fD5PtO1ZWu01Spu416Vfu63e3IIgK1hNsoIVQgghhNBlev/IG0IIIYRFnqxgNenZA1a1TQ1TgkzT+BIx0zTV6+JS/Voul/592ZrL9Vwqr17f55I2U1hsX2WTX4vpEy4Ru49pL9NOfl3ek/YyHern0wamGHy5f/To0Y1j7Hdf/qZP2Xf+OjPTb0w/MI3gy/tsO1NSHge0gbHoW5RU2zBJA1NWfh+mH6o0Gv3PfnabmI5mP7tN9AO3eWF5Dm9v9Wq51IwDpq+YunO/8LpsT1Wygmkb9ruPHfqF47naUoh95X6pymJIA8eOf5cpKrbV5yPaO3bs2MZn9znnIsZPJUvgHMOY93HJ6zIN6GOWY4P97vbT//QL7+M2Mf3G2PP+YqqR8V/FaTXP8VpMTzNl6NemT0PvyQpWCCGEEAZNVrCaRIMVQgghhNBlsoIVQgghhEGTFawmPXvAYi682hqkeiW2TR/BHLzn3KstO3gur1PptZhTd92LNFCD4t+lNo26DLeDGge++lzZwHIWrj+gX3gf9o8fZ+BTl+F6CvYrtVP+mX6g5sHjgKUKaD91Gv6ZWiNuVeFaMGorqO1yrQW1FLSB2peqFEmlR6Nu55FHHpnnufR3pUHhPel/xp6PAfYz/ebQ39SVuB2MU9pQ+Yn9XOkm20qcVNsPVRogtrVNP+cxxHmPPvb2cK6iVs3toP2MkUoDxPuwPR4T9CFjwv1Em4j7mHot3odzs49Z+pC/D9zn1Gfxu65RpL851jk/+X0rzZjUjPmqhEnoDVnBCiGEEMKgyQpWk2iwQgghhBC6TFawQgghhDBosoLVpGcPWMxZuy6Jehvm1V1nQkdTt8DPnkdnzSzm5z13Tg0T8/Oe66dN1Eswj+7fbauF49+ljoc6Evcp78m2u6aG2pA2TVa1XQN1Ga4nYgzwXO87HuN3/brUbFDfUdUm4nfZl669oDaK33XNDLU49DFtrNrDGjwep21jx9tKzRK/65osavZoEzUpld6GGkTXwbBtHJP+XfqM8V/VHmP8UOviOhnOIRx3Pj7atsrheK6uSx+7po9xyX72mGDs0W9+X2omqbWjTe5jto2aRI8n6oXYz/6Zccl+9rmN9jKeqvphHM/sd/d5W63A6vcM+47943W96G9qdF0rmDpYCx9JEYYQQgghdJmkCEMIIYQwaJIibNKzByymDTxlQudxWdfhsnpVPkFqLjczhUCbfHmZS+e00e/TtqzLtIEvEXMbBS5xe3tZkoLf9fvQT0yJ+PJyteWONHA7E18O53fbXu93qnIcbBv72anSGHP77KkBpjl4H48fxgvTBN5W+oVpV9rsKZLqFXapufUJUy1MHT300EPzvA6/63HJV8u5LRDHg/uUfc77eNt5LuOnSqczxmmTH6dPeS1PsTG9XsUI+5HtqVL8jEvGnqec6X/Gl8+n7OcKxjTjh37yvmTql+PZxwdLghAfH/QTx5nPDeybqswHoXSAfemfGRNVmY+2MjEcWx6bbTIK+iIsXGQFK4QQQghdYVFZXVoQRIMVQgghhNBlsoIVQgghhEETDVaTnj1gVa/aMu/MV59dU8DXfdtePXfNQJuuZMaMGf3/5iu8zNd7zp35ecKtE1xDQw0BNRxuM3UX1Fr4taibop+8DAX1Zm1bVXhfUl9A+117QZuoL3D9B/UdbHtVZqKt9ILHW7W9h9T0aVVWQmr6gv3KGOdx123wNW7GnvuRNvFzpUNi/EyePLn/3/QhbeD4qHQx7Mtqqxa+6u/3YWkIxjRjsSr7QRt93uAcQk2Nf5f2VxrRtnmCsehzXZuu0K/NcUb9U6UrpAaLn70POK5of6UtIv7dtm3KKo0Z47TaeozX4bluP/3E+/h1GQP04dSpUxufR48e3f9v6mw5N7tNbbq2sODJClYIIYQQBk1WsJpEgxVCCCGE0GWyghVCCCGEQZMVrCYLzQOW65Koz2J+2zUP1DG06WK8Y9rqPbmuh3nzql4P9RDUkVBT4DVfaD9t8tw/bWJ+3u9LvQ11GW4/tQcM5qoGDOuysC+rLSTYH9X2Q9QbuFaBfUN9DW1yjQR1PWwrbXSoQ/J+5nW9ppE0sH1uI/UqDz/8cOPzqquu2v9vajbYz34t3rPSVTG2eB/6mDo4hxqsqpYSr+OxyWMcD7Sx2uqEY9SvXdXsk5pzF/uVujCH2huOdc4THnvUC7HvvD2MYcZEtaVQm6bVv8sxSb/5udTOsq1+LcYE2+rjnXMK4bV87DMGiLeHv1cYe67Fa9Nfcj5y/SI1fYxbj/Fqbgq9IT0SQgghhEGTFawm0WCFEEIIIXSZnq1gMZXkS9FMZ1XpOC7Vcvm1ehWdaY9qOZ8pnrbXlx22lcvjq622Wv+/uSUMl7R96ZwpEC7f+/IyS1BUKQbaSx9XS//8y6L6TPuZIvEley6jsz+8rUwhtC2de8wwXngt9wWX/tke7ztuecQ0DfH7Mqa9rAevVW0NJTVjj/1apdSYZmK8V6kXxlO1pRBLp7DtVZqsbS7w79IvbJ+3h6U62FaPA57Lkiw+x9CHfJ2f3/UYYux1Mp7Zz952pqA4b3Ds+3jhWK+2dWmLH4fzMudPbyvHK9OfHB9+37ZyEN6+amsrHqcPeV3a7J8ZE9XWUW3ldBYEC/MK1kc+8hFdcskleumllzR8+HCdcMIJ+vSnPz3P8w844ACdffbZevHFFzV06FCtu+66uuKKK/T6179+vu+ZFawQQgghLLYcfPDBuvDCC7XHHnvoxz/+sTbccEMdeOCBuvHGG+d6/hlnnKFvfvObet/73qfrr79ep512mh566CFtu+22Hd03GqwQQgghDJqFdQXrrLPO0vjx43XuuedKknbYYQctvfTSOuSQQ+b6kHXFFVdoiSWW0CWXXCJJevvb365rrrlGP/jBDzq6b1awQgghhLDIMXnyZD388MP9/1FOJM1JKT/33HPaYYcdGj/faKONNHHixLle9/3vf79eeuklHXvssZo9e7buvPNO/eIXv9AGG2zQkX09W8GiBsJhnp85a9cp8VzqeKiz8td4qc3hffyVa3Yc7+v578peqdYf8FVn6kgeeuih/n8zdz9mzJh5fpe5+2pLmDYdG4/7XxPsV97X9QjU29Cn1bYu1Nu4JoWaB/Yd+8fLEVD34lsISU2dRpvmwW2iZowaGmo4XK/SVqbBNSrUslTbTlHLwrHjfmS8UBvC4x6bPEZNjdtM/3M8uM/p/zZNn8cXX8mvtHeMF/q42r6nKjNBH/Kvco4ln0fYVvrJ+67SHUnNmOacQliKxMehl5uRBs5zVdkPzl0em21tpcasOkabqnmP57pPGcO00ecNzj+Mtao8Dee5apsgHnstMH78+MbnbbfdVtddd13jZ3fffbckad111238fPTo0brrrrvmet1PfOITuvvuu3XMMcfomGOOkTRH+3rLLbd0ZF9ShCGEEEIYNAs6RXjXXXc1Htyr/RjntiftvP5I/tGPfqSTTz5Z73vf+7TvvvvqT3/6k4477jhtsskm/Q9s80MesEIIIYSwyLH66qu3bnL9clpv0qRJjZ/PmDFjnm///8u//ItWXXVVXX755f0/W3HFFfWpT31Kt99+uzbZZJP5si8arBBCCCEMmpdXsBbEf/PLcsstp2WXXbbxsCRJEydO1EYbbTTX7/zlL3+ZZ7mfKiVNeraCVWk4mEtmjZoZM2bM8xh1AMztu66BOgxqgvx425YRnr+vNBo8l9em/ayf5DoM6jumTZvW+Oz6J+rAKm0CfUpdCWvueN9RS8S2etBSh0Fdkp/LejaMEb8Pl33balu5HfQp2+q+oD6LWgqvT8V+pI3VNh2jR49ufObk4r6p6glJTa0I20ZNlus/WCOI/cFrefuqrVh4brU9jNQcH+xXxh41fa6FoTaQNvpxxktVL49jnePM5w1qxKpaYlKtdeS2O1WtQPrY5wbaTz8xRrwP2NaqPWwbbfTr8p7UNPm8XflBGjjufK6jTdRyut84R9KnbjNt4JxYbfdGn3LO7EQ/91pmv/3206mnnqp9991Xu+yyi4466ijNnDlTJ554oiRpwoQJmj59ev8q13vf+16dddZZ2n333fWJT3xCEydO1Gc/+1ktu+yyestb3jLf902KMIQQQgiDZmEt03DKKado2rRpOu+883TOOedo+PDhOvXUU7X11ltLmrNo43+8fec739GTTz6pyy67TBdccIGGDh2qtdZaS//v//2/ju6bB6wQQgghLNZccMEF8zx2zz33DPjZxRdfPOh79uwBq227AKdaFm17NZVpM0+FMcXAV219yZjL3XyC9mvRJqb9qlQkl6knT57c+OxpNKb9+F2HKRCe69ei8I9L2EzF+Oe21/m9n3kf+qlKEVZbdtAGpjjpf7e/7dV5TzG0vZbuaUHaX6UFpGa8TZkypXHMy4dIzXRRJ1vlMN5pg9tMnzIlyNSSp3FoA1OeXpqBfuF3XdDKvmHf8bO3ryprINUpZ6aRq/FL/LttqdNqnLWVdHD7aS/b6sc5rto++33ayrt4qow+ZdrP44v3rPzCtCvPreaGtnjy+GFbKW/w+7SlmNkf1dZebF9bDC1oFtYVrF6RpG0IIYQQQpdJijCEEEIIgyYrWE2yghVCCCGE0GV6toJFvYrnqfnKblXSoZNzpaa2hceY3662K6GGwzUEzIvzPtQb+HHaT5tcK8XXl/k6sGsgqGOg/f56M3UL1BDwu66Ra9NLuFaH9tNPrrWjX+hjjwPek7oe+t81EdT7sbyC67faSke4toivcT/yyCOljT4+qi1TpGY/z61aseN+4jHaX72CT3t53K89r2J+L+NxS60jfeyxx3hveyXft8mi/oyx5+O9rcyHf257Vd7vS+0N/VSVwqjGitQch21bCPl1qzIG0sBx6LHJsiWMU/cN+6raPqzScknNvmJMt5UX8fvyWKW1ow28r/ufx7zMkDRQk+V9y7HPmPH+qLRbC4qsYDXJClYIIYQQQpfp/SNvCCGEEBZ5soLVJCtYIYQQQghdpmcrWMxDe+6fuXzqrFxT0FZPiJoCz8kzZ82nYtcQsO5PVX+L+Xnm0avaStQPUZPi16beiRoCrwHm+hNpoC7DNTS0gfZSb+PXpr200e2nT1mfynVh9Cl1YG4T+5zfpU3uC55LzYO3ldvb0Cb3IzV81LJQK1LV9uF9vZZPVSNLasZ0mzbQbex0WxfvjzYdjJ9Lm6r6Wuwr6p8qrQ7P5XhmjDiurZOaGpq2seL3oQ2cy6qY4fzJseP3ZQxU/cExyc9V3LLeHPGYoeaKfeX3ZY0parvcBsYl54JKI0fNFfHYZHywn91m9lU1d0lNbSrHc6XLa6vBtiDIClaTrGCFEEIIIXSZPGCFEEIIIXSZiNxDCCGEMGiSImzSswcs6qyctpo7nkenXoi6BWo4vGOYz+Z3K70Ez/VrUTNG/UqlgWjTa/m1aQNrNvlx6iOoa3BNBOuyUIdBG6u98NiXrkegvewP12W01eZyP9HeSt8kNeOLOgb6wtvDPfWqfqcfqIGr9pJr0+W5L7j3JjVN/plto0/dZt6TGhraWOkKOZ79c6XF4XHGcJv+yfuWY4caRdfY0C9sTxX/VR0+an6qvTh5vK02l+t4OAdW+rJKMyYNjAP3RaW3lGqtI8edx0TbnF7pzej/qu1tOkn3OccZx5Lbwb6ij6u9X6v9caVmf7TVYAsLnqxghRBCCGHQZAWrSR55QwghhBC6TM9WsPiqrS/lcgmVy+7+qjaXX5l+YNrJl865/M2lf3+dlq+wE0938dV+Lj1XpQxoP23y5WSmSLj87X7jkjxThtU2Fmx7lQbk6+I815fO6Re23fuWNvBVeU8b8J7ckocpQ78vY4JpG39tmuUS+N2qzEdbisTHA6/LlIL/Nde2fZLHHscZ0yvuf/ZVVWqE12b6hD6txlm19Q/jnT7m6/A+F9Cn7Ev3cVuazP1Upbn5XY5B+oljv0qxsX+cKtXI+3I+ZdqbY8d9zvHLePKUOsdvVbaBfmK/e/8w1duWsnWbeV1+nj59+jzvU0lI2uKSvy98Dm3rOz+X/u4FWcFqkhWsEEIIIYQuEw1WCCGEELrCorK6tCDIClYIIYQQQpfp2QoWc+6uV+ExvqrqeifqSJjvpibFc+e8LvP1nu+mPoK6DC8/wO0NCHPlrr9h3p9/Dbgug3qIqq3UjVSv6FMPVGl+pKbfqJeotqmhFoHf9TIH1CLws/uUbaO99JPHDOOJVFt48D6ux6E2rW0LEr8W9UG8lutZ2spBeEzQD9T8uE1tJQUYIz4+qLehVsd1V/RptdUVxxHbSh+7T3kftodjy6m2DWrTW3psVhoraaCf3P62cgSuSaTelfOTz12V5m1uNnmMcEzSx65haitd4H3H2KONrhOrtjCTau0v+5V6QJ/LqJti27197FdunUM9l49Lzgsc+952xkAviAarSVawQgghhBC6TO8feUMIIYSwyJMVrCZZwQohhBBC6DI9W8FivRjXI1Abwtyy58aZo27brsFz/cz7U5tQ1TKptivh0zVtYm0Zz8HzPszt+33btEYOtQmPP/5447NrTtq2Z6Amwm2iroo+dp+21TFynQmvW20fw/hh26s6a9y+hz51+3mM93FNR5teiDoMh23lZ28PtS3Ukfi4a9OBuV9oP/3E9njcMl6qumS0l/fxmKk0VtJAXZjTpkn09lJvwznF21fViZKa8cNz27SCDttGXZLflzZU9bc4L9NGzl3+mXMVt7RxTRavw7h1mxkT1Er57wdqrKgD4+8Sn1eon+Oc47HH61RaU24Lx/4g7nP6qaqVxrb3gqxgNckKVgghhBBCl8kDVgghhBBCl+lZipBpDl/y46uoTOn4UiivQ7jk7Uv/XP5mGsS/y+VuLt+7/Vy+bFsO9/O59FylPXhdvkLt8FV/pkPdx7xu27U8NcbvMpXhy+5sG/vd78OUDtME3pdMPXLpn/735X3GWrUUzfQD02TuF/YNfcj2OYwJ+tjtr9KUUr2dBlOEDtNKhCkqt4P20/8+nplOrF6rbytVUKVA2Xc81+OgLU3mdjBVRPu9fbwnY4SfPa3PtjLl7/3BthK/D+OQ9jNGvL0c69X2MZxP2VaPt7ativx3AOc1pndJtX0S5w1vK3/v0E+eymOZEvYHr1XFOM/19GlbiYoFQVKETbKCFUIIIYTQZVKmIYQQQgiDJitYTbKCFUIIIYTQZRaaFSx/lbXSXElNHQ/1NtTBVK/IUkdFbYXrGKpX46WmfojbblCLwKdv1+PwdX1qK1znwJx7pZOhNoFt9/Yw709tBTUQrlWoXheXmnoW2lC95l1tTSQ1NRxtWhbGjPctY4D3dW0FY4C6EvdTpTmUBuo9XKdBf1MH4/3F+CfUODn0v/cl9XGVbkRqtofHKt0kNZPVlkjsV/qQfed6FfYVtVPVNlnV1lHsV163E81PpZejho/39X6mD6ttaRhb1MtVPmXs0aZq+xvOE+7jtvnTx0p1HWmg3zrZesnHIf1CfOwwBhhPnI/cDo6daiuvSkO5oMgKVpOsYIUQQgghdJmFZgUrhBBCCIsuWcFqkhWsEEIIIYQu07MVrGrrEz6d8rPnpdu2UWDO2u9DHUClX6EOjPoP1+7QBub9mZP377I91IpUNcAqrQV1PNQQuKapre4PdWKuK2mr2eTnUh9BLYK3hz6kXzxG2Dfsu0onxmO8lvcPz2VMu16lbWsT9of7if7mePC4HT16dOMYNXzeH9Rs8LO3ta3mF8eS36eKYdrMmKYuxm3kuVVtN96X16VN3h/0d1XTjBqlau5ivLd99vHA+OF9vO84H/G7rv1iHLbNXZX+jL7wOKYNxO9DXRX94jHBeY59RU2uw3jhd73veIx60mqeq+rlSc3YpE+r+anS7C0osoLVJCtYIYQQQghdJhqsEEIIIQyarGA16dkDFksKVFtIcAnVj1evDUsD0yueChg1alTjWNVpTJtxmddTKG27yjMdUW1/U6XG2tKjvvTfttTsy99ME9Ampp3GjBkzT3uZNvPX3+kXLtH7cj9f36+2BWJsse1MhXnbeYzfrbbkoV/8ukyhsT1V2Qn6hWkallCYl71Ss31tr7+7zW3bPdFv/l3GRCcpWn52v9EPlQ+lZiqS12V6xdvbtqWW9zPPZckWP5fzAOHr/J4SZXqUY9/nBtpLv1RbwNAGxq2Pb87FbLt/bkulevww/VaVDGkra1CVkqjKV/Azr9MmTXHYdp7rY4nHOJbYP2HhIitYIYQQQhg0WcFqEg1WCCGEEEKXyQpWCCGEEAZNVrCa9OwBq9pqgFtGUGvh+oI2LQh1Ga77qUo4tNlIm/zzE0880ThGHRjz9/6ZuXzqGDwHz/x7pVWgdoIaFL9vm5aF2gTXklBzRZ2S+5zH+Dpz9Vo09SuugaMN1KAwvnyw0k8sT+DxxevyXI+nNu0E2+f6M/qJ/ez3ZduonfL4Z7zzPlWpBer/OB7cNyyfUOmqSLXtUaUFnNt1qy1I6AtqqRz2JdvnVH5jyQD2HW2strSpti5ivFAD5H3Hfm3TC/ncVekipeYcwxjgnOmfOd/wl6vHAa9bbV8lNdtHf7Nf3Tccv9XWRdQ6tm1bVmkSOcf4PFjFbOgNSRGGEEIIIXSZpAhDCCGEMGiSImySFawQQgghhC7TsxUs5pY9v009QaVjoM6COh7iOXjqGKjdqbbAYF0j1yawTsujjz5a2uTaBObr6Se3gxoxarsqvRa1CP6Z9cGoA6u26aCGgz717/IYNTWuRaD2gO1x/USlO5rbtVz7Qo1J5TfGWlvcOm11sLwP2K9VDSfaxBj371LbQlxTw9pibfWG/L7UFtFG/y59SD95/DN+qGVp2/qkuo/bWG13IzXjjceqLZGoeaOmr9qWhuOXPh47dmz/v6kPqvRn3GqJ/VHNG530B+2ln1y32raFkMN4Z59T/+R91zZvuM2MF87FPm9wnHE8s9/9u7wP+87nCfq7F2QFq0lWsEIIIYQQukw0WCGEEEIYNFnBapIVrBBCCCGELtOzFSzqAlyHxGPMubtOqW2vrGpvLWocqj3fmMufOnXqPK9LmPenJst1DHwyr/Y15HVYV4eaJqeqpdS291e1lyL1BrTR+5k6DPaz6zLaavn4d9vqYFED5Nem/qyq1VXtVSY1dVXUhtB+9rN/pg2M6WofzGq/SsY7NSjuf16X46HyEzUnVf05almozfGYpkaG/cz7VDWP2rQ7DnVIXn+IY442+BhlTPOe9LnPixzr1R57bBvP9fFC+zmfstaYt4+1rFiXyfuZc2/bfqcO6wpWWsK2vS193uaYrPZdpL3VuGNcstZhpafjdWmT9zNjuhdkBatJVrBCCCGEELpM7x95QwghhLDIkxWsJj17wOJyrJcC4DGmkqpXwLkcziVWXx7nEna1JQmXxrkc6x3ethUIl/e97Sz/wOVjX3pm6o54+2gD05ZuA1No7A+WOfC2sz+YxvHX/WkD03PeV+wbXtePM73AlCEHp9+X8VNtt8JUKdMe7iemFBh7TCM4TB0xjeZpWNrAGKlSChwrDmOacUmfVql4ftfbw3QP48lTUoxLwjj1NjBNRpvcfvZNtYUWY4195+OM59Im+sJjnmUzeG5lf7VNU9tWUSwn4vHFdCg/u4+Z5vOyEoSpVNrobW+LCfrC5w36sCqTwX6txhLHFfuOc5n3DyUWHA9uB4+F3pMVrBBCCCEMmqxgNYkGK4QQQgihy2QFK4QQQgiDJitYTXr2gMXcvuepqUXg9g2eK2dOvdJSSE3tS9tr6v46LV9Bpn6o2r6HwcBcubePbaf2yDUPbffx/Hz12rPU9D/1QbSJfnLNFm0i3laWG6D+qdpqptKg8DrUR1Rb8rRtf+MxQw0N/eY2UgvF8gnUn/l3GcPsZ49Fxj/j1u/DOKR+xW2mz6pX8KVm3FJDQ22Llx9oKwfhfcXxS11PVQakTZfkUGtHnaQfZ98wht1m6to41tkfPu7aSsw4lTaQ16X9jB/GvLedY6fSKXEOYdu9P9g3lQ6JPuU8Qfvdb1WsSc2+pJ+4nZjHIucfxh7vW21xRh/7uKw0lKE3ZAUrhBBCCF1hUVldWhDkkTeEEEIIocvkASuEEEIIocv0LEXI+h6eG2fOmvl61/kwJ92mDak0QryW57Srek48Tj0B71ldi/l4agaqLVSqrUHa6rZUW+XwPqzjNW3atLleR6rrO3Epefr06Y3PrgGq7JWabaVuhJoNahWqLVQqzQP1TtTMePsYh7wPNRweI216IY8fbsNRbSlU1TOTmnHL2k+0n+1z31CvyHhyGHvUwbj+if6n/qZtLnDYPr8vazRRj+bta9OqeSwyLqntqrZ5oc6Q93GNH9vN+Pe2VrojaeB4cJvatn/yGlo8xnnO46vaWklqzm20gd+t6rm1zZE+zmgDx47/zqq2VprbcbeR16Ue1mOPY6cXROTeJCtYIYQQQghdJiL3EEIIIQyarGA16dkDVrW1AJfKq9eXuVTOZXcum3oKpS196K83M01J3A7ay+9y2drbzleqeS1PfzFVxJSPLz3zXC7Ru9+YBuDyvb9GLDVfSWZ/VGknLtczTcNUn8NUmNvPfm3bzd5jpJMtMKpX+6WBceyw7ewP91v1Wr3UHA+8bpWG4nXYdw79Qp8yteTnM/3JlKF/l/HPzw7TJexX3td9zLIZHGfuC6ZwOD44Hhz632OG9tPHjH/vu2oMSvUcye1uvD1MX7WVPai2yWJM+PhuKyngcyTlJJwn/FzO4ZW8RGqWLanGFe9DP1Xb+bAEC+d/xoFfm/Mn/eb3afsdFRY8WcEKIYQQwqDJClaTaLBCCCGEELpMVrBCCCGEMGiygtWkZw9Y1XYszJOPGTNmntehFoG6GOqHXFNQ6V6kpqaAGg3qYqgTqGygNsHvQxuoAaq2L+Er1X4fXrfaUoj2sa+oQXH7qfeorkXNBnU9fi7bRs2D666o8am2EZHq0h3Ue7gf28pkVNv38DNj0bVH9Au/W/VdpVXjWKF2zTVAjEPqyxgj/l1udcWtZ9yn7Au23fuDfmB/cNx5zDP+OZ59bNEvjC+3n35ifziMF/qF/ePHqbmqyt5Qm0P7fSy1bTPFMet2sK+4HZTHNPuZeie3ifZy3nMbOY5of6V/atPK+rWoTeN4cD9S89YWtx7j/C7HkusMOVeF3pMVrBBCCCEMmqxgNYkGK4QQQgihy2QFK4QQQgiDJitYTXr2gEUNjesNWPuG9WA8N05tDvPbrNvix6lPodbC79OmefDtYyqNydw+e26fWhae67qG1VdffZ72Sk0/sm3M11fbl1BHwrotrslq01Y4Vd0xqdke2ke/uP6D/qc2hH3p+glelxo/r2lDjQm/63WNGJfUcBDX0FR9IzW1I4yfSpdE+6lXcfs5zghjwqFuh/i1qY0ibhO1gG31z3yOoV84H/l4rjQ/UnN+Yn0t6nr8u4x3fpfznscetUaML/dTpe/jfahF49jncR8fvG5VU67Su0rNOOYYpN7Jj1e6u7nZ5P3Ttn2Pxxf9XdWg4thpq6vm96GfOMf777BqDIbe0PED1gsvvKC+vr7+yeqBBx7QZZddpvHjx+vd73531w0MIYQQwsJPVrCadKzB2mmnnfTd735X0pzVoS222EInnXSSdtppJ33zm9/suoEhhBBCCIsaHa9g/fa3v9U3vvENSdLFF1+sMWPG6LbbbtMll1yio446Sp/85Cfn6zq+BC81l3mr7VWk5lI6Uy1c+uc2BZ7aY0qB1/L7MIXAc33plsvQhCkGX27mUjnt97QOUwi8ri/Z0y88t0oBcfm7SoXRT1z+dr/xnmyPX5dpP17X0z+8LrdMoY+r5X32s3+uSjhIzbhl+ofpOaYj/Nq0l6kYby/Ppf2esmWqlOPBY4bXZeq3Su0x9mi/+4nXrbZ5of08l2l89xPnFPrf+4f2V1s8taXufNwx3cPrVqkjfne11VZrfPZYZPxX8x7HWVvZCb8W04ecB/3aHDttaUCH48z9RPtpQxVfTCnTJreZPuSc4+k63pP2czy4TW2SF79vWzmasODp+AHr+eef7+/UK6+8UjvvvLOGDh2qLbfcUg888EDXDQwhhBDCwk9ShE06ThGuv/76+sEPfqCHHnpIP//5z/t1V9OnTx/wV2AIIYQQwmuRjh+wjjrqKH32s5/VOuusoy222EITJkyQNGc1a9NNN+26gSGEEEJY+Hl5BWtB/Lco0HGK8EMf+pC22WYbPfLII/qbv/mb/p+/853v1Ac/+MH5vg5z+e4wvmpOrYXnmplzb3t91nPWzGdzBc41HMyjU5vgOg3qMJjbr161pY6hKomw6qqrztMG3ocaGmpQ6DeHOga2j9ophwPB+4tt5WfXVVX6LKmpM+F1qu1i5nbc4X39M7UT1Svu1HNQg0iNlvc7t8dgX7n+iTawrR4/PDZ9+vR53qfaHmluNrmGhvHCOPVxSL9QP+TX4nXaNIl+H+qd2HbvD44Vart8fuK5jC3vK5ZZoX6Rc47HPNvGecLjgHqnqnQB7aVNvK9fi7pC3tfHM+1lW71vGXscS24/x1FbiQ2/NtvK8V3FHn+X+O8w/q7j7xn6wj9zPDNu/XcLt1YKvecV1cEaO3asxo4d2/jZ3/7t33bFoBBCCCEsekSD1WS+HrB23nlnnXPOOVphhRW08847l+deeumlXTEshBBCCGFRZb4esEaOHNm/NFm9PhtCCCGE1yZZwWoyXw9YZ5999lz/PRio2fDPzG9Th+H5ep5LzRVz1sxpO9RKuR6EOhJqv1x/wHNZI6V6SKUN1N9429ty+5XmhBom11K01TgaM2ZM47NrImhTm3atssn1E5VGQ2r2K2vU8LvUPPi12Ddsa6XBop9cY9O2hQ31E67roQaRMbLeeuv1/5taIra92lKoqmXF+OH4pd7GxwPbzhiptCPU1PjESs0P20q/TZ06tf/fVR01qRnTvG61HQ7HPv3icUrND+3ltSoNEOc99zH7iva7box9wzFZ+Zxjm/HlNjOeqi3COF7pJz+XfqD9bJ+PlzabPCba4t/Pbas5yHnb7WDbaaNrIdm20Hs6fovwD3/4wzyP/exnPxuUMSGEEEJYNMlbhE06fsDafPPNddpppzV+9pe//EWf/vSnO3qLMIQQQghhcaXjtwjPP/98ffzjH9cVV1yhs88+W1OnTtUee+whSbrhhhvm+zrVLu18BZwpH1/2bduygEvEvuTKZV6+Yu0pqmp7EqlZEoFlGLjUTKrj1ZY8THfyqd5fuab9fK3Yl/Pp05VXXrnxudoNnq/KV6kxto339W2CGC/87Kkv+p+varPfPfXC6zLN4T7n0j9TOtVr9Uz9MmXlqRdug8JreYqB6R+21ftn2rRppf2TJ0/u/zfHEb/LNJr3nW9vMzebPEbYd4xpTwHxnoT39THA9tAmH9+MYY4dt5FlDqoUG+3neOZxTylyTPJcj2P6lGUmqi1WmHJjKsy/Sz9V27zQft7HxwPvSf+7jzmnMH44b/ucT/9zPDhM6/E+fpyp4LYSD952nst5wn1OP/WCaLCadLyCtfPOO+uOO+7QSy+9pDe96U2aMGGC3vGOd+jWW2/VW97yllfDxhBCCCGERYpXVAdr1qxZmjlzpmbNmqVZs2Zp7NixA1ZIQgghhPDaIStYTTpewbrgggu08cYba+TIkbr77rt1+eWX61vf+pbe9ra36d577301bAwhhBBCWKToeAVrv/3204knnqhPfvKTkqR3vetd+v3vf69PfOIT2mSTTQa8xjsvqHXxPDVz99QIuC6Gmgfm4Kk38Nw4r0tti3+mloJP0P56f5u2qHqdltoEvpLvdlB3QX2B34daIubyq60pHnrooXnaS5sq3YXU7C/qtfiqvH+X163KP/A6lb5DamrKqP9zLZHU9Cm1aFzF9XMZP2SdddZpfPZX0asthKSmL9Zaa63GsQceeKDx2eOUccm4dX0KfdhWosKPt8Wpj0PqIDmfuOaE96SurRo71NfwPu4nziFsD7e8cdget5HH2sqL+NZY7I8qJviqP8/1tnOccX6ttidif1CT5fFFXST1Q+4L9iPj1Oe2Nm0dbeT4dnhfn/PpB86vPh+1zenE28DfFRx3fm5VZmVBkRWsJh0/YP32t7/Vhhtu2PjZiiuuqIsuukjnnXde1wwLIYQQQlhU6ThFyIcrZ++99x6UMSGEEEIIiwOvSOT+8MMP60c/+pEefPDBAcvcX//617tiWAghhBAWHRbmFOFHPvIRXXLJJXrppZc0fPhwnXDCCfr0pz89z/Offvppvfe979VNN92kWbNmaYklltBee+3V0W42HT9gXX311dpxxx01btw4/elPf9Kb3vQm3X///err6+uoTAN1AJ5zZ36b2qhqqxnqDahfcV1Ppa+Rmjltdmi1JQzz/rSX13L9AR9YWQPJr8370CbXGvG6PNe3BfJtHqSBNV+on/D+oZai0upUMSA1NRzUXbC2jGtF2Na2LTDcj9Ti8LtVHS/Gk+uoqGVZc80153mu1Ixb3wpHGjgeKm0O9U6uyVp77bVV4VtU0aeMafZdpYuhjQ7Hhsel1NT8cBujti14vN8Z4xxLrsVjvNCnHouM/2rbLMYwY4IaUW9PteWU1NwChrpCatU81ljfrNLlSU2/sa1sn88jbZpQP06fsj98jqHPOJ6rrXNoE+c9H8NteidvT9v2VVWNQta1Y3tcz7Wo6JJ6wcEHH6wLL7xQ++yzj3bddVcdeeSROvDAA7XZZptpwoQJc/3OhhtuqGeeeUb//u//rq222kp//vOfB8R/Gx0/YH3+85/XoYceqi996Utafvnldckll2j06NHac889tf3223d6uRBCCCEsBiysK1hnnXWWxo8fr3PPPVeStMMOO2jppZfWIYccohtvvHHA+ccdd5ymTp2qe+65p/8P3G222aZjOzvWYE2cOFEf/ehHJc35K+qFF17Qcsstpy996Uv66le/2rEBIYQQQgidMnnyZD388MP9/82tisGzzz6r5557TjvssEPj5xtttJEmTpw41+tecMEFWnHFFbXnnntq2LBhWmqppbT55psPyN600fED1rLLLtu/LLnaaqtp0qRJ/cf4OnMIIYQQXjssyI2ex48frzXXXLP/vx133HGAPXfffbckad111238fPTo0fNM9U6dOlVPPPGE7rvvPn3nO9/RF77wBd1+++3acsstO/JFxynCLbfcUjfccIPGjx+vf/iHf9Chhx6q3//+97r00ks7ujlzmf6ZOXZqKdwpzKnTYdRwuGaAmg3qMjxXztol1V6K1C3w3Kr+FtvD/LxrX6hlGTt2bOOz61WoAaIOwPP+bTawf1z3Rr0EtSLuG/qh2huyqp0kNbVRtJ/6Jtbf8gHbpmvzz9Qw0S+ufWFMVP0qNd/WpY5w3Lhxjc+ufXHdlDRQ2+JQI8Nld9d20d+sb0a/uX6Fukj6yfuZNlX7elIvxOtyzHos0v/UKfn4qPYTlJr9Q39Tx+N9RX0N5y6OWbef8cT7esxT00r7q3ptjH/OOd522s952/uZY5Jzr7edGibO6R631IHRT5VOrNqTkfepdGBS02+cAzlHVrXSGMOcC7x9bbq8xZG77rqr8buB482Z2z6V/Jkfk6Sbb765v7bgc889p6997Wt6/PHHB8TvvOh4BevrX/+6tthiC0nSMccco3e961268MILtfbaa+uss87q9HIhhBBCWAxYEKtXvoq1+uqra4011uj/b24PWBtssIEkNbJt0pzN4Of1B+jrXvc6LbHEEo3CzW9/+9slSbfeeut8+6PjR15fZhsxYoTOOOOMTi8RQgghhPCqs9xyy2nZZZfV5Zdf3tCJT5w4cZ6VDyZMmKB7771XU6dO7c8M/epXv5IkbbbZZvN9756tKVZpA6avuHxfvSLLpdsqDcW0Br/ry+VMXfDJt9qGg/YyNeBLz1w+Jr6kSftJleaoXpXn0j77iviSPf1dbXPBY2y79zvTV/S/9w+3pmD6gTZ6f7Dv6CdfGm4rZ+F+YZ+TKpXBUh3sSy8PQfuJp0f5uj77efLkyf3/rlKlc/tcpeLp/05StFXpjqrMh9RMxTCeeF//zNQL56dquxXa5PHkKVhpYBq8SsVze54pU6Y0Pnsqiennalsjps/nlUKZ23fpJ7bdx0uVEpSa/U7/zpgxo/HZ/dbWV7TJ/cRxxTnfr825q5IsMJ1En1ZzM+dipnt9jmSashcsrG8R7rfffjr11FO17777apdddtFRRx2lmTNn6sQTT5Q054Fq+vTp/atcJ554oi644AJtvvnmOuOMM/TAAw/oxBNP1IYbbjjf6UGphw9YIYQQQgivNqeccoqmTZum8847T+ecc46GDx+uU089VVtvvbWkOQ/trl8dO3asfvSjH2nvvffWTjvtpGHDhmmTTTbRlVde2dF984AVQgghhEGzsK5gSXNKL8yLe+65Z8DP3ve+9w14aahTOha5hxBCCCGEmp6tYFEr4jnttq1NHGpxWIurym8zH89cv2sVmGOn3safdKstFqSB7fG8OvP+1BC4TdRsVDoY6i7oN8/f8xX8Ns2A/zXB7SZ4X/cjNQPUF7gf2TZqLSr9AX1IXYPrTqjF4WvRHjM8l6+/V1trUEND/Zn7tM3/ri1iqQ7+Beb2M/752a/LeGF/sACf9zP9VJV44NipSp6wbziuOMe4holjh/NGpZmjxs/bQ/s5Hqh7c+jjSufD+Gdbve8YL4x/6qEc+p9xypiZl71SM6Z5jPfxebqt9EIn26wR93HbPOFjiSsojCf63KH9tNGv3aY/9pjnmOwFC/MKVi+YrwesQw45ZL4vmM2eQwghhPBaZ74esG677bbG51tvvVWzZs3qL4Z49913a9iwYR29vhhCCCGEsLgyXw9Y1157bf+/v/71r2v55ZfXueee27+M/sQTT2jffffV2972tlfHyhBCCCEs1CRF2KRjDdZJJ52kK6+8sqFRWHHFFXXcccfp3e9+tw499ND5ug5zy65rqLYy4Xd5jJ9Zx8jz7NSG0CbPozPHXtVioR6IegPWG/L7MO9f1cWiBoXaFtcjUDdCzYlrR3gdaiCqGkK0n7oA9zH9T/1EVdOpOkadQtvWFN53lRZEasZPJxqgtq2WeNz1W9RoMJ68PZWeRmrGJv3CuPU4rXR30kDtkW9vwutyqxMf7/Q3+8rtaKv7w+96vHH8Uv/k32U8sa88fhiXlTaK1+W4q2o6sW2daKEYex7znOdoPzV9rjGj1pTtqeY5atV8LLXpR/1c2tc2H3mNMG7JU23zxbZW2tm2LXg4Zt3nrGFW6bdei1vlLOx0/Bbh008/PWAPMGlOcHKQhBBCCOG1wYLeKmdhp+MHrA9+8IPad999dfHFF+vhhx/Www8/rIsvvlj77befdt5551fDxhBCCCGERYqO1xTPPPNMffazn9Vee+3Vn9JZYokltN9+++lrX/vafF+nKr3Q9vq+L2NXy6tz++zLy1VZA6nO81a7zjPNwWV3Lu97eQimbard1KsSCLSRaVde95FHHun/N/3NlCb7x8sTMM3K+3iqss1P3rdt26346+88xnQol92rfmZbq7QfUxfuRy7fc7WXJR48hUX/v7x56cu4bxhbvt0NP9P/Dz/8cOOzj9GHHnqocYzjjjZ6X7KtjBFPe7SVpKjGb1sqyfuAKfNqqxPGAPvSfc7YqrYUaotpzl1uB9NZjGG/Nsc+04nuN87L7Cum3Kq0FK/l44XxwuvQZod+8nQcU3eMPbbd5wamrpn2q+aJqt/Zj7SJJUGqsj28j6dEGdO9IBqsJh09YM2aNUs333yzjjvuOH3ta1/TpEmT1NfXp/XXX3+AHiWEEEII4bVKRw9Yw4YN03ve8x5NnDhR48aN08Ybb/xq2RVCCCGERYisYDXpWIP15je/Wffee++rYUsIIYQQwmJBxxqs448/Xp/97Gf1b//2b9pss80GpAb5uva84Hmec2eenNoo12m0bW1CDYFrXajvoKbGj1fbiEjNPDt1CtxGZKWVVpqnTdTirL322o3PnpOv9EFSvQ0E21PpeOhj6iUqDQfv49od2sv7uP8r7YHU1BNV8SIN9IXH3pgxYxrHaKP3JfVy1ABNnTq1/9/cwoYaJurE/vznP/f/+w1veEPj2JQpUxqfvT0sP8BX5d1Pd999d+MYtXeMW6fSIEpNjRBjghoaH7O8Dr9bbcvEccX2eFzTBvalf5e6HuqHfC7zPp+bTZVWk/ayfVVZCmp1fOxzvNKnPl9xXHGloNKIct6gBs6hTYwnH7McV8Rt5HjlvMH7VnNvtSVVW3kgn/fatj+rymiwz/k7yq/VVqJlQZAVrCYdP2Btv/32kqQdd9yxMQj6+vo0ZMiQsh5LCCGEEMJrgY4fsLyqewghhBCClBUs0vED1rbbbvtq2BFCCCGEsNjQ8QPWrFmzGhqXm266SX/5y180YcKEAbnliiqHTc0Mz/WcNXUL/FzpP2gv71Npvag38Lw5bWCdE2o4/LvUbNx3332Nz66BYN0ottU1BF7niveUmjoBak5YuZ86B6/jRQ1HpdWhnqDSmFTb80hNPQv7lXo/ahVcg9JW+8bjp61mk8cB71nVgZOavvjDH/7QOOY1v6SmzpAxwf7welZsK3VgDmO2De8fakxoo/uYGh/Gnvut2spEGjhGqy22qJt0qQOvy/Hssde2hYrbxHvST5X+hnMMfeHnUodHv7jGqa2OFzVm3l9VLS6p2V7aX22bxfFcbalVbaElDZxz/L6VD6VmTLCvqKfzuYAxQa0XdcLuRx6jn+jjXpMVrCbz/RbhI488om222UZLL720tt12Wz3xxBPaYYcdNGHCBL3jHe/Qm970pgG/xEMIIYQQXovM9wPWEUccob6+Pl122WVaddVVtcMOO+jpp5/WQw89pAceeEBjxozR8ccf/2raGkIIIYSFlOxF2GS+U4S/+MUvdOmll2rLLbfU1ltvrVGjRumqq67S6quvLkk69thjtf/++8/3jaud1vl6b7WbPbcHqFJfUnO5ma9Bc/nV7aiWlqXm8jeXqbmtBdMgnvbgq/Fsn6cNmD5hisqXvGkvU1ZuE1ci2R+8L1Mo87JBavYP7eWyu/uc92A/u1+YWmEM0CY/nzYwNeb9zBQPY9rjgG2lTUxjPvjgg/O0idvfeP/QXqaD3KdMH/I+HrdVGmNu93UfczwwxVOVXmBfeRwzdUT/Mw48NdlWosXHA1OnHL8O/V1JFuhTfqaNnmpiX1Wpu6r8DOG59CnnAj+f32XfuU2dbMfFY5wT3caqBIU08HeJxx59Sjx+eJ+qPfRDFdP8bptcxkucVP0aesN8r2A98cQT/Q9TK620kkaMGNGo0bTeeuslRRhCCCGEoA4esEaPHt14gPr0pz/dEGQ/8cQT2Y8whBBCeI2SFGGT+X7A2mSTTXTjjTf2f/7KV77SeMD63//93+xNGEIIIYSgDjRYP/zhD8vjf/u3f9tRjSyWI/A8OvPk1HC4VoGaB+oymO/2VTZqNPj6bJVHpw7DbWIuv626vWtd6BfqD1w3w9d/6QtvT6WdkGq9EG1g210P1VbOwu2otveQmrok6lPoY79vpe+bm/1uI2ONn90X7Ff62GOGGg1q4BiL1ava1GV4TPN1cZ7rGiduucNxx750Ks2M1Iy9tnIEvlURtS3U2rlPqxiW6nFHv3Ds+9jimKT9Hj/UW7LsgfuYcUl7+V1vL+OHfnKdZLW1ldT0eZsujzb7GG3T5bnNHA/0sccE9YmV5pM20E9sj/cz44fzk3+Xfqp+P1TjaG738e26qu2qpGb7+PugF6RMQ5OO62DNi7e+9a3dulQIIYQQwiJN1x6wQgghhPDaJStYTeZbgxVCCCGEEOaPnq1gMYftOXjmnZk393w38/P87iqrrNL47PoD6kZ4LT/umgCp3rqF2gNqBqg/cN0Y7a+2y6DuotIpUZdUbd9D+6hPoU7GbaLegJoNt4N+qepXUd9UbUvTpnlg7DltNWtcF8PrUGvkMcPr0KfsH98Op9rCSWrWzGrbAsb7ivo4alDcfvq/2oKKx6mDodbI6wt1sgUM6yFRW0Q9po8Pxgjb7vFFjQz97/bT3koPSP8z/u+///7GZ28Pz63GHeeFSudGn1W19aRmv/M+tNH1f4wX+tTbw9po1FC6/9vq2NFPPt+2jX33BedevkHv47CqxSg1NVfSQB3l/ML47wVZwWqSFawQQgghhC4TDVYIIYQQBk1WsJrM1wPWiiuuWL4a67S9VvoyXN53uNzKJWK3hWmaaglYqpfoq/twubg6lzAdx/RQtc0Lz/Xl8LZyFu4Lnsvtbjz1Rb/w9V+2tdoug/f1lFVV6oK0bQPBZXeH6d1qqwqmqHjfGTNm9P+b6Wf2lfc7U0WjRo1qfKafPLVBv7CtnoJj6qIqucG0H+33vnr44Ycbx9h39Jt/t21LJI8nxh7P9RhnHNKHnmaVmqkajjOOUU9j0t+c3L3t9APtdxkCU6WcuziWHKZ+OR+5L3zOaLORMUEfMxY9njin036/L/um2sKmjWpLLcYpU4aeLmWcVmU0aF/1e4/zMuefquQJ0+vsH/c5+zX0nvl6wDr55JP7//3YY4/puOOO03ve8x5NmDBBknTjjTfq5z//uY488shXxcgQQgghLPwsKqtLC4L5esD66Ec/2v/vXXbZRV/60pf06U9/uv9nBx10kE4//XT94he/0Gc+85nuWxlCCCGEsAjRscj95z//ubbffvsBP3/Pe96jX/ziF10xKoQQQgiLFtmLsEnHIveVV15Zl112mQ477LDGz3/wgx+UuirCnLvnnalb4JYRntNm7pv5bubkPYf96KOPNo5Rh+E2UhvCPLqXmWAunFoLBofbTA0N9U/VK9XUR7hOg31DH7s+ha9xu+5IqksksG1VSQdq7ag3cJ0GbSCuaWrT8bB//Lvs16rvqDGhrofaL4dbqnCrELeRNvim61JT10MbqjIBbXot91tb/NAXPraoG6HWyOOWMc2+8nhiP3Os83V3Hw88xmu5b9h29oe3lfHOfp06dWr/v+kXtp3Xcps51qsyE4zD6rptJUF4H78W/VLpUqmd5RxfaQVpg9tMvRnjn9o1n+Ppf8apx3xbSYdqnqD/qcGqdIbV1mPUUIbe0/ED1rHHHqv99ttP1113Xb8G69e//rV+9rOf6Tvf+U7XDQwhhBDCwk/eImzS8QPWP/7jP2qjjTbSqaeeqksvvVR9fX0aP368brjhBm2xxRavho0hhBBCCIsUr6gO1hZbbKHzzz+/27aEEEIIISwWvKIHrEmTJunss8/Wvffeq5NPPlmjR4/Wz372M6255pp64xvfOF/XoP7D6URbxO1tWA+m0m8xX0+b/FzqMKgX8s9tmh9qvfx85uMrTQo1D1VbqXmo6vNQ18aaNdRD+X2oOanOreouSc1+Z90o6hr8WtRDtNVw837ndStdSVuseXsYw211dFxLRb1iVZ+HGo1KQ0YNIseS10pjHLbV9qlqW7Gf3f/U5dGmamuWahsXqalXoQar2haFfuJc4Ndl3SVqgPy7jAHaS597vPG7nFP8eJs2yn1Mv1AvxH73+YjHqjmGsD3edtrPz24j9WZtdbDcF221uNymNg2WX4s28D70scc1r8vfUd4e3qcXJEXYpOO3CK+//nq9+c1v1k033aRLLrmkXxx9xx136Oijj+66gSGEEEIIixodP2B97nOf03HHHaerrrqq8VfedtttpxtvvLGrxoUQQghh0SBlGpp0/ID1+9//Xh/84AcH/HyVVVYZkIYKIYQQQngt0rEG63Wve50eeeQRjRs3rvHz2267Tauvvvp8X4d5Z89LUwfA3L3nzalHoQ6A1/IcNrUglSaIegJqRbw9XutGGqiPqGqbUF/AvLq3j/ZTF+b3qerXSM1cPrUf3LeQ9ld6j6q2Eo+x7oxfl3qbqoZQdR1pYH9Utbl4LdfU0E/VHoHsR687JtVaQtpATZPX1KJPWRfL/wiiBrHa85B+odalqlXEsUMdibedmiWey7ZXcOxXe3PSx15/jvfkd12HRL9Uektq+NgfnEd83FEHRg2f37ettlu1hx1jgm33vuP8yTnH/ch4oS/8OGOa/erH2Y+cqxiL7kdq7WiTt5U+o4+9LxkTbZqyauzQb36fSte8oIgGq0nHK1h77LGHjjjiCE2dOlVDhgzR7NmzdcMNN+izn/2s9tlnn1fDxhBCCCGERYqOH7COP/54rbXWWlp99dX17LPPavz48Xr729+urbbaSl/84hdfDRtDCCGEsJATDVaTjlOESy65pM4//3x96Utf0m233abZs2dr00031etf//rObowlVU9B8BiXnv11eC6vcmsZLidXr8AyneJpHB7jsrWnaVjWoO01aU/P0aZquxUuwVdpJi4fV69jc/l7lVVWaXxmmsCX/tlXXOL2+zClxnPdx9T3McVGXzhMvfBaXgKiSn8S2lv5hWmmKp0oNVOKbUv/bjP7lWkOTx0xncISFf6ZbeV44He9vUxl87s+Pjh22M/uC46VNjxGxowZ0zjGfvb7VNuTSM32tI31yi8cO7yPxxf9wvmosoE2+n3oU/Yry6W4HW0pZ483tq2SOzD2eB+3oa1UBO/r7WOZFfrC09eUWFTbD9GHHHe0yfuLPmQs+u8H+iX0nldUB0uS1ltvPa233nrdtCWEEEIIiyjRYDXp+AGrr69PF198sa699lpNnz59wF8Il156adeMCyGEEEJYFOn4Aevggw/Wt771LW233XYaM2ZMa5XsEEIIISz+ZAWrSccPWP/93/+tSy+9VO973/sGdWNqRTx3zrwzNUGud6Kjqe/gZ8+VU/dCfYGfS90OdTF+H9rL+zBf76uAzPtTF+B6LfqQeO6fr4tTh+H3pf08l6uW/pnlCPgAXtlMXYnrlKgvo17FbaQehX1FrUKlIWP8eFvbSgi41qJNm8N+9j7gfRg/bjO3KuKr535f9mOlE6NOhO2hn3wMUxdDH3t/cCsTttVjmjHB71a6HtpUTdjUIFY6GM4hvK5/l3HYtv2QxxPLZvA+rr2rtqCSmuOO47dt66hq3uB9PMapV2R7Kk2Zz/9Ss39Y5oNtb9NDOdW83Tb3+rltc2JV2ob2cTz43MC2h97T8QPWyJEjte66674atoQQQghhESUrWE06LtNwzDHH6Nhjj219gg8hhBBCeK3S8QrWrrvuqu9///saPXq01llnnQGvm//2t7/tmnEhhBBCCIsiHT9g/eM//qNuvfVW7bXXXoMSuXMFzDUePEZdg+sYmFOnDoA5a9c5tG3/4fl76mCoX/E8OrUTXM6kvsDPp5alag+1LNQwueah0uJIAzU2TttWJ64xYH+wL90mnsv7+MN7m2bG+5Jta6st5hoO+qGqRUQNTbV9BnU7PJc2U//hMKY9nqhDoobD45TnVltS0R62h/3j7eP45bhzm6q6V1Kzzh01Pm3bEbkOkbFHm/za1MhUPuY4q65bbXsiDfSx9zP7o6orxbbSp97PHCvUMHHc+RidMWNGaZPrwhjv9JvHDO2vts6hfbwPx4P3B9vKvnOf8z4cz1VdPvZrpYXkfap5r9KTLSiSImzS8QPW5Zdfrp///OfaZpttXg17QgghhBAWeTp+wFpzzTUH/KUbQgghhNc2WcFq0vED1kknnaTDDz9cZ555ptZZZ51XfONqR3eWFOBSvzuXr7fzuuwIX7qtXo+Vmuk6HqseMrnky/ZUu7Rz+Z5Lz24Hl7T52a/lu8ZLA9McDpe327YK8ZQb01fVK+K8Dvu5Kr3AVKovj1dbEUkDSxl4ioHL7LTJr02/sO889hgTvA9t9O+y7byvf67SlFIzxdmWpvE44DirtpbhtdviyeOHaRn6zcdOW5kGtt2/W21Pwvvy9feqrewrxo/HHq9LG6r0KPuZ48GvzXOrdCJjgGlXzpnevjYpRDWeOW9UJQeqLZ1YUoMSBcaE+7Qa6/xum5TDz61iS6rT7Zyr+LvDr8WUeeg9HT9g7bXXXnr++ee13nrracSIEQNE7o8//njXjAshhBDCokFWsJp0/IB18sknvwpmhBBCCCEsPnT8gPXRj3701bAjhBBCCIswWcFq0vEDlvPCCy8MyD3PrwCeOWzPhXMrBGqYqleD/TpSvd1BWyd526iZqV7TpUaAOgbiOXeWEKi2z2Auf9q0aY3P/to3tRO8rh+nboq6Bd7XNQbUATCF7OdSm0BdhmtF2ko6VK9b87osb+E28rrsZ/dTpcWRmjFO/9MG2jx69Oh5fpc+9v6hvRwPfpw6F+pgqi1sOB6qV+n5XfrYdVecF6rxS80M9TbUHbpNjGley48zfqgTcw1N23Y3Pr7Z5/STx4DUlF+0bYlUbTXDfvZtwDjXUh9Uldgg7Ge3iX5iTPt96Qf2s3/m/Ek/0Oc+BmhvNY/Qfvq0+n1AH3LbIB8DbeUg/HhVaif0ho4fsJ577jkdccQRuuiiiwbszyfVAy6EEEIIiydZwWrS8VY5hx9+uK655hqdccYZWnrppfWd73xHxx57rFZbbTV997vffTVsDCGEEEJYpOh4BevHP/6xvvvd7+od73iHPvaxj+ltb3ub1l9/fa299to6//zzteeee74adoYQQghhISYrWE06fsB6/PHHNW7cOElz9FYv6wK22WYbffKTn5zv6zDf7elG6haYd/Z8PXPs1Pwwj+7HqbuodD28bpUL5z3b6qv4tagbYRrWbWSQVduiUAdG/ZDrAHisTUPgehDaUGkieF32u+vruI0IU9H+XfYVNRuVdqqtZplDzQw1EK6LoWaG51IP5X5k2xk/HgfUXPG6fi3axBIr1fZPtKnSpLSVbvFz6W/GuGtzOF5pA/3k8damFfRz27Yg8ZimZqmqtcd5gvehTs/7i9eldo3949CnrputNIfSwLHjbWCM0H7vD/q70ohynqj6g/axfhvHg1+bcyTjx9tT6VClpk/ZN4zTanuutlqN9E1YuOg4Rbjuuuvq/vvvlySNHz9eF110kaQ5K1uc3EMIIYTw2uDlFawF8d+iQMcPWPvuu69+97vfSZI+//nP92uxPvOZz+iwww7ruoEhhBBCCIsaHacIP/OZz/T/e7vtttMf//hH3XLLLVpvvfX0N3/zN/N9nWrXc5Z6YJrJl5e5LM0l4mqrDab5iKcu2rZ28HQWz6WN/K4vPdMvTCNU231w6bxKJxJfaq6WrKWBy+xVOQuuarr9TKfQLw7TfFU5jratKZgGdP/TJsaip2yZhqnSBm2v7/Na7gumCejjKr1L3A6mrplOcWgDU9eML0+fMvXC+/p4rtJXvG5byQCmJv0+bCvLQfi5vA+v6za39ZX3K+/JVBL7kmPA4av+/l36kPf1+Yp9xZhmas/7kilB+q3a/olzsY8HHuPvA7eZ9jGe2D4fDxyTTCO7H3kf2lT9bmE/V1uR0U+c26ptvnpBNFhNBlUHS5LWWmstrbXWWt2wJYQQQghhseAVPWBdffXVuvrqqzV9+vQBf+H813/9V1cMCyGEEEJYVOn4AevYY4/Vl770JW2++eZaddVVByxZhhBCCOG1yaKSvlsQdPyAdeaZZ+qcc87R3nvvPagbMxfuuWQ+tFED5DqMSvsxt+96np0592pLG+oWqCNxvQFz4fwuc/tuI7UUzM+PGTOm/9/cGoeaB/dFW4V9fwW8bWsc6g9c78FX/7nt0SqrrNL/b2q52O9esoKvI/N1ftdV8VzqtWiT63GolaKN7gvGGnGbuKUTdWDU11RbYFTbKTFe6FOP27ZX2D2O6Rd+poasKm9BTZD3V1U+hN/lOKK2pdripk2r5lop2kBdpI8txl61RRL9QA0ix6H7nBq4UaNGNT67Tqyab6S69AWhzsqvxfvws/uG299wHvf2tdnk9+H8U8Wh1JzL2M9V2YmqLAOPc76kho+lebyf27ao8jHc5qew4On4AWvmzJnaaqutXg1bQgghhLCIEpF7k47LNOy///763ve+92rYEkIIIYSwWNDxCtaLL76ob33rW/rFL36hjTfeeMDy59e//vWuGRdCCCGERYOsYDXp+AHrjjvu0CabbCJJuvPOOxvHOhG8U8PkOWxep6qPxDx523HPU1MfQf2E58Lb6mt5h/Nc2s98vefkq7o5UtNvbf52nQ/tpT7FdWLU8RDe1/Uf1DxQG+L2U8vC63r/UPNDP3ndGcYW71NpW3hd3td1em3aHNdVUR/HtjJm2D/Vd91P/B7b43awr2i/xx51a/QLdSV+X/qbGjLXzVBbNHbs2MbnapssTrocO+436s343ao2HfvKdUjsG+rcvO3U17A/eC2PPdcySgPnLtfEtW2r43FabUE1N5t9DFD/VNV3qnwoNWOx0hFKA7VeFaxP5TZWNaakgboxhzHi44F6S8ZlpX2kDdQJu598a66wcNDxA9a11177atgRQgghhEWYrGA16ViDFUIIIYQQajpewXruuef0la98ZZ6FRu+9996uGRdCCCGERYOsYDXp+AFr//331/XXX6+99957UIVGqUlx/QFz+XSmay/a6jvxu53sPeW6BmoeqBVxXQD1KdX+XVIz999Wy8c1BNQ3Udvi36VGgzoAP5f6CPYVtUfuC2p+qMPwz+w76iO8fhX9QC1IZX/b3opeo4oaB/YddUoOx4K3p9J+SANj3rUX/C5j2uOYNlR6G8Y7+8NtpI6E59Imj7dqDz2pqXfyOm/SQF1J1c/0EzUzPj4YA5Uuhjoqjn2PefqbNvlYatNFMkY8FmkDaym5ppIxS59Wv6x4jP3u1+YxznPet2wbz610kZy3/bqMafYr5y6fY/hd9p1/t02/63NzW206zq/ePt6HMe8xzd8Hofd0/ID105/+VJdffrm23nrrV8OeEEIIISyCZAWrSccarBVXXHHAX9shhBBCCOH/6HgF69/+7d901FFH6dxzzy3TJW0w9eKvFXO5lcu6vqTKJWAuqfI+nlpq2wKmetWZbffUAJeAmbrjtiL+Xb6yy7SB+4bpCOLX4jI70wT+0Mylci7fc4m+KlFRbfVAH3IbDr8P00z8rtvQaVx62Yy2lIgfb0u7+mf6jH6izz0WudUPt0jyeGLsVfHP69L/Ps5oP69LP3mKpyp/IjXTdW0+9Zhn6oVpzCqVRz8xTr3t7Jsq9cjr0iafc9rmCfrU7WDaknNk1VampDwVxjmxbasWH5dt6XS3kXNX1c8sX8FY9BQ/Y7oqySI1fUM/sa3ePvqFfvOyJuwr2sT7VCUeOD95KrhNLrMgyApWk44fsE466SRNmjRJY8aM0TrrrDNgUP32t7/tmnEhhBBCCIsiHT9gfeADH3gVzAghhBDCokxWsJp0/IB19NFHvxp2hBBCCCEsNnT8gNW1GyMP7XlnHqu22uC2M8z7U9PkML1Z6WSocaDQv8qbt2mNXG9AG6jB8vbwOnxVu9pqhroG/4uAPqXWpdoKiD51jYDU1H9UrzYTajTYHten8K+bSrcg1ds0UVvhsUcb+Nl1Giz/wPZUr5fTXm4f43o66muI623aNDN+vK0kAseHt5ffrTQpbds0uf95HdrE+3oc8NzqdX76hfob7/dqaxypOdbbyrlw7FdaQc5zbgfHGa/rsUebGE/UY/qYpeaNc5n7kfFSlQihrso1V4RjpU3D5L7gWK80WZxrqWmtttVpa7v3c7XdkNQcZ6+0ZFJ49ZjvtwiHDh2qYcOGDfhvxRVX1JZbbqlLL7301bQzhBBCCAsxL6cIF8R/iwLzvYJ12WWXzfXnTz75pH7zm99or7320rnnnqtdd921a8aFEEIIISyKzPcD1k477TTPYx/96Ec1fvx4nXjiiXnACiGEEF6DROTepGsarHe/+9364he/ON/nu2ZJauolmDenvoB1Q+Z1HWmg9sWPsxYLc9iuXaCOgfa7foLXYR6d93WtAjUQDCS/T6VNk5r6CPqFOitqUhzqg6g/c01Km46kqpvD+k4eB23bTbg2hPFR6VOkph6N92F/VLXHqK1wTQev27alEH1T2eR92VYXzjU17HP61P3Gdld1u6Rm3LLuG+9bab1ov1+LeiD6lNod74+qtp7UHO/0d6UX4hikVqeTOmq8j2ucqAuj33ycUbfDvvO2U9fZtv2K+7Gt1pt/Zl073sfnV45fxqLHBPuVsVZtk0X/M259nmjTFTrUdrXV2vO4YFxynvC5l/aH3tO1B6wXXnghHRxCCCG8RskKVpOOt8qZF9/+9re16aabdutyIYQQQgiLLPO9gnXIIYfM9edPPfWUbrnlFk2aNEm//OUv5/vG1VYb1ZYdUnPZl8v3XBKuXqnm0i2Xj33Jm0/M/K6nIvm6MtNxvI9D+3lfTw3QL3xFuXr9ukqFMf1Am6otPbhEX71qzhTPKqus0vjsPmZagOmgarsV9hVfqfZUEtMCTE94W3ld9rP3B+1lmoZ+cp8zXqp0I4/Rx34f2sQUofulbWsfxogfb3tV3mOGNlTlOJhaYX8wZeUxRJs4drw9fOWe9/GY4XzDucznPY4ztofyBo8v+r9K5XE+In4f+pv9znm72o6rSmO2SSH8WvQDz/V0I21gVoXt8Tm0bYy6zW3lE/w4z20r0eJ+YwxX43kwW9d1i4V5BesjH/mILrnkEr300ksaPny4TjjhBH36059u/d43v/lNHXDAAVpmmWUGpLbbmO8HrNtuu22uP19hhRW0/fbb64ADDtDaa6/d0c1DCCGEEF5NDj74YF144YXaZ599tOuuu+rII4/UgQceqM0220wTJkyY5/cefPBBHXTQQVp55ZUH/PE0P8z3A9a1117b8cVDCCGE8NpgYV3BOuusszR+/Hide+65kqQddthBSy+9tA455BDdeOON8/zeNttsoy233FLDhg3TTTfd1LGdPavkHkIIIYTwSpk8eXIjDb/CCisMkGo8++yzeu6557TDDjs0fr7RRhtp4sSJ87z2xz72MT322GO6++67tf32278i+3r2gMUcvOsaqEVg3tMdyGU75rOrcgTMx1OH4XoQvvLN73p7qI1iHp26DP8utSEsB+F20E/Ur/hx+oE2VP6nrqrakodb8NAmvxZjgFtg+HFqTHgf18FUW9ZIAzUdrmOgDdRGuc6B16VN3u9tOhL6yT+z72gTNWUO48l1Jox3XtdjnPZyPDCe/D5t5Qj8XPqfbXcNEPVyHPvU1Lh+he2hhmzMmDH9/+Z44Nj3fm7TLFXn0v/0qfucPqSP/TPHKzVk3j7qeDj/UGvkJVs4T1clEtiv9LH7gm2jHtPnFF6XY7Ra+eAY5H38WizLQPs7WWGpYqQtph3OP71gQa9gjR8/vvHzbbfdVtddd13jZ3fffbckad111238fPTo0brrrrvmev2rrrpK55xzjn76058OqjpCVrBCCCGEsMhx1113Nf7Q4gO2wwfovr6+ue7fOHPmTH3gAx/QRz7yEb3nPe8ZlH1dK9MQQgghhNcuC3ovwtVXX11rrLFG/39ze8DaYIMNJEmTJk1q/HzGjBlzfaP/kUce0fPPP6/vf//7GjJkiIYMGaLrr79eL774ooYMGaKTTjppvv2RFawQQgghLJYst9xyWnbZZXX55Zfrq1/9av/PJ06cqLe85S0Dzl999dV16aWXNn525JFH6s9//rMuuOACbb311vN97549YDFf7Bob1h6i1sJ1ATxGvRBz1tTnVMf8Wm3b3XgOntoKah54raoODbUunp+nZoOfXXPC61Z1pKjNGTt2bOMz62D5tWkvNRzeX7yP616kpo6hbbskt4kxQY0Dl4W9f6pjUrPvGANVLStqKfiXE/P8/pnHqHHw/qFup4pF9hU1NH4f6gqnT5/e+FxpUmhvNb6pGaP+xv1Ge9kf1XHGD/3kujbWZ+P4dfvbtGoei/QDfcz6W17PijFBnacf5zijXsi/Sw0W458+9mtTc8UttXyMVjo83oc+5Wf3G3+vsF/ZPreD/cqtu3yebpvT3ca2viLuR/qF86nPvVV67LXOfvvtp1NPPVX77ruvdtllFx111FGaOXOmTjzxREnShAkTNH36dE2aNElLLLGEPvjBDza+f8opp2jSpEkDft5GVrBCCCGEMGgW1jINp5xyiqZNm6bzzjtP55xzjoYPH65TTz21fzVqxowZrQV5Xwl5wAohhBDCYs0FF1wwz2P33HNP+V2+mTi/9OwBi+kUh+mTaomb6SqmKpgm8CXjaisNnkubqvRDtRWOVL/izuV7Li/7fZgOqpaImaLidX2pmcvSXP5m3/nry233cZvbtrDxtHH1arnUTNNU5Spog9RMTTImqt3sWXqhui9joi314tfiq+b0KWO+OteZMmVKaZOnU6r0oTQwNVP5iSlb7w+OjSr1Mrc3gJwqDcVYo00eT0x90UbvH44N+tTnFMYW0/j0uaeCOc4YI953TLPyu24HU79tZQ+8fW3joRrP1VZFVfkQqTl22myoyqPQhiptz987TG27nzifcqWEqVS3kX1FGYXbwZRzL1hYV7B6Rd4iDCGEEELoMkkRhhBCCGHQZAWrSVawQgghhBC6TM9WsKh58JII1MFQY+LfpWaAOXfqGDyHze8y3+1PydRh8HVf/8xXadtes/f2UeNQvfpP3Q5z/a554CvHPLd6NZh+oVbE7W97fdnv01Y6wm2uymJIzX6m5oRbhRDX47CvvNSF1Oy7SjMm1duiUH9Dv7kug/5nezxm1lxzzcYx9rtri6hXoU9d00G/UHPCfvZrVZorXosxUG0NwnmCNtBvrp2iloX6G/9MGzjH+HHaxLIxPlbayolwnvD7UPPGkg7uY+r/eF/fnoh6oDY9o/u4basfH/uMn0p7Rxsq+6uyNtJAnZLfhz6kzoptdyoNGeOQ7am2F+PvL8aia+QY/71iUVldWhBkBSuEEEIIoctEgxVCCCGEQRMNVpOsYIUQQgghdJmFZgXL89vU0FCb4DoGaqGoeaB2xPPUbduVeB6duXxqajwHz1w9c+7U9bjuYbXVVmscY87dr13VaZGaegPq2KothegX6s943DUE9EtVV4rHqDeo6ubQfvcx9R30d7V1DvUd1GG4TdTLsT0em9VWJtJAnYaz6qqrNj5XW/RQh8Hx4X3H67I93pf0metepIGaMu9LahK59YzXBaK91IlV9ZHYz9SquU2M6aq2WLW1DK9b+UGq6/C1jQe3g1qpSv/EY5VGkce4UsDYcz/x3GrbI84TjH9vO2txMfbcF9RCse1VvSqOHdro8xyvy+/6OGvzKdvn8xFjj3ot99vCsFVOVrCaZAUrhBBCCKHLLDQrWCGEEEJYdMkKVpOePWAxFeBpAqaDiC+btm1NweVZX8pl2ozL1H4fphS4fOxLwkwzMc1RvbLP0gVMx/lxpsmYYvAgbHt92WH5CqZamIrx9tF+Lml7KoY+pd/8u1VaT2qmOHkufchld19anzp1auMYUwpemoFlGartZKr0myStscYajc/eBtrLFJunMTkeqtff6X++wu5+4zH2FW30scW+4ph0H7P0BfvOv9uWeqm2VGnbQsV9w3ivyqNwXNH/VRqH45lzZDVmOXf5tjoPP/xweR0fZxy/bSUG3Dec56r0Io8xjexxzLRflcZnvLSVmPF+5niofj8wpVyVs6C/KftgnLov+F223eeVtq2jwoInK1ghhBBCGDRZwWoSDVYIIYQQQpfJA1YIIYQQQpfpWYqQegPXYfDVeObNXa9FPQpz1pWeq237Eof6GuojPCfPV3apFWFu33UnfHW+2v6AOgDa6O1hW6vPbSURqEHx3D+/Sw2E6w9oQ7UtRNU2qal54PJxW0xU2wQx9jxOqdngff0+jBdu1UI/+X3atprxmKFWim1/8MEH53nMdTu8D/U11Myw7R4z/C41NR4/1CwxRlzDxHHVtgWJX6utbIn7nDFQ6T7ZN+znSrNETV817uhv6sS87W3bTLlfGNMsB/HII480Prsv+F3iNrGfiY8XtpX+97HDscJz6VOnTb/rcw5ji/Hk2ijGcLV9mNTUkbXp2vy7tLcXJEXYJCtYIYQQQghdJiL3EEIIIQyarGA1yQpWCCGEEEKX6dkKFnUBrrti3t81V1IzR838NvPo1GVUuX3qJ1yPw/o1PNdz/9TT8D7UH1Tt4bUq7QJrNrkeh3obagb8XLa1bQsJ7zvaRw2E29GmlaKPHfrFbaSOqm1bC9fY8Lu00eOJsUW/uZ9Yn4c6w7XXXrvxuaq5Q1x7wfinJsV1VlOmTCmv6zawb+hT6kj8eNt2JW4//U9diccEY5jfZdtd+1XFltSsN9Sma3N9IO9JbZTreKivqbavkppzF/1NLapvJ0N/P/TQQ43Pbkel5aL9tKNNv+ifeR+OHe8rxn+11QzHFe3ltbwv2VbOE97PjD1+19vaZj/nER931J5WdcqyVc7CR1awQgghhBC6TDRYIYQQQhg0WcFqkhWsEEIIIYQu07MVLOp4fL875qSZR/fPVU0daWAe3fUG1DFQ7+H5ee6RRg2ZP1FTh8FzuS9dpU1gbaJOdD2uiaBGoGo77a/2OJSaepVp06bN89jcbHTYnkp7RA2E6/QYW7wOdQweM7SBbfXP1PHQp66ZoY6n2iOQNlV76kkDdRrVdT2OGe9VjaCq3+Zmo/uJsVdp79r0fq7PpP9Z34n9XvUHdUoOa1lVc0rbvnMeI9QRtuncfI/Qtra636padFKzP3hPfqbPfbxU+/xJzZimDznufHy01dbz+1C/W2n4pObvEo5JzsVuP8cgx47bxH7l52pPzcqHUrN/OFZ6QVawmmQFK4QQQgihy0SDFUIIIYRBkxWsJj17wOLWIb4MzCVgvs7s6Qpeh0va/rqy1FyO5dIsX3P1VFnb1hS+lMtlXC4f85VqTxnSft7Hl6arlCZtZkqBfvO2tqWOmJLy5f0qdSo1l+Tblv79Wmybp0uk5vI+7WPakikfP870CVMX3s9MyzBt6cfbSkUwjbb66qv3/5tpcPrYPzO9S1+4TfR/ta0UU2qMkWqbI8YaU0ncdsfhWPLxUG15JA3sD48v2lSlOHmMPvZzaW/1uS1FyOPed530c9s2X5xjHKaGGbduB49x3vDjjGFSbSnE+3h7GFu0gcc9jnlu1Xf0aVXGh2OFc3EVT5yPOOf4fThPhN6TFawQQgghDJqsYDWJBiuEEEIIocvkASuEEEIIocv0LEVYbVPDPDO1Fp7vbtvyYtSoUY3PrtNg+Qfm5ytdGPUertVhzp32s+SD63OoN6Auw/P11K7wNWPP31NHQt2F6xo62R5DamoTqBngfV27QHur0hEs98Bz3Wa+cs9Yo4ajevWf96l0YSy/4d9t08DRT4888sg878P+8JiodC+0g1tQ8bset+zXNg2NjxfqeKoY51ih39xP1LW1jTv3U7XVldT0RbWNi9TsD8YAY9H7g31ObWAVX2wb5y4fZ9QLsa0+39KmqkyGVOvnGCNuY1spGPc5Y5g+db+wrbwux533M+1lfNFmp9oqijZx/FLn6fMp52mOWe8Pztu9ICnCJlnBCiGEEELoMhG5hxBCCGHQZAWrSVawQgghhBC6TM9WsKq6OdRHMBfu+XnWumHtEubG/T60gdoQ1znwOszH+3FqNLjdDfUSfj51MNRAuJ6FbafWxfUrbdtlVNvFsAZSVUuGfqL9rqWqttyRmv7ndartSqgLaavDVNW2ol5iXvbxOlIzRhhb/FzFLdv+0EMPNT67zqRNr+UaDo4zftfPpRaKPmR8+RjlubwvfeFwjHqMsBZa2zZHfi3GGu/jY6uqUyTV21dxLlh11VX7/02fUZtJv/g4rMaK1OyvShsoNbVHtImxx77zeYT9XOkx6cMqvmgD2+Nt5zji2Gf7/L60gZo+14zSh/SLa6PatmRjfPncRv0fv+vwPr0gK1hNsoIVQgghhNBlosEKIYQQwqDJClaThaZMgy/7clmXn337Gx7jsjqX6P1427Y0vlTLVAuXov1cboXDlNXKK6/c+Oy+YJqG9vsyNZelmSZgusvhK73uF96zSqlJTd/wVWem8nyJnsv1LKnhy+FcRmd61H3IdtMmplL9vkw/VPFDGIuedmKscfsexpe3jzFRpSdY+mLy5MmNz1VJBF63SokwbVOVTGjb+srHEscKUySeJmNZA96nSkGzX9k+jyGmZXgfzgUOSwq4BIBjgyk12uT2s+84d3m6i/FDfGxV5QbaPjNly76rJBccdz4eOPZpQyWb4Nhnv3scV3IA2tiWMvd+5nzPvqIsxOOA8oyqRAVtCL0nK1ghhBBCGDRZwWqSR94QQgghhC6TFawQQgghDJqsYDXp2QMWdQyeO6cWga8ve16d5/J1a+alXXvEnDtz4cz1O8zlu2aDOXZqIFxDRjuoRWCu321kW6mLqV71p67B70sdDzVL1E+4boY+47X81X9qE6grca0Oj3GA+fG2UhdV6QvGBH3smghqiRiLHnvsR8IY8ZinvdT8uNZlypQpjWPUpFAn47Bfq7IGtKkqicC+o/3V6/vV1ifUEdLGyueMf2pb3Bfsm2oLFeq12l7nd0aPHl2e63FNnSFjvppTaD/70mHZCeJ9S5vYP36c+iz2s8+htIFaR/dbW1wyJrycAuOS57rfGBPVnM/fFW2lJPw4Y6Cay+jT0HuyghVCCCGEQZMVrCbRYIUQQgghdJmsYIUQQgihKywqq0sLgp49YFX5Ymp+qu0OqHlgfpt6A8+NM59d1VaiZqPaqoKaB+brqUlxrQLrtvDcSodBvZlrF1hPhRq4TjRMlX5l6tSpjWP0v9vIgUgNk+sa2Db62HFdhTSw7ayf5Hon9hXb7tdu2y6mijX2M210/Qfbw7a7ror2V7FH3Qj1ct4/PJf2sy+9xhPHlevw+F3aW20XQ7/QRsapzyvU9dCn/pn3oS7G695xTFKD5felDRx3jCf3Oc9lWz02q3lBas6h1biSBs7F7nPWsaPWtKrLx7b69mKsGcf6YT7H0D7qn0g1RhlP/juL/mfb3CaODbaV/VNpQjnu/HdHpRkOvSEpwhBCCCGELpMUYQghhBAGTUTuTXr2gMXUni+FtjnPz21Lc3CJ3peEudTMpX9//Zf3qV7nb9uagmlMP5/XZbrU0y1MH3J5/JFHHpmnTWy735fHqlfYaSOXsJly8ONcGq+2H2rbVd7bzle+6Re2z+1g+orx5KkBvsbN/vAyFG1b7vC7vtz/8MMPq6IqZ0E/+XVpP1M63naOSfYdr+XxxthjP/tnpol5XY9/jg2myegLt6Pyi9SUADB9y1h0vzEdSpu8PSw/01Y+wcdONYfQJl6Hfee+qLY8ov1Ss31Mm3HLME/10Qb6ycch21qlzFkaom3rH/8u70MZiI9h2s+49bQ950SmCClZ8PtyruJ86nZUJVhCb8gKVgghhBAGTVawmkSDFUIIIYTQZbKCFUIIIYRBkxWsJj17wKq2deEWKtUr7NQHUSNQvd7PvDlfM3YtT/Uat9TUqzDnTm0C7+taEepgqOlwHUD1ajbtqO7J49Qs8VzqGqqtTqgp8/6hD3kff52cba22xKC+iZoHxpNrOtpeU3dNCv3NuHWb6DPeh+1zqlIFUjO+qNmgNsf7mT5kv1fnUq9IXZLbQT+xn33ctW014+1p276num9VPkRq9gd1PdT4uf1sW6Xp45hs07l5+9jPtMnt4LzGOZI+dxjTVdkJ2stzXZNFn7I93re0l/1cla5pK3vj59MG2j+v70kDfehxWunW5vZdvy/HFecNP855IfSerGCFEEIIYdBkBatJNFghhBBCCF0mK1ghhBBCGDRZwWrSswcs5qFdQ8C8M/Pont/mdartSqSmpqmtDk21tQN1Md7hlb5JGtgebwMDp6q11KbhcH1Em47Ka8CwZlObVse1F20aOO8f2sBzvT/atkDy+Km0K9LArUJcJ9Omd/KYqOo58brUCrKGU6UNoY6H8eNxwHinvsPPbast5toW2kdtHdvueht+l9opvy/PrWKPsUZ9CuO00j9RU+YxxLYxbr1/Ks2b1GwPdVPsDx73Wny8brWdGOc5xqLbzHp/HGeVL2hvVWuMNlRbLbX1s9tPH9Jejjv3I+3nXODzBvVa1RxD+6ttdXgt1rZifHm/c0yG3pMVrBBCCCEMmqxgNYkGK4QQQgihy2QFK4QQQgiDJitYTXr2gEUdjOfrmWOn3sC/y3MrfY3UzKszF87aLK7DoNaLuX23g+dWeiGpqXVhW1kHy+9b1U6Smm2nLokB6rorto25fWoreH6Fawaob+K+f36c9+S5rq2gv/n58ccfb3z2Wj/0Pz973/G6bboqhxoUal/cp211vSq9B+13/RPrs1X7I7KtbBs/+7UZ77TJx2G1Tx6vxfFL/Q196u2jnxhPrsmiX3hdH6OcjzjOXLPEcUUdWKVrozaHujz3Dc+lxtLtp//bbPI5qK0unH+Xsdc2xzjsKx8Plb+lgfOp+4Z7HHJ+dd0VdYRsezWfct7jd522elvevk7m4bBgyApWCCGEEAZNVrCaRIMVQgghhNBleraCxaVbX+Jue1XYt5NpewW8enWVS/9cjvUlYb4ey1QAl56darlbaradS/1MO3k6iMv3bI+nTJhWqtKWXCqnj6uSCVz6r15n5hI8feq+oP/56rmnDXidttIRHm9sK/vD7eer8Ywfv1abD/nZ+4Pxw2t5aps+ZSrS+4PXYSrP28r45pZO9KnHUJUqlZoxzbbyL1W3iT6rUo9S009t2+p4v9MvVTqI96zS+EwV0X7OXZ7Ool84T/iYrOJSaraPc6+nJaU6rcwxyfv6fMW28r7uN/qhKoVBSQglIxzPVXqU84ZDH/Jc90tbiRn6tBovVdkMHgu9JynCEEIIIQyapAibJEUYQgghhNBlsoIVQgghhEGTFawmPXvAYp7ZNR18DZe6DH/9l7lv5uCZl/aOYW6c9/HcP3U9zNe7toVaqEpvxvvSXmoVXH/AIKOOwc/ldWmDf24rn0DtV6X3oI2urWjTtblPqeWiLsPjgP3IGKF2inY4lX6C+pqq1AL9T01c9fo1v0tfuN6pKr8hNfuHsUXcT1OnTm0co//52W1k+QTqn6ptUTjO3Ocsq0Ibqi2FGGsco952xnulp6P97GfvnzFjxjSO0S+cy7x9jFna7/1clbqQmj5mX9HHVcmQtnIirnein6jx87HEtjKm/VrUj7bhfuN9qI2ibxz2XaWj4vjl/Or9U2m7pGaMUG8Wek9WsEIIIYQwaLKC1SQarBBCCCGELpMVrBBCCCEMmqxgNenZA1alCaI+groer7fC7Rja6p5QJ+NQm+M5eOb2p02b1vjs+gjWpGHunhon1x9QdzF69Oh5fpf6INYAc6ilqOpTMXippai2DeJ3qy1URo0a1ThG/3tbeR3ex3ULbbXRqK3w71a6HR6nX6q6TNTBtNVscl1MtT0JadsqpNqWgxoUj8U2zQ/jye9DP5HKT2y7t49+YNtpk7eBY5Lfde0Lbah0YrSf81FVN4o6JI4PP5/9WNVwom6H9ntf0i+V1nRu15rXdaXmOKQOjL8P/LucszlW/LscV4w9zg3VvMe5gPOGQz/4fehT/n6r9JiMPZ7rvmjbOi0seLKCFUIIIYRBkxWsJtFghRBCCCF0mZ6tYPEJ1JeP+cor8WVRvkLN73Lp1pfsq3SJ1Ez78Tp8tbZKkz3++OONz1ym9uNcluYrye6nKtXFazH9UL16zqVm+oltd/uZjqvu41t/SANThJ4iYVqVNnr6h/ZyWZ1pBL8v+5lL9NW2OtX2N/R/tS0N7WB6mu3z9jDWuNWJX7fNpz5WGNOMAabFq22CmA7y9jAG2FdVnHI8cCx5G2gvcZ8zJpii8nQW/VKVAOFYYQywfR5DVepUavq4zX73KdOWbdu8eBuqUiOEqVOOUZ97aS/nDT+3bVsy9of3V5XulJo+ZkmQapsg9itjnG1337TJM7w99FMvyApWk6xghRBCCCF0mWiwQgghhDBosoLVJCtYIYQQQghdpmcrWMyVe16auXu+1uraHB5re03ddRmVRkBq5uT5qi31Hq5N4LnU21B/4DoH+oXtcb0K8/H87K9UUzvBc73chW9bJLVvVeHtZX9QB+M2tb1m79oFaltYzsK1IG3bS/BVc/9MzU+1RQ/Prdrepmur4pRtZXtYgqOyydvTVo7DxyRflafWa8UVV2x89vFBbQjja+zYsf3/pjaK/u/kVX/62NvbprVzv9FP1ND4ufR3tU1TWzkazjHVNjD0qfuC9rOtldaUGkriMcMY5n1dp8TxXG31w/jm/OrzEX3IMUqfuv1t86m3pyq1w+McV4xL/j5wmzl/VmUbqnkg9IakCEMIIYQwaJIibJIUYQghhBBCl8kKVgghhBAGTVawmvTsAYu6HtcQUM9BrYLn3Ntqx3C7Cdd4ML/N/L1rX5hHp4bAc+60ifehzsrP5zH6yfPs3EanqgnGWkRVHRpqfBjM/Oz9QX0BdTHuNx6jrqfaMoL2e79XW0/M7Vr+mfZX2yfRBtY1cr/wXOqHaKPfh9el/sPjoNqyQ2rqV+jvSpNI3QtjjdoWt4Pjl3HrNrb1VVUjiHqbSn9DPRPnDbeZPqWN/l32K21w2K9sK6/ln9v0Zj72OZ9WW+XQD6yjxn73ua1ta5lK/1rVoGI/Mxb9eFU3TRo4t7m2kD6sts2iHziWPL44XmkDqbRUtKnauiv0nqxghRBCCKErLCqrSwuCaLBCCCGEELpMz1aw+Ko/U3kO0zTVUjM/cwsDT7lxCZ7pOF+GZ4qHy76+vMwlYLaV6UVfSueSPO/jaQW+wl6VeOByPV8r9nO5RM3rVq8ZM83Kv2Y6SdH6dbnUz5SCL9HzGFMk9JunU5jO4pYY3rdtaT6PaaYQGGuMGV/ub7OpSg3wPm4H+6ZKG1dbvkgDfe5pHJZ44Jj0c9k2+njatGn9/2a/Mi6rshmMAY5Rjzf2DdNQ/l0vdyIN7PeqHA19zPHg9rNtHM/ed/RhlY7jXFuVT5Ca8xO/W6U8eW4lq2A6l3NitVURS5xwHvG+bCudUskD+F3vy7aSFJybPd54jGO2KsXTC6LBapIVrBBCCCGELhMNVgghhBAGTVawmmQFK4QQQgihy/RsBYuvKLs2h/l56jJcf8Bj1FYw/+36ImoeqBlwHcD06dMbx6h5cJ0JNUxV+QepmTunjoevJPt9qFtgezzXz2PUcHjen38d8LvUMbgd1EfQRvcbt0VhW710B33Iz+5DvmpOn1ZaNWpoqM1xrQX1Efyua40YW7S/0smwP9h33j8cO5XWi8c60WsR+tztZ7xw7Huctmmw3P/UnFRlDaRmH7Dvqtf72/R/fl36qSopQD/QJsap20gdD/3m/cHrsp/9OH1G+6u4pV94LbeRfqKPPfaotWvbDmde95QGtt3nJ87blVaW/uf49jIO7Ef2OzVm1bxBPaNfa2HYKicrWE2yghVCCCGE0GWiwQohhBDCoMkKVpOsYIUQQghhseYjH/mIllxySQ0ZMkQjRozQ6aefPs9zDz/8cK288soaOnSohgwZouWXX17HH398x/fs2QoW8+auzaGOp8qbU1/AnDtz2K4TqLQUUlPPVW1ZIzV1ATyXWgQ+fbvWq7JXaub+qUGhDsa1C9zagbV9XGPGY9SMVVv/sO3UT/i1qHGgfq7yKePHfdqmdyLeP/wu7a/0EYwJt4kak2q7HqkzTZnrengfash8fFT2Sk39TZver4px2lvpYlgji35xeC41cIwnt6mqrSc1tS6VZk9qjhdqc/hdP5f+pw2steRzATWgvI+fSx+ybtqYMWP6/834oY9pU1VbjPOIz9VVzTupqTN0LaY0ULPkPufvDo6dqvYhz6XffDzwPtSqeVs5T3Ms0W9+X9ZFpAbLNYm8bi9YWFewDj74YF144YXaZ599tOuuu+rII4/UgQceqM0220wTJkwYcP5VV12lLbbYQrvttptWW201HX300friF7+oddddV7vvvvt83zcpwhBCCCEstpx11lkaP368zj33XEnSDjvsoKWXXlqHHHKIbrzxxgHn33bbbY3P73rXu7TMMsvo29/+dh6wQgghhLB4M3ny5EZ2ZoUVVpjrm/fPPfecdthhh8bPN9poI02cOHG+7vPSSy/ppZdeGrBK3kbPHrCqFEO1s73UXArlMnT1arPUXMrl0iyXj31pt0qLSc1l9yqFIA0sT8A0p8N0ii+PcxsO3tf9yJQIv+tpgqlTpzaOVa/VS81UH33K1KT3O2OA2034Ujl9xmV3T7cwrde21YxTba1Em+gX2uSpDfqfqRjGnvuU53ICqUpHVH5iCqRKuzL90JaO8O/ST1W6lH5i6sjjln5gjHRStoRx6r7g2KeP/TPT3kzpeMq2bfshpvLcpraUv7eV/cp+93MpSWhLu7odTFvSb97vnD+rLXrafh9U8hKO9Wp7Ip5LX7gfubVbVRKE8c55jvfh+Q7HkvcHY68XLOgU4fjx4xs/33bbbXXdddc1fnb33XdLktZdd93Gz0ePHq277rprvu630047afbs2TrmmGM6sjMrWCGEEEJY5LjrrrsaD538o8vhHxZ9fX2lxvNlDjzwQF1xxRX66le/qje+8Y0d2ZcHrBBCCCEMmgW9grX66quXD1WStMEGG0iSJk2a1Pj5jBkzBqyQk4MPPlinn366jj76aB1++OEd25kyDSGEEEJYLFluueW07LLL6vLLL2/8fOLEidpoo43m+b0DDzxQp556qj73uc91nBp8mZ6tYDGXX70uy7y66w2Yj5/bMqDj+W9qE/jqsF+Lr1Qzl+95c+pTmDdnDt5z//QL2+ffpZ9o07zskwZqK7x8ArUh1FKQaruMSmfCtvK7/tcF7a9KCrBf2+yf1z15XanpJ96H9vsr1uwb6nioQXH9TbUNh9TUnDGGea7HItvK1+E9vuhDxnilK6xiTWrGNM/ldf1c6pvYdvrY/cTrVmUCqG9iTPt9aRN1PR63vCf7mXpAj5G273pbOc6o7XJfsCwAoU3e9rY49b6jXotjx+1vK9vj/Uy/tGly/XzO8WxP9XuHPva+4nWrbeKk5higXxjTbiPP7QULa5mG/fbbT6eeeqr23Xdf7bLLLjrqqKM0c+ZMnXjiiZKkCRMmaPr06f2rXAceeKBOP/107bbbbtp99911xx13SJqjc1trrbXm+75JEYYQQghhseWUU07RtGnTdN555+mcc87R8OHDdeqpp2rrrbeWNOePS//D77zzzpMkXXjhhbrwwgv7f77eeuvpnnvume/75gErhBBCCINmYV3BkqQLLrhgnsf40MRV01dKNFghhBBCCF2mZytYlc6KOgzqAjy3Tz3B6NGjG5+ZK3eNBLdcoK7Er81jrLXkuX7m+fk0zOOVvdQBePumTZvWOEZtl9dAaqu94n8RsMYLdSVVvS3ep60Gj1PVFqNmo9pSiJoGxhpt8vZRb8P+cN/QL9QpuS6DehS2h/Wq/NqssUNdj/uJ/qcuiT52+F3XjVFjwvHAcefHqT/j2PH2MbYYp65foS6P/crx7VoYHmNduEoHwxipNH6cn9wvbdqcSkvItvNa3pf0KXVKfh/GNO2nVtDjtk3v5DHELZwY/x4TjC32h1+X47VtOy6fR9q2sHH9E/ucWk23gz5jX7E9/rlNZ+g+rn6vLCgW5hWsXpAVrBBCCCGELhMNVgghhBAGTVawmmQFK4QQQgihy/RsBYt5Z9eVMBfOp1U/l3oC6p2qKq+sKUJdg+fvqaGhZqPa47DStkhNjVC1T57U9AW1aczXu43Mz1NH4tdl31DDVLWnzf5qz0bqGvy+1GxQW+HHqSFjf7AOk2skqHdi26u95Kp9C9v0flX9MLaHvnC/MbbYz94eto34WGrbZ441tLy9jBfqZDwm2nRVrtWhH6hPoRbP+6NNF1nV22I/V/tgUpfkfqSOkDYxxt2mtnpz/pnzHG2qanPRL/yujxd+t6rLR10SfextpdaU/ez3pZaLscbj7nP6mzW/POarPQGlpp/oB44ljg8fl5wj2ZfuC/qlF2QFq0lWsEIIIYQQukw0WCGEEEIYNFnBarLQPGAxZeIwleHLvlyybnst1z8zfcjXZ7kc63CZ1zucNjGd0radicOUiS+lMx3HlIO3j8vQXJL31Ab7gvbxvt4fbSUFqjINTBv4uVySZ3rI+6NK4czPfZ0qRUibmApwP7If2R/87LHX9jq/p0iYTqm2VGGam2PH47Yan9LAVKTHDGOAfvJUN+ODZQI8pcNJlt9le9yPTBXRRj+X45nx4n3b9gq+zz+8Lm3gWPL78rucUzxOOQfyPj5e6ENelz73azPGeS1PN/JcptD9urwO2+5jp237LV6r2tKG5YJ8nqu2epMGjjuHqWtKAFzCwHHFlK2P4TZ5RljwJEUYQgghhNBlFpoVrBBCCCEsuiRF2CQrWCGEEEIIXaZnK1jUdHj+mK8rM7/t+W9qBJhjp47K70vdS1XSgZoN5var7TL4qjBz5Z5nb9M7uXaBOqQKagJoL210qDejfsuvzX6ttmahvomv+vt1qUWgDe4XXoffbdNPOJXGjxoZ4u2j7ojXrbbzof/53enTp/f/u60kgl+LMUG/+F+JVQkNqda58Vy2p9K2VOUtKi2gNHAu8DHM9lAT5DFBzVtV4oE+5V/afl2O9Ta9TTVG6TefF2lTNW+wrRzPVXmFStslNf1WlUuQmn3H67CvfI6nvZzTq+3Q2PYqnjgG2R63iVpA9ivLxvi1qrIMUrNvKy3vgiIrWE2yghVCCCGE0GWiwQohhBDCoMkKVpOsYIUQQgghdJmerWCxvo3nlquaQFJTP0GdBfPm1fYBtKHaooe5fNYQ8lw4n675XebKXc9FbRe1Rl6bhbqealsRto3nuq6B+gLqaypNE/UebI/bTA0TtQqV5oT96n3Ztg1Hpaejn+hjvzY1G4wnv261FYtUb9HD71Y6DEJti9vUSfzT3raacT5GGQNVnThqoyr7Oc7ol0onQx1PpRWsthuSmm2n/fSbb79CfRnnlGrLKsY4bXS/tW2f5PYzJji/VnXuqq2ipFovxLHUSQ22avzSXvaPt50xQa2gX4t9w77z9lAf11aDzfuZ+iz2ncct79MLsoLVJCtYIYQQQghdJhqsEEIIIXSFRWV1aUHQswesqqw/l3m5lO4dyG0HmCbg8rgv7XL5nku3vmTsr8JL0ujRoxufPWXCZVy+Fs32Va+4M/1TbffBJW5fMuY9eV2/FlNzTHFW23RUr1DzOM8lnjLkPat0HFM4XM7nBODL8PQp+9lTG0zTVOkH2sD4r1K27Dt+9v5i7FXb9/j2SLyO1PQT06xtpS48vcJUEb/rfmxLZfu5PMZ+ZXx5XHiqTho4F/i1GcOMvWoLmCrlxpjgOGN61PuSfUW/uY+Zemd7vO2MaabYqrIT7Ff61P3ftgWP+4YxXKX4Ofar1CnhmKzKxjDeeR+fpznO2kov+Hd9GylpYDy5zRwPofdkBSuEEEIIgyYarCbRYIUQQgghdJk8YC1i/PSnP9VXv/rVjr5zyimn6OGHH9bzzz+vjTfeWD/72c90/PHHv0oW/h8//vGPddJJJ73q9wkhhNB7Xl7BWhD/LQr0LEVIvYprItq0FK4/mNe5+++/v/bff3+ttdZakqQ//vGPOuGEE3TFFVf0n3vggQfqgAMO0JgxY/SnP/1Jhx12mH71q1/1H3fdD3Ph1AV0oldhTr7SEPA13ZeDa9asWaVu5GX+/u//Xnvuuad22GEH3X///Xrssce0zz776MUXX2y0z//NvqH+iZoat9n1A7Nnz9aSSy7Z0Cd4X7ZpNvw+bVsIuTah2rZI6uxV82rrH9rA9vir2rSf2sFq6xYeow7D/csYqDRkbRo415xQR+jlQnhdqem3Ng2W6xt5Xb6+T91SdV1+18clNYjsZ9eQ8RV8zgVVTLM/fKzwXM4plZ6obZss11Kxn+kXH3fUprVpjeZ1nbl9du0RxyD95P6nDdXWY4y1tm3X5mWfJI0aNarxudJFMi79M/W7tIG/L3zMMvYYM95e2ht6z2K7gjV58mQdddRR2m677bTddtvpf/7nf/S9731PG220kSRpl1120b/927/p5JNP1jvf+U79+te/1qWXXqo11lij43uNHDmyFO33knHjxmnatGn6zW9+o+nTp2vWrFl68sknBwzqBcHYsWMjxAwhhPCaYLF9wPrpT3+qK6+8UpMmTdKkSZN03HHH6bnnntPf/u3fSpIOOuggfe9739P555+vP//5zzryyCM1efJk7b///vN1/WHDhuld73qX/uu//ksTJ07Uuuuu239s4sSJ+tSnPtU4/7bbbtPRRx/d//lHP/qRvvzlL+uYY47R/fffr7vvvluf+9znGt8ZMWKEzj33XD3zzDOaMmWKDjnkkAF2HHzwwfrd736nadOm6Ze//KV23HHH/mP/8R//oRNOOEFrrrmmnnzySd1xxx2SpJ/85CeNNONPf/pTfeMb39CXv/xlTZs2Tffdd5++8IUvDLjXIYccorvuukuPPfaYfv3rX+sDH/hAw9bTTjtN06ZN06RJk3TQQQcN+P4+++yjiRMn6rjjjtP48ePn5doQQgiLIEkRNllsH7CcoUOHauedd9aIESN00003ackll9Smm26q6667rnHe1VdfrS233LK81kYbbaRjjjlGd955p775zW/q8ccf10477aTf//73Hdu1++676/nnn9ff/d3f6aijjtIRRxyhbbfdtv/4Mccco+22204f/OAH9e53v1vveMc7tOmmm/YfP/LII7XXXnvpkEMO0RZbbKEzzjhD//mf/6mtttpKkvT5z39exx9/vCZPnqwNNthA22233Txt2XvvvfXcc89p66231he+8AX967/+q/7u7/6uYcvee++tgw46SJtttplOP/10/dd//Ze22WYbSdJRRx2lrbbaSrvvvrt23HFHve1tb2vYKs3Rgh1xxBF6/etfr//5n//Rr371K33qU5/K0nYIIYTFjp5psJii8hQbNSd8WnVtAvP8fu4b3/hGXX311VpmmWX07LPPavfdd9d9992n1VZbTUsssYTuueeehsbpySef1NixY/t1Bi/XW1lxxRX14Q9/WB/5yEf0hje8QVdffbU+85nP6Kc//Wm/boK5/6FDh/anw14+NmTIEA0ZMkSzZs1SX1+f7rzzTn35y1/WrFmz9Oc//1n/9E//pG222Ua/+MUvtOyyy2rPPffUxz/+cf3617+WJH3qU5/SH//4R/X19WmZZZbRpz/9ae244466+eabJUkXXXSRttpqK33sYx/TTTfdpIceekiPPvqo/vrXv/a382WbXnrppX4dxKxZs3TnnXf2r2o99thjuv322/We97xHN998s55//nkddNBB/anUkSNH6v/9v/+nbbbZRh//+Mf1j//4j9p99921zz779Nv68sra0KFD+zUHs2bN0g9/+EP98Ic/1KhRo7Trrrtq77331r//+7/rqquu0ve//3399Kc/7dcveN9w2wrWDnPdAjVjrO1TpSmpe2EtHLejimGp1hZRb1NtH1NpxkilY5OatZao72DbXSvC69IvrLXkUK9S6cKoOeRc4DWDGAO0gfqb6q9e1tqbNm1a/7/HjBnTOMb7ev/QT9Q7uYaJ9rGt1Oq4/TxWxUi1BZLU1BaxJhM1V+wf16O11ffzsVPFmtTUQzGGqzp8lZZOGqiV8vM5nqmTdF/Qft7Xxxk1Y2wP8fPbxo4fXxhWdVKmocliXQfr7rvv1lZbbaWRI0dqp5120re+9S3tsMMO/QJRdtKQIUPm2nEf//jHdcQRR+hXv/qVNt98c02ZMqXcu2x++cMf/tD4PHXq1P7VnHHjxmnppZfWb37zm/7jTzzxhO6++25Jc1bShg8frssuu6xxjaWWWuoVrabdeeedjc/Tpk3rt2X8+PEaPny4rrzyygH3uuOOO7Teeutp6aWX1o033th/7Mknn9SkSZPmeb9HH31UZ555ps4880z9/d//vU4//XT9wz/8g972tre9IvtDCCGEhYnF+gHrr3/9q+69915JczRQm222mf75n/9Zhx9+uF566SWNHTu2cf6oUaMGvEUjSeeee65eeukl7bbbbrrxxhv14x//WOeff76uv/76uT6QzZ49u3zTzu1z+vr6+v8Cbvsr5+XzdtttN02ZMkXS//0V+Eoe/miL3+Pl/++www6aPHnygI1Mqzdz5sVyyy2nnXbaSR/+8Ie11VZb6YYbbtBRRx2lP/7xjx1fK4QQQu/JClaTnj1g8XVTX97nwwWXbv01dTqaS6j+4DBs2DANGTJEjz32mG699Va9//3vb5Rl2GabbfSTn/ykf4XrZTvuv/9+HXfccTruuOO05ZZbas8999R///d/69lnn9WFF16oCy64QLfddlv/dR599FGNGTOmf+l9+eWX17hx4xpt7+vr0+zZszVz5sxGe4cNG6ZllllGkydP1syZM7XVVlvphz/8oaQ5y92vf/3rdcMNN+iee+7Riy++qDFjxujqq68e4MMlllhCyy67rJZaaikNGTKksdz90ksvadiwYf0p0KFDh2ro0KH9D4H+kDd06FDdd999evHFF7X++uv3pwydVVZZRTNnztS2227bb+vrXvc6rbvuurr++uv7l7yHDh2qd73rXdp99921ww476JFHHtGFF16oAw88UJMnTx6QUvC0GtN61dY5LGPALUiqLW2qrUCkZoqB59Imj0W2jTHOtF/1Ojxf0fcYZ/kBpnw8LcV0CdMp1RZCbCtTY57m4Lm8lreV9jP15d/luUzpMO3nqUjGBNM4Hm9M01RpWPqbPnZf8I+atrIfbkfbNkFOtRWL1Eyh89wqJSg1Y5Gp+KqkAGFMe/t4XfrN28M0McuHsO+8fxiXjC8fO0z506dVnHL+ZNke9znnAbanmidC71lsV7A+//nP65prrtEDDzyg5ZZbTjvvvLO23nrr/gKbJ598ss4991z97ne/06233qq99tpLa665pr7zne+U1/31r3+tX//61zriiCP0/ve/X3vssYcOPvhgbb755v1ptuuvv1577bWXrrjiCj355JP613/917J+z9x4/vnn9b3vfU/HHHOMHn/8cc2YMUNf+MIX+h/ann32WZ188sk64YQTNHToUP3qV7/Saqutpre+9a167rnndNFFF70Cr82dZ599Vqeccoq+8pWvaOjQobr66qu1wgoraKutttKzzz6riy++WOeee66OP/54Pfnkk5o+fbqOOuqoAfV3Dj/8cB100EG67LLL9P73v1+/+93vumZjCCGE3pIVrCaL7QPWKqusotNPP12jR4/W008/rbvuuksf/vCH9Ytf/ELSHEH42muvrUMOOUSjR4/Wn/70J33gAx/Qgw8+OF/X/8tf/qKLL75YF198scaOHdv4q+PEE0/UOuuso4svvlhPP/20jjzyyMYK1vxy7LHHasSIEf2rZd/85jcbf7Ecc8wxmj59ug477DCNGzdOTz/9tO644w6deuqpHd+rjS996UuaMWOGDj30UJ1++ul68skn9dvf/lb//u//Lkn6whe+oOWWW04XXHCBnn32WZ122mkDVgm+973v6ZRTTun/K55/LYcQQgiLC0P6evAo+PTTTw9Yaq5ShFx+faUpQqm5zMtz+VaP28H7cIm+qiTONAeP+33aKlf7fZi64PK4pz2YAqEN1ZI2/c8lbl/Cp1+q9Epb6sJ9wetyqdyv1ZYi5Mqat4fpCMaE36et8rZfi23jd9kfvUgRVik1pk8YT/zuK00Rcpxx7HhMMA75uZMUIW30+3JcMfXl96X/mZLy8UB72+5TpQhpv/uUae7BpAiZGqtShHxL1edbjtEqRcvrUjLiMVPNgVKdIuSxTlKETE97jDPe2e+c86sUIefTap6YNGnSgDh/tXj66ac1cuRIrb766gP8+Gowe/ZsTZ48WU899dQCa+MroWcrWHSKT2icPPgL0QcRO5O/EJnf9mtxMqcGxScP6iP4XQ/0ttf3+dknfv7i5UTkx9vy8/4Ln79s6ONqqyJONJwQfMJue9XcJ4i2V6p9cuQv2mpQ0YdtW1V4TPC7nBw93hhb7He3mfbzDwx+1yd+PlCxL/14W0xUW/Bw7Hg/c5zxFzH/KKrilA8D3lY+9PG77se2vuK84cerX9K0o208eHt4z0rnVpUbkAY+HDj0Nz/7vMH5pip9wTjlHw18Ccjv26ZV8wcH+ok+ddhXvK7/PuBYoV8YI34+H5o49/qY9TIec8PvwwdawgdRf6BkWystJP0fes9imyIMIYQQwoIjGqwmi90D1g033NAoDMi/APwvp7alTO/EtrIJ8/re3OC1qvvwWq/UprZz3S9tfx2TTmyqfPPyd6dPn653v/vd5XVCCCGEhZnF7gFrzJgxr2jD5hBCCCG8crKC1aRnD1jUe3gOvpOtHahxePTRR8uVKb9WJ500mJUZUm3v0006WRmr2tfJ6hd5JSuI1ExJ9VYaUlOHQd0IP1N/1sm2HK5LqnQ7vC/3W6SAuaorRW1aJZCvxMJS0/9tWkfXoLBt/C61Um4Tz6WOxO/T1s8+N1ALyP6gtsU1c7SXmppOVoe9n9k2tsfnvUoALw30m8cMxdzUVXk8UUtU6S8Za20vDrjP51Yfb17XYvxXtenaBP3VSx7UZFHn5tdmjNNG14JRf0n7K40WY4Tj2W1i33Eu8zieW5Hs0FsWuxUsppY4afkg4i+jSpDNyZzXpTh0XveUBu5tVr0VSXxS5uCj/T4RcQLgd33Q8zoc1NWLBTxWCfo5mS+It09CCCG8OmQFq0l+o4UQQgghdJk8YIUQQgghdJmepQgrTQf1D0xvOdRZMJ1FXYl/ZgG7qgYP8+bUkPlx2ltplKRmSo5pS9Z78va26ajcp9RHMB3negPqFFiHptpzjzoAtt1tbEsJehqT/coU7YwZM/r/zdQj7a32cWMM0H73f1tRWO4x6bRpULy9TNlW+7YxflhM1+O0rWaT+6Xaf08amHL2a/FctsfHWbX3oNSMRcYl70Pdmx9n26vaaIw9jv1OatP52GKfs18rCQALW1YFKZmmr9L49D+vSxurIsM8lzHvsC/dfo7nSsPXZj/73fuA/Uy/+XG2tYpbtpvf5Tzi7Wnbr9L9tjDsjJEUYZOsYIUQQgghdJnFTuQeQgghhAVPVrCa9OwBq9ofq+0ttmqpmcvHfG3Xl565zF7tRcWlfqZePHXEdBzTfLyWL/sycFiywH3BNBmXk33JmMvH1T569C+XsKt0KdvKbSJ8uZ82MKXgy/dt+5F5+qdtyxS2z+ONscf2+HYf7Mfqrci27VZoo/dtVdJEaqYU+Po4UxduR1uazP1fbQMkDewfjyemHtk/fpxjh7hfuLUJxwpTMZ4+5Xhg273veF2mHv1cxjRjzf3Cc5nirLa3qrYmkpr9Qf9X0A+0n31XzUcVnNM5PrzEA6/LcedxwJimX1jewscOY5zf9fHNcxn/3lecF+hT9mUl16hKPFRbK4XekBWsEEIIIQyarGA1iQYrhBBCCKHLZAUrhBBCCIMmK1hNevaAxVy56xj4Kiq1FNXr79Vr9bwP8+bMjbsmqG2rENcUUMvF17GpX3EdQFUCQWrqD9q0Ld4+agao4/FcfvXKvTQwuN1vba9Uu0+pF2Jb/T5tOhi/Lu2vtqKQmq9yUwPEa7lNtMH1WVLT/+zztu2SPMZ5jJoUjz3GO3U8fl9qNnhd71ce4+vv1abkbCt1ea6L4XV5rmuEKn2ZNDD2vN+r8g9SU3fIeYG+qHZX4HYxPpa8tIg0MP7ZPo8Japg4bzi0qYo9jg2OHWoSq9IXxOd1+pTXdTgmq63T2kot0OduP8cz8e1vOH9SJ+nzILW+1A6yf9wX9D/j1NtO/VzoPemREEIIIQyarGA1iQYrhBBCCKHLZAUrhBBCCIMmK1hNevaARR2A56x5jPltdy7z2W06AL82tRS8luf+2zQPnkenvoPaHObKXQdAzUD1XWqY6De3v9KN8DhrxVCDxba7HqFtqx8/XmlMpGZf0l5+rvQHtIHtcZ0Da35Rs+EaIbaV+iG/D33KLYV43LUwjH/qZBxqfqqaa1XtKqlpP7Vd9CH7w/3I+mZVXSDqbaq20v9tW4V4jPA+1Em6boZzCnVhPm9QM1Np7zjW22LCx2ibJs7vU/Urj1MvxDmGbff2cQxWdaSoYSLVmKw0udQzEbbHxxZ1YYwvn9dpE/ujegDgdTnv+bhkTNB+78tO6p2FBUNWsEIIIYQwaLKC1SQarBBCCCGELrPQlGnwJXumoLj070uoXNZlSoTL41Uqj0u3vozNpVouU/uSPJdquQRcLWO3bfPiy+zVlkFS85VepoN4Xb9v2xY8TAV4e9lX9KnbwX5mX3lMMM1XLZ3TPn+9WhrYd56KYd9US/L8K4r97r6gT+kn+sL9xFQR01sep0zlVf1O+/kKeJVyY1vZPm8P28Z0ovucNjGN5u1hOov3YRrHY6YtDV6l2IiXEOE96UO3manStu1jvN85TzAV6XMDyw9UaVj2TbWlFs/nfMS0pcNxxjnS+7ItHe1pPqYeKzmD1PQxY5hzpNvIeY3x5DYyJpiOpi/cDsYP+9n7pyp1EXpDUoQhhBBC6AqLSvpuQZAUYQghhBBCl+nJClaecEMIIYRXj178nl1Q91xUniGG9PXA0ocfflhrrrnmgr5tCCGE8JrgoYce0hprrLFA7vX0009r5MiRet3rXjdAT/dq0NfXpyeffFJPPfXUQq0968kK1mqrraaHHnpIyy+//ALpjBBCCOG1QF9fn5555hmtttpqPbn34nSfwdKTB6yhQ4cusCfrEEII4bUE31ANvSFvEYYQQghh0GQFq0neIgwhhBBC6DJZwQohhBDCoMkKVpOsYIUQQgghdJk8YIUQSs4555wBW4EsKI455hhtsskmr+o9etm+EBYnXt7seUH8tyiQB6wQ5oN3vOMd+pd/+ZcBP//BD37wmi81cv/992u//fbTuHHjNHz4cK233no6+uijW/fKXFjYbbfddPfdd/fajBDCYkY0WCGEQfHHP/5Rs2fP1n/+539q/fXX15133ql/+qd/0nPPPacTTzyx1+a1Mnz48AGbAIcQOicarCZZwQqhi7yc0jrvvPO0zjrraOTIkfrIRz6iZ555pv+cd7zjHTrooIN0+OGHa6WVVtLYsWN1zDHHNK7z9a9/XW9+85u17LLLas0119QBBxygZ599tv/4y2mtn/zkJ9pwww01YsQIfehDH9Jzzz2nc889V+uss45WXHFFHXjggZo1a1b/92bOnKnDDz9cq6++upZddlltscUWuu666xr3Puecc7TWWmtpxIgR+uAHP6jHHnusbPP222+vs88+W+9+97u17rrrascdd9RnP/tZXXrppf3nXHfddRoyZIiuvvpqbb755hoxYoS22mor/elPf2pc6ytf+YrGjBmj5ZdfXvvtt59efPHF8t6zZs1qrJ5tuOGGOuWUU/qPv/jii3rjG9+oj3/84/0/u++++zRy5Eh9+9vfbvjyZX73u99pu+220/LLL68VVlhBm222mW655ZbSjhBCIHnACqHLTJo0ST/4wQ/0k5/8RD/5yU90/fXX6ytf+UrjnHPPPVfLLrusbrrpJp1wwgn60pe+pKuuuqr/+NChQ3Xqqafqzjvv1LnnnqtrrrlGhx9+eOMazz//vE499VRdcMEF+tnPfqbrrrtOO++8s6644gpdccUVOu+88/Stb31LF198cf939t13X91www264IILdMcdd2jXXXfV9ttvrz//+c+SpJtuukkf+9jHdMABB+j222/Xdtttp+OOO65jHzz11FNaaaWVBvz8C1/4gk466STdcsstWmKJJfSxj32s/9hFF12ko48+Wscff7xuueUWrbrqqjrjjDPK+8yePVtrrLGGLrroIt1111066qij9K//+q+66KKLJEnLLLOMzj//fJ177rn6wQ9+oFmzZmnvvffWdtttp3/6p3+a6zX33HNPrbHGGrr55pt166236nOf+5yWXHLJjn0QwmuNaLBAXwihlW233bbv4IMPHvDzyy67rM+H0dFHH903YsSIvqeffrr/Z4cddljfFlts0bjWNtts07jOW9/61r4jjjhinve/6KKL+lZeeeX+z2effXafpL577rmn/2ef+MQn+kaMGNH3zDPP9P/sPe95T98nPvGJvr6+vr577rmnb8iQIX2TJ09uXPud73xn3+c///m+vr6+vt13371v++23bxzfbbfd+kaOHDlP28g999zTt8IKK/R9+9vf7v/Ztdde2yep7xe/+EX/zy6//PI+SX0vvPBCX19fX9+ECRP6/vmf/7lxrS222KLvb/7mb+b73n19fX0HHHBA3y677NL42QknnNA3atSovgMPPLBv7NixfTNmzOg/dvbZZzfat/zyy/edc845Hd0zhNcyTz31VJ+kvhEjRvQtu+yyr/p/I0aM6JPU99RTT/W66SVZwQqhy6yzzjpafvnl+z+vuuqqmj59euOcjTfeuPGZ51x77bV617vepdVXX13LL7+89tlnHz322GN67rnn+s8ZMWKE1ltvvf7PY8aM0TrrrKPllluu8bOXr/vb3/5WfX192mCDDbTccsv1/3f99ddr0qRJkqSJEydqwoQJDdv4uWLKlCnafvvtteuuu2r//fcfcNzbveqqq0pSv32v9N5nnnmmNt98c62yyipabrnl9O1vf1sPPvhg45xDDz1UG264oU477TSdffbZGjVq1Dyvd8ghh2j//ffX3//93+srX/lKv29CCKET8oAVwnywwgor6Kmnnhrw8yeffHLAbu5MJw0ZMkSzZ8+e73MeeOABve9979Ob3vQmXXLJJbr11lv1H//xH5Kkv/71r+U1quvOnj1bw4YN06233qrbb7+9/7+JEyf265b6BrH0PmXKFG233XaaMGGCvvWtb831HLfv5bcv6ZtOuOiii/SZz3xGH/vYx3TllVfq9ttv17777jvgDcbp06frT3/6k4YNG9afDp0XxxxzjP7whz/oH/7hH3TNNddo/Pjxuuyyy16xjSG8VuhLirBBHrBCmA/e8IY3zFXofPPNN2vDDTfs6r1uueUWvfTSSzrppJO05ZZbaoMNNtCUKVMGfd1NN91Us2bN0vTp07X++us3/hs7dqwkafz48fr1r3/d+B4/z43JkyfrHe94h97ylrfo7LPP1tChnU8tG220Ucf3/uUvf6mtttpKBxxwgDbddFOtv/76c11x+tjHPqY3velN+u53v6vDDz9cd911V3ndDTbYQJ/5zGd05ZVXauedd9bZZ5/dcXtCCK9tUqYhhPnggAMO0Omnn65PfepT+vjHP67hw4frqquu0llnnaXzzjuvq/dab7319NJLL+m0007T+9//ft1www0688wzB33dDTbYQHvuuaf22WcfnXTSSdp000316KOP6pprrtGb3/xmve9979NBBx2krbbaSieccII+8IEP6Morr9TPfvaz8rpTpkzRO97xDq211lo68cQTNWPGjP5jLz+4zQ8HH3ywPvrRj2rzzTfXNttso/PPP19/+MMftO66687zO+uvv76++93v6uc//7nGjRun8847TzfffLPGjRvXf85//Md/6MYbb9Qdd9yhNddcUz/96U+155576qabbtJSSy3VuN4LL7ygww47TB/60Ic0btw4Pfzww7r55pu1yy67zHc7QnitsqBWlrKCFcJixDrrrKNf/vKXmjRpkt797nfrrW99q8455xydc8452nXXXbt6r0022URf//rX9dWvflVvetObdP755+vLX/5yV6599tlna5999unXJO2444666aabtOaaa0qSttxyS33nO9/Raaedpk022URXXnmlvvjFL5bXvPLKK3XPPffommuu0RprrKFVV121/79O2G233XTUUUfpiCOO0GabbaYHHnhAn/zkJ8vv/PM//7N23nln7bbbbtpiiy302GOP6YADDug//sc//lGHHXaYzjjjjP42/sd//IeefPJJHXnkkQOuN2zYMD322GPaZ599tMEGG+jDH/6w3vve9+rYY4/tqC0hhDCkb1F5FAwhhBDCQsfTTz+tkSNHaumll14gO1v09fXpL3/5i5566qkBGtiFiaxghRBCCCF0mWiwQgghhDBoosFqkhWsEEIIIYQukxWsEEIIIQyarGA1yQpWCCGEEEKXyQpWCCGEEAZNVrCaZAUrhBBCCKHLZAUrhBBCCIMmK1hNsoIVQgghhNBlsoIVQgghhEGTFawmWcEKIYQQQugyecAKIYQQQugySRGGEEIIYdAkRdgkK1ghhBBCCF0mK1ghhBBCGDRZwWqSFawQQgghhC6TFawQQgghdIVFZXVpQZAVrBBCCCGELpMHrBBCCCG8YpZaaimNHTt2gd5z7NixWmqppRboPTtlSF/W80IIIYQwCF588UXNnDlzgd1vqaWW0jLLLLPA7vdKyANWCCGEEEKXSYowhBBCCKHL5AErhBBCCKHL5AErhBBCCKHL5AErhBBCCKHL5AErhBBCCKHL5AErhBBCCKHL5AErhBBCCKHL/H/r1GbVpvQJuAAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "%matplotlib inline\n", - "dp.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Calibrating the Diffraction Pattern\n", - "\n", - "It is important that we keep track of the center of the diffraction pattern as well as the calibration. Lets consider the diffraction pattern above." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "dp.set_diffraction_calibration(1e-2) # known from simulation\n", - "dp.beam_energy = 300 #kEv\n", - "dp.unit = \"k_A^-1\"" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[########################################] | 100% Completed | 106.20 ms\n", - "[########################################] | 100% Completed | 110.89 ms\n" - ] - } - ], - "source": [ - "shifts, aligned = dp.center_direct_beam(method=\"blur\",half_square_width=20,sigma=5, return_shifts=True, inplace=False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "data": { - "text/html": [ - "\n", - "

< Axes manager, axes: (10, 10|128, 128) >

\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Navigation axis namesizeindexoffsetscaleunits
1000.01.0
1000.01.0
\n", - "\n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "\n", - " \n", - " \n", - " \n", - " \n", - " \n", - " \n", - "
Signal axis namesizeoffsetscaleunits
kx128-0.640.01k_A^-1
ky128-0.640.01k_A^-1
\n" - ], - "text/plain": [ - "\n", - " Name | size | index | offset | scale | units \n", - "================ | ====== | ====== | ======= | ======= | ====== \n", - " | 10 | 0 | 0 | 1 | \n", - " | 10 | 0 | 0 | 1 | \n", - "---------------- | ------ | ------ | ------- | ------- | ------ \n", - " kx | 128 | 0 | -0.64 | 0.01 | k_A^-1 \n", - " ky | 128 | 0 | -0.64 | 0.01 | k_A^-1 " - ] - }, - "execution_count": null, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAI7CAYAAABGPFejAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA9aElEQVR4nO3deVyVZf7/8feBQERZ3MAklkA0bTSdKROncRs1NadJDVuxTM2i0XIcMafGyppMbXG0mjRMzXFKza1IbXNJTVxSc8otETUhU1HBHYTz+8Mf59sJNO5z33Bu4PV8PM5jOvd9n/v6QFN+el/XfR2H0+l0CgAAAF7n4+0CAAAAcAmNGQAAgE3QmAEAANgEjRkAAIBN0JgBAADYBI0ZAACATdCYAQAA2MRV3i4AAABUbufPn1d+fn6Fjefv76+AgIAKG68i0ZgBAACPnT9/Xtdee60OHz5cYWM2bNhQmZmZVbI5ozEDAAAey8/P1+HDh/XDDz8oODi43MfLy8tTZGSk8vPzacwAAABKExQUpKCgoHIfp6p/kySL/wEAAGyCxAwAAJjmdDorJM0iMQMAAECFoDEDAACwCaYyAQCAaUxlWoPEDAAAwCZIzAAAgGkkZtYgMQMAALAJEjMAAGAaiZk1SMwAAABsgsQMAACYRmJmDRIzAAAAmyAxAwAAppGYWYPEDAAAwCZIzAAAgGkkZtYgMQMAALAJGjMAAACbYCoTAACYxlSmNUjMAAAAbILEDAAAmEZiZg0SMwAAAJsgMQMAAKaRmFmDxAwAAMAmSMwAAIBpJGbWIDEDAACwCRIzAABgGomZNUjMAAAAbILEDAAAmEZiZg0SMwAAAJugMQMAALAJpjIBAIBpTGVag8QMAADAJkjMAACAaSRm1iAxAwAAsAkSMwAAYBqJmTVIzAAAAGzCK4lZUVGRsrOzFRQUJIfD4Y0SAACocpxOp06dOqVGjRrJx6disxcSM2t4pTHLzs7WNZGR3hjaMtk+Prqhbl1vl2FYRf+DarULFy54uwSP+fv7e7sEj/EfUN4TEBDg7RI8du7cOW+XYIqfn5+3S/DYhg0bdM0113i7DHjAK41ZUFCQJKlQ0pFK1iiEFRXJ19tFAABwBcV/zla0qp5mVQSvNGbF//V9xMdHNzZs6I0SPLb58GFdXVTk7TIAALgsUu7Ki6cyAQCAaawxs0blmkcEAACowkjMAACAaSRm1iAxAwAAsAkaMwAAAJtgKhMAAJjGVKY1SMwAAABsgsQMAACYRmJmDRIzAAAAmyAxAwAAppGYWYPEDAAAwCZIzAAAgGkkZtYgMQMAALAJEjMAAGAaiZk1SMwAAABsgsQMAACYRmJmDRIzAAAAm6AxAwAAsAmmMgEAgGlMZVqDxAwAAMAmSMwAAIBpJGbWIDEDAACwCRIzAABgGomZNUjMAAAAbILEDAAAmEZiZg0SMwAAAJsgMQMAAKaRmFmDxAwAAMAmSMwAAIBpJGbWIDEDAACwCRIzAABgGomZNUjMAAAAbILGDAAAwCaYygQAAKYxlWkNEjMAAACbIDEDAACmkZhZg8QMAADAJkjMAACAJap6mlURSMwAAABsgsQMAACYxhoza5CYAQAA2ASJGQAAMI3EzBokZgAAADbh1cQsrKhIm3780ZslGBb2/zt1h8OhwMBAL1djXGFhobdLMKWgoMDbJXisMtde1f8LFeXD39/f2yWYUrt2bW+XUKmQmFnDq42Zr6RGVfwXDAAAUFZea8yyHQ5vDW2aw8dHR319vV0GAACoYrzWmLWoU8dbQ5tGvA0AgDumMq3B4n8AAACbYLsMAABgGomZNUjMAABAlTVlyhSFh4fL19dXDodDo0ePdjufkpKi+vXry8fHRw6HQ3Pnzr3svYqKitSgQYNS75OZmanY2Fg5HA45HA7FxsbqwIEDhuulMQMAAKYVJ2YV8TLixIkTio+P14gRI0o9n5eXp5YtWyopKelX79WnTx85LvPwYps2bZSdna2pU6dq6tSpys7OVps2bQzVKtGYAQCAKmzMmDFau3atJkyYUOr5t956SytWrNDgwYOveJ958+YpLS1Nn3/+eYlzaWlpOnbsmN544w09/PDDevjhh/X666/ryJEjWrZsmaF6acwAAIBpFZ2YZWVl6dChQ65XXl5euf1sx44dU1JSklJSUtSyZcsS5xcsWCBJGjhwoOvYoEGDJEnz5883NBaL/wEAQKXTvHlzt/cdOnTQqlWrymWsP/zhD4qJidGLL75Y6vmsrCz5+fmVOO7n56esrCxDY9GYAQAA0yr6qcwdO3YoKCjIdTw4OLhcxnvqqaeUkZGhgwcPevT5y61JuxymMgEAQKUTERGha665xvUqr8Zs6dKlKigo0NVXX+164lKSXnrpJYWGhrpqKe37kAsKCtSoUSND45GYAQAA06rqPmazZs1SRkaG27E+ffqoT58+evzxxyVJffv21cyZMzVjxgwNGDBAkjR9+nRJUmJioqHxaMwAAECVdfjwYa1evdr1fufOnZo7d66ioqKUkJCgjIwMbd68Wbt27ZIkffXVV5KkZs2aqWXLlq7XLzVp0kTt27eXJPXq1Uv169dXcnKyCgsLJUlDhw5VWFiYevToYaheGjMAAGCaXROz999/X8OHD3e9X7JkiZYsWaK4uDjt3btX48aNc6VbkjR58mRNnjzZ8MME6enp6tKli2vbjZiYGI8eRnA4vfDdBnl5ebr22msreljLVOYvMS/u5Curs2fPersEj1XmrxGpzLVXdjVq1PB2CR4r7Sm1yqQy/7t+48aN5bbm6pfy8vIUEhKitWvXVsjv7PTp07rllluUm5tbYT9jRWLxPwAAgE0wlQkAAEyz61RmZUNiBgAAYBMkZgAAwDQSM2uQmAEAANgEiRkAADCNxMwaJGYAAAA2QWIGAABMIzGzBokZAACATZCYAQAA00jMrEFiBgAAYBMkZgAAwDQSM2uQmAEAANgEjRkAAIBNMJUJAABMYyrTGiRmAAAANkFiBgAALFHV06yKQGIGAABgEyRmAADANNaYWYPEDAAAwCZIzAAAgGkkZtYgMQMAALAJEjMAAGAaiZk1SMwAAABsgsQMAACYRmJmDRIzAAAAm6AxAwAAsAmmMgEAgGlMZVqDxAwAAMAmSMwAAIBpJGbWIDEDAACwCa8lZrVq1fLW0KYdP37c2yV4LD8/39slmHL69Glvl+CxuXPnersEj2VnZ3u7BFMCAwO9XYLH/vznP3u7BI916dLF2yWYkpub6+0SKhUSM2uQmAEAANgEa8wAAIBpJGbWIDEDAACwCRIzAABgGomZNUjMAAAAbILEDAAAmEZiZg0SMwAAAJsgMQMAAKaRmFmDxAwAAMAmaMwAAABsgqlMAABgGlOZ1iAxAwAAsAkSMwAAYBqJmTVIzAAAAGyCxAwAAJhGYmYNEjMAAACbIDEDAACmkZhZg8QMAADAJkjMAACAaSRm1iAxAwAAsAkSMwAAYBqJmTVIzAAAAGyCxgwAAMAmmMoEAACWqOrTjBWBxAwAAMAmSMwAAIBpLP63BokZAACATZCYAQAA00jMrEFiBgAAYBMkZgAAwDQSM2uQmAEAANgEiRkAADCNxMwaJGYAAAA2QWIGAABMIzGzBokZAACATZCYAQAA00jMrEFiBgAAYBM0ZgAAADbBVCYAADCNqUxrkJgBAADYBIkZAAAwjcTMGiRmAAAANkFiBgAATCMxswaJGQAAgE2QmAEAANNIzKxBYgYAAGATXkvMzp8/762hTXM4HN4uwWMXLlzwdgmmHDp0yNsleGzfvn3eLsFjBQUF3i7BlHPnznm7BI/l5+d7uwSPbdq0ydslmNK0aVNvl1CpkJhZg8QMAADAJlhjBgAATCMxswaJGQAAgE3QmAEAANgEU5kAAMA0pjKtQWIGAABgEyRmAADANBIza5CYAQAA2ASNGQAAMK04MauIlxFTpkxReHi4fH195XA4NHr0aLfzKSkpql+/vnx8fORwODR37ly38xkZGWrZsqX8/f3lcDh01VVX6YYbbtDBgwfdrsvMzFRsbKwcDoccDodiY2N14MABw79HGjMAAFBlnThxQvHx8RoxYkSp5/Py8tSyZUslJSWVen779u3KycnRqFGj9MUXX2j8+PHauXOn2rVr53ZdmzZtlJ2dralTp2rq1KnKzs5WmzZtDNfLGjMAAGCaXdeYjRkzRmPGjJEkTZw4scT5t956S5K0du1avfvuuyXO9+7dW71793a979y5s7KysvTaa6/p/PnzCggIUFpamo4dO6bU1FQNHDhQkuTj46PBgwdr2bJl6tGjR5nrJTEDAACVTlZWlg4dOuR65eXlVdjYOTk5cjgcCggIkCQtWLBAklxNmSQNGjRIkjR//nxD9yYxAwAAplV0Yta8eXO34x06dNCqVavKffzvv/9ec+bMcZvKzMrKkp+fX4lr/fz8lJWVZej+NGYAAKDS2bFjh4KCglzvg4ODy33MQ4cOqXXr1qpTp44+/fTTMn3G4XAYGoPGDAAAmFbRiVlERESFNGPFsrOz1axZM/n7++v7779XYGCg61xERIQKCgpKfKagoECNGjUyNA5rzAAAAK7g0KFDatq0qXx9fbVnzx6Fhoa6ne/bt68kacaMGa5j06dPlyQlJiYaGovEDAAAWMKOu/IfPnxYq1evdr3fuXOn5s6dq6ioKCUkJCgjI0ObN2/Wrl27JElfffWVJKlZs2Zq2bKlsrOzdd1116mwsFBLlixRdna2srOzJUnXXXed/P391atXL9WvX1/JyckqLCyUJA0dOlRhYWGGnsiUaMwAAEAV9v7772v48OGu90uWLNGSJUsUFxenvXv3aty4ca50S5ImT56syZMnux4mmDdvns6cOSNJ+uMf/+h27zVr1uiWW26RJKWnp6tLly4aPHiwJCkmJsajhxGYygQAAFXWE088Ueq3B+zdu1eSlJqaWur54qbqcp93Op2upkyS4uLilJmZ6TqXmZmp6Ohow/WSmAEAANPsusFsZUNiBgAAYBMkZgAAwDQSM2uQmAEAANgEiRkAADCNxMwaJGYAAAA2QWIGAABMIzGzBokZAACATZCYAQAA00jMrEFiBgAAYBMkZgAAwDQSM2uQmAEAANgEjRkAAIBNMJUJAABMYyrTGiRmAAAANmG4MduyZYv+97//ud4vWbJEd9xxh/7+978rPz/f0uIAAEDlUJyYVcSrKjPcmA0ZMkR79uyRJO3bt0933323AgMDNX/+fKWkpFheIAAAQHVhuDHbs2ePWrVqJUmaP3++2rdvr//+97+aOXOmFixYYHV9AACgEiAxs4bhxszpdKqoqEiS9Pnnn6tnz56SpMjISB07dsza6gAAAKoRw09l3njjjXrhhRfUpUsXrV69Wv/+978lSZmZmQoPD7e8QAAAYH88lWkNw4nZpEmTtGXLFv3lL3/RU089pcaNG0uSPvjgA7Vr187yAgEAAKoLw4lZy5Yt3Z7KLDZx4kT5+vpaUhQAAKhcSMysYdkGswEBAVbdCgAAoFoqU2NWt25d7dmzR/Xr11edOnXkcDgue+3x48ctKw4AAFQOJGbWKFNj9tprrykoKMj111dqzAAAAOCZMjVmDzzwgOuvH3zwwfKqBQAAoFoz/FTm9OnTSz1+8eJFjR492nRBAACg8mGDWWsYXvw/YsQILV26VG+//bbq1q0rSdq1a5fuvfde5ebmaty4cWW6z7lz54wObRt+fn7eLsFj06ZN83YJpmRmZnq7BI9t2LDB2yV47ODBg94uwZQGDRp4uwSP1axZ09sleKx4CUxlxU4D8AbDidnWrVv1008/qUWLFvrss8/0xhtv6Le//a1+85vfaNu2beVQIgAAsDsSM2sYTsyuvfZaffnllxo+fLi6d+8uX19fvfvuu7r77rvLoz4AAIBqw3BiJklpaWl677331K5dO4WGhurtt99Wdna21bUBAIBKgsTMGoYbsyFDhqhfv35KSUnRl19+qe3bt6tGjRpq0aKF5s2bVx41AgAAVAuGpzLXrVunDRs26IYbbpAkNWzYUEuXLtUbb7yhhx56SP369bO8SAAAYG9sMGsNw43Z119/rRo1apQ4/thjj6lLly6WFAUAAFAdGW7MSmvKijVt2tRUMQAAoHIiMbOGR19i/sEHH2jevHk6ePCg8vPz3c5t2bLFksIAAACqG8OL/ydPnqwBAwYoLCxMW7duVZs2bVSvXj3t27dPPXr0KI8aAQBAJcATmeYZbszefPNNTZs2Ta+//rr8/f2VkpKizz77TMOGDVNubm551AgAAFAtGG7MDh48qHbt2km69FUhp06dkiQlJSXpvffes7Y6AABQKbCPmTUMN2YNGzZUTk6OJCk6Olrp6emSLn2HYVX/ZQEAAJQnw41Z586d9dFHH0mSBg4cqOHDh6tr166666671Lt3b8sLBAAAqC4MP5U5bdo0FRUVSZIeeeQR1a1bV2vXrtWf/vQnPfLII5YXCAAA7I/tMqxhuDHz8fGRj8//BW39+vVjt38AAAALeLSPGQAAwM+RmFnD8BozAAAAlA8SMwAAYBqJmTVIzAAAAGzCo+0yTp48WeJ4Xl6eOnfubEVNAACgkmGDWWsYbsxWrVpV4ovLJen8+fNas2aNJUUBAABUR2VeY7Z9+3bXX+/YsUOHDx92vS8sLNTy5csVERFhbXUAAKBSYI2ZNcrcmLVq1UoOh0MOh6PUKcuaNWtqypQplhYHAABQnZS5MSv+LszY2Fht3LhRDRo0cJ3z9/dXWFiYfH19y6VIAABgbyRm1ihzYxYdHS1Jrq9jAgAAgLUML/6fNWuWPv74Y9f7lJQUhYaGql27djpw4IClxQEAAFQnhhuzF198UTVr1pQkrV+/Xq+//romTJig+vXra/jw4ZYXCAAA7I/tMqxheOf/H374QY0bN5YkLV68WHfeeacefvhh/f73v1fHjh2trg8AAKDaMJyY1a5dWzk5OZKkTz/9VF26dJEkBQQE6Ny5c9ZWBwAAKgUSM2sYTsy6du2qQYMGqXXr1tqzZ49uu+02SdJ3332nmJgYq+sDAACoNgwnZm+88YYSEhJ09OhRLViwQPXq1ZMkff3117rnnnssLxAAANgfiZk1DCdmoaGhev3110scf+655ywpCAAAoLoynJhdztmzZ/Xll19adTsAAFCJkJhZw7LG7Pvvv1enTp2suh0AAEC1Y3gqEwAA4Jf4SiZrlLkxq1u37hXPFxYWmi4GAACgOitzY3bhwgU9+uijatGiRannDxw4wAMAAABUUyRm1ihzY9aqVStFRkbqgQceKPX8N998Q2MGAABgQpkbs9tuu00nT5687Pm6deuqf//+VtQEAAAqGRIza5S5Mfv73/9+xfORkZGaMWOG6YIAAACqK8u2ywAAAIA5bJcBAABMYyrTGiRmAAAANkFiBgAATCMxswaJGQAAgE2QmAEAANNIzKxRpsasTp06cjgcZbrh8ePHy3RdUFBQma6zo4KCAm+X4LGcnBxvl2DKqVOnvF2Cx44ePertEqqtyvz/m4sXL3q7BI/99NNP3i7BlLL+uQdYqUyN2aRJk1x/nZOToxdeeEG33nqrEhISJEnr16/XJ598on/84x/lUiQAALC/qp5mVYQyNWY//xqmvn37auzYsfrLX/7iOjZs2DC9/vrr+vzzzzV8+HDrqwQAAKgGDC/+/+STT9S9e/cSx2+99VZ9/vnnlhQFAAAql+I1ZhXxqsoMN2b16tXTokWLShxfvHix6tWrZ0lRAAAA1ZHhpzKfe+45DRw4UKtWrXKtMUtPT9fy5cuVmppqeYEAAMD+eCrTGoYbswcffFDNmjXT5MmTtXDhQjmdTjVv3lzr1q3TzTffXB41AgAAVAse7WN28803a86cOVbXAgAAUK15tPN/RkaGnn76ad177706cuSIJGn58uX67rvvLC0OAABUDiz+t4bhxmz16tVq0aKFNmzYoAULFuj06dOSpO3bt+uZZ56xvEAAAIDqwnBj9uSTT+qFF17QZ599Jn9/f9fxTp06af369ZYWBwAAKgcSM2sYbsz+97//qXfv3iWON2jQoNJ/3Q8AAIA3GW7MQkND9eOPP5Y4vnXrVkVERFhSFAAAqFxIzKxhuDG79957NWrUKB0+fFgOh0NFRUVat26d/va3v6l///7lUSMAAIBHpkyZovDwcPn6+srhcGj06NFu51NSUlS/fn35+PjI4XBo7ty5Je6Rl5enli1buq5p2LChNm3a5HZNZmamYmNj5XA45HA4FBsbqwMHDhiu13Bj9s9//lNRUVGKiIjQ6dOn1bx5c7Vv317t2rXT008/bbgAAABQ+dk1MTtx4oTi4+M1YsSIUs8XN11JSUmXvUdCQoK+++47vfTSS/rvf/+rCxcuqH379srPz3dd06ZNG2VnZ2vq1KmaOnWqsrOz1aZNG0O1Sh7sY+bn56c5c+Zo7Nix2rp1q4qKitS6dWvFx8cbHhwAAMATWVlZysvLc70PDg5WcHBwievGjBmjMWPGSJImTpxY4vxbb70lSVq7dq3efffdEucPHjyoHTt2aNiwYUpJSZEkNW3aVL/73e80ceJEPfXUU0pLS9OxY8eUmpqqgQMHSpJ8fHw0ePBgLVu2TD169Cjzz+XRPmaSFBcXpzvvvFP9+vWjKQMAoJqr6MSsefPmioyMdL1uv/32cvm55s+fL0l64oknXMd++9vfKiAgQJ9++qkkacGCBZLkasokadCgQW6fLyvDiZnT6dQHH3yglStX6siRIyoqKnI7v3DhQqO3BAAAMGTHjh0KCgpyvS8tLbPCvn37JEnXXnut2/HAwEDXJvtZWVny8/Mr8Vk/Pz9lZWUZGs9wY/b4449r2rRp6tSpk8LDw+VwOIzeAgAAVDEV9cRk8RgRERHl1oyVVVl6IKN9kuHG7D//+Y8WLlyonj17Gv0oAABApRIbGyvp0lOXP0/Nzp49qwYNGki61CQWFBSU+GxBQYEaNWpkaDzDa8xCQkJcRQIAAEj2fSrTrMTEREnS5MmTXce2bdum8+fPq1u3bpKkvn37SpJmzJjhumb69Oluny8rw4nZs88+q+eee07vvPOOatasafTjAAAAFebw4cNavXq16/3OnTs1d+5cRUVFKSEhQRkZGdq8ebN27dolSfrqq68kSc2aNVPLli0VFRWl5s2ba8qUKWrUqJGuueYaPfbYYwoICNDIkSMlSb169VL9+vWVnJyswsJCSdLQoUMVFhZm6IlMyYPGLDExUe+9957CwsIUExNTYrHbli1bjN4SAACgXLz//vsaPny46/2SJUu0ZMkSxcXFae/evRo3bpwr3ZIuJWOTJ09Whw4dtGrVKknSunXr1L59e40aNUpOp1NhYWFatmyZ23eGp6enq0uXLho8eLAkKSYmxvV5Iww3Zg8++KC+/vpr3X///Sz+BwAAkip+8X9ZPfHEE25bXfxSamqqUlNTr3iP0NBQbd++/YrXxMXFKTMz01BtpTHcmH388cf65JNPdMstt5geHAAAAP/HcGMWGRnp9cdTAQCAvdg1MatsDD+V+corryglJUX79+8vh3IAAACqL8OJ2f3336+zZ88qLi5OgYGBJRb/Hz9+3LLiAABA5UBiZg3DjdmkSZPKoQwAAAAYbsweeOCB8qgDAABUYiRm1jDcmP3cuXPnSnwFAQ8GAAAAeMZwY3bmzBmNGjVK8+bNU05OTonzxTveAgCA6oPEzBqGn8pMSUnRihUr9Oabb6pGjRpKTU3Vc889p0aNGundd98tjxoBAACqBcOJ2UcffaR3331XHTt21EMPPaQ//OEPaty4saKjozVnzhzdd9995VEnAACwMRIzaxhOzI4fP65rr71W0qX1ZMXbY9xyyy368ssvra0OAACgGjHcmMXGxro2l23evLnmzZsn6VKSFhoaamVtAAAA1YrhqcwBAwbom2++UYcOHTR69GjddtttmjJlii5evKhXX321PGoEAAA2x1SmNQw3ZsOHD3f9dadOnbRr1y5t3rxZcXFxuuGGGywtDgAAoDoxtY+ZJEVFRSkqKsqKWgAAQCVFYmYNjxqzL774Ql988YWOHDmioqIit3PvvPOOJYUBAABUN4Ybs+eee05jx47VjTfeqKuvvloOh6M86gIAAJVMVU+zKoLhxuytt97SzJkzlZSUVB71AAAAVFuGG7P8/Hy1a9euPGoBAACVFGvMrGF4H7NBgwbpv//9b3nUAgAAUK0ZTszOnz+vadOm6fPPP1fLli3l5+fndp69zAAAqH5IzKxhuDHbvn27WrVqJUn69ttv3c7xIAAAAIDnDDdmK1euLI86AABAJUZiZg3Da8wAAABQPgwnZmfOnNFLL7102Q1m9+3bV6b7XLx40ejQtuHv7+/tEjwWFBTk7RJMadCggbdL8FhgYKC3S/CYr6+vt0swpbCw0NsleKwy196sWTNvl2DKoUOHvF0CqiHDjdmgQYO0evVqJSUlscEsAACQxFSmVQw3ZsuWLdPHH3+s3//+9+VRDwAAQLVluDGrU6eO6tatWx61AACASorEzBqGF/8///zzGjNmjM6ePVse9QAAAFRbhhOzV155RRkZGQoPD1dMTEyJDWa3bNliWXEAAKByIDGzhuHG7I477iiHMgAAAGC4MXvmmWfKow4AAFCJkZhZgw1mAQAAbKLMjZmPj498fX1LvOrUqaO2bdtq4cKF5VknAACwseLErCJeVVmZpzIXLVpU6vGTJ09q48aNuv/++zVr1iwlJiZaVhwAAEB1UubG7M9//vNlzz3wwANq3ry5Xn75ZRozAACqIdaYWcOyNWbdunXTnj17rLodAABAtWP4qczLOXfunAICAqy6HQAAqERIzKxhWWL29ttvq3Xr1lbdDgAAoNopc2L217/+tdTjubm52rx5szIyMrRmzRrLCgMAAKhuytyYbd26tdTjwcHB6t69u5KTkxUdHW1ZYQAAoPJgKtMaZW7MVq5cWZ51AAAAVHuWLf4HAADVF4mZNfhKJgAAAJsgMQMAAKaRmFmDxAwAAMAmSMwAAIBpJGbWIDEDAACwCRIzAABgGomZNUjMAAAAbILEDAAAmEZiZg0SMwAAAJugMQMAALAJpjIBAIBpTGVag8QMAADAJkjMAACAJap6mlURSMwAAABsgsQMAACYxhoza5CYAQAA2ASJGQAAMI3EzBokZgAAADZBYgYAAEwjMbMGiRkAAIBNkJgBAADTSMysQWIGAABgEyRmAADANBIza5CYAQAA2ASNGQAAgE0wlQkAAExjKtMaJGYAAAA2QWIGAABMIzGzhtcas3r16nlraNNOnDjh7RI89uijj3q7BFN27tzp7RI8dvHiRW+X4LHK/i9Cf39/b5fgsaSkJG+X4LHQ0FBvl2BKdHS0t0tANURiBgAATCMxswZrzAAAAGyCxAwAAJhGYmYNEjMAAACbIDEDAACmkZhZg8QMAADAJkjMAACAaSRm1iAxAwAAsAkaMwAAAJtgKhMAAJjGVKY1SMwAAABsgsQMAACYRmJmDRIzAAAAmyAxAwAAppGYWYPEDAAAwCZozAAAgGnFiVlFvIyYMmWKwsPD5evrK4fDodGjR7udLyoqUseOHV3nQ0NDtWTJErdrtm/frtjYWNc1gYGBGjFihNs1mZmZio2NlcPhkMPhUGxsrA4cOGD490hjBgAAqqwTJ04oPj6+RCNV7LbbbtPq1as1YsQILVy4UMHBwerTp4+ys7Nd13Tq1ElHjhxRamqqVq5cqXbt2unVV1/Ve++957qmTZs2ys7O1tSpUzV16lRlZ2erTZs2hutljRkAADCtoteYZWVlKS8vz3U8ODhYwcHBJa4fM2aMxowZI0maOHGi27mioiJ9+umn6t69uyZMmCBJ+uMf/6iQkBCNHDlSc+bMkSQdP35cQ4YM0YABAyRJHTt2lI+Pjz755BPdc889SktL07Fjx5SamqqBAwdKknx8fDR48GAtW7ZMPXr0KPPPR2IGAAAqnebNmysyMtL1uv322w3f48svv1RRUZH69+/vOhYcHKyGDRsqPT3ddaxevXpatGiRMjIydPHiRQ0bNkxOp9P1uQULFkiSqymTpEGDBkmS5s+fb6gmEjMAAGBaRSdmO3bsUFBQkOt4aWnZr9m9e7ckqWnTpm7HQ0NDdfToUdf7LVu26Le//a0aN27sOjZu3Dh17txZ0qX0zs/Pr8T9/fz8lJWVZagmGjMAAFDpREREeNSMlcbHx30C8ZcNZq9evXT+/HlNmDBB0dHR+ve//63Ro0crPj5effv2veK9HQ6HoVpozAAAgGmVcR+z4qRs586datWqlet4bm6uQkJCJEkrVqzQ//73Py1evFh//vOfJUn9+vVT3bp19Y9//EN9+/ZVRESECgoKSty/oKBAjRo1MlQTa8wAAEC11L59e/n4+Gj27NmuY6dPn9bhw4fVtm1bSZee6pQkX19ft8/6+Pi4msTi1GzGjBmu89OnT5ckJSYmGqqJxAwAAFRZhw8f1urVq13vd+7cqblz5yoqKkoJCQnq1q2bli1bplGjRqlt27YaPny4fHx8XE9w9ujRQ35+frrvvvs0adIkRUdH67XXXlNOTo6GDh0q6dJUZ/369ZWcnKzCwkJJ0tChQxUWFmboiUyJxgwAAFjEjl+X9P7772v48OGu90uWLNGSJUsUFxenvXv36uOPP1bnzp318ssvq6ioSCEhIfrggw9cU5CBgYH6+OOP9eCDD2rgwIFyOp0KCAjQkCFD9Mwzz7jum56eri5dumjw4MGSpJiYGK1atcpwvTRmAACgynriiSf0xBNPXPa8j4/PrzZQXbt2/dWnK+Pi4pSZmelBhe5ozAAAgGmVcfG/HbH4HwAAwCZIzAAAgGkkZtYgMQMAALAJEjMAAGAaiZk1SMwAAABsgsQMAACYRmJmDRIzAAAAmyAxAwAAppGYWYPEDAAAwCZozAAAAGyCqUwAAGAaU5nWIDEDAACwCRIzAABgGomZNUjMAAAAbILEDAAAmEZiZg0SMwAAAJsgMQMAAKaRmFmDxAwAAMAmSMwAAIBpJGbW8Fpjdvr0aW8NbVpBQYG3S/BYZGSkt0sw5euvv/Z2CR6LiorydgkeO3nypLdLMKVu3breLsFjAQEB3i7BY82aNfN2CaacO3fO2yWgGiIxAwAAppGYWYM1ZgAAADZBYwYAAGATTGUCAADTmMq0BokZAACATZCYAQAA00jMrEFiBgAAYBMkZgAAwDQSM2uQmAEAANgEiRkAADCNxMwaJGYAAAA2QWIGAABMIzGzBokZAACATZCYAQAA00jMrEFiBgAAYBMkZgAAwBJVPc2qCCRmAAAANkFjBgAAYBNMZQIAANNY/G8NEjMAAACbIDEDAACmkZhZg8QMAADAJkjMAACAaSRm1iAxAwAAsAkSMwAAYBqJmTVIzAAAAGyCxAwAAJhGYmYNEjMAAACbIDEDAACmkZhZg8QMAADAJmjMAAAAbIKpTAAAYBpTmdYgMQMAALAJEjMAAGAaiZk1SMwAAABsgsQMAACYRmJmDRIzAAAAmyAxAwAAppGYWYPEDAAAwCZIzAAAgGkkZtYgMQMAALAJEjMAAGAaiZk1SMwAAABsgsQMAACYRmJmDRIzAAAAm6AxAwAAsAmmMgEAgGlMZVrDa41Zfn6+t4Y2rU6dOt4uwWOV/f/Qbdu29XYJHsvNzfV2CR7z9/f3dgmm1KhRw9sleOzll1/2dgkeu3DhgrdLMKVWrVreLgHVEIkZAAAwjcTMGqwxAwAAsAkSMwAAYBqJmTVIzAAAAGyCxAwAAJhGYmYNEjMAAACbIDEDAACWqOppVkUgMQMAALAJGjMvmjNnjp566ilDn3nhhRe0efNm7d27V82aNfPoHp6YM2eOnn766XIfBwBQORWvMauIV1VWZaYyhw0bpp49eyo+Pl7nz5/Xpk2b9PzzzysjI8PbpVmmffv26tOnj+677z798MMPOnHihJKTk3Xx4kVvlwYAACxQZRKzhIQEzZgxQz179lRiYqKuuuoqzZ07V4GBgYbvFRIS4tHnylt0dLSOHj2qrVu36tixYyosLFRubq7OnDlT4bWEhYXJ19e3wscFAKAqqzKN2T333KO5c+dq9+7d2rFjhx5//HFFRkaqZcuWZfq8r6+vunTpomnTpmn79u2KiYmRJG3atEkPP/yw27Uffvihhg0b5no/Z84c/eMf/1BKSoo2b96s9evXu52XpJo1a2rixIn65ptv9NVXX2ngwIGl1jF48GCtWLFC3377rT766CN1795dkjR+/Hg988wzioiI0N69e7Vq1SrX2D+fyixLLZL08MMPa+XKlfruu++UlpbmGqe41pdfflnbt2/X+vXrS631rrvu0rp16zR69Gg1adLkCr9ZAEB1wFSmNarMVOYvBQUFSZJOnjx5xeuaNWumfv366c4779RVV12lDz/8UH379tWOHTsMjdenTx+988476tu3r1q3bq0JEybo66+/1rp16yRJTz75pNq2bavk5GQdPXpUf/vb33T99de7jfPXv/5V3bp10zPPPKP9+/frpptu0iuvvKLjx4/r+eef18GDB3X33Xerd+/eKioq8riWESNGqFu3bhozZoz279+vNm3a6NVXX9Xx48e1ceNGV62PPvqoq9bf/OY32rlzp2uMqVOnKiMjQ71799aHH36o3bt3a9GiRfrwww91/PhxQ787AABwSZVtzMaOHav09HTt2rWrxLk6deqob9++uuuuu9S0aVOtWLFCo0aN0meffaaCggKPxtu1a5emTJkiSTpw4ICSkpLUrl07rVu3ToGBgUpMTNTf/vY3V3M0cuRIrV271vX5mjVr6qGHHlJSUpK2bt0qSfrhhx9044036u6779Zf//pXnTlzRoWFhTp27JjHtRSPc//997uN87vf/U733HOPvv32WyUmJmrkyJFutRb/dbH8/HwtXbpUS5cuVb169fSnP/1JvXv31qhRo7R69WotXLhQX3zxhQoLCz36fQIAKhc2mLVGlWzMxo0bp2bNmun2228v9fzAgQM1cuRIrV+/Xm3btlV2drbpMXfv3u32/ujRo6pbt64kKSoqSv7+/q5GSJJyc3OVmZnpet+4cWMFBARo5syZbvfx8/MznN5dqZbicWbNmlXqOFFRUapRo4a2bNniVuu+ffsuO15OTo5mzpypmTNnqkOHDpowYYK6du2qXr16uaVsAADgyqpcY/biiy/q1ltv1R133KEff/yx1Gtmz56tixcvql+/flqzZo3S0tL0wQcfaO3atSU6cafTKYfD4XbMz8+vxD1/mbQ5nU75+FxawvfLz5em+NrBgwfrp59+cjuXn5//q58vay3F/zto0KBSxwkNDTU0liTVqlVL3bt3V+/evXXTTTdp48aNeumll7R3717D9wIAVE4kZtaoUo3Ziy++qJ49e6p37946ePDgZa/76aefNGnSJE2aNEk33nij7rrrLk2fPl2nT5/WwoULNX/+fFfqlJOTo7CwMNdna9eurWuuucZQXQcOHFB+fr5at27tahaDg4MVExOjDRs2SJL27t2rCxcuqFGjRtq4caPRH73Mfm2c3NzcUmu99tpr3a738fHRH/7wB91xxx3q2rWrDh8+rEWLFmnkyJGXbYgBAMCVVZmnMl966SXdeeedevTRR3X69Gk1aNBADRo0UEBAwBU/t3nzZo0cOVItWrTQ2LFj1bx5c61YsULNmjWTJK1du1aJiYm6+eabdd1112nKlCmG102dPXtW8+fP16hRo5SQkKD4+HhNmDDBbQH/mTNnlJqaqr///e/q3bu3oqKi1Lx5c91///3q3bu38V/IZRSP89RTT6lPnz5u4/Tp08dV65NPPql27dqpSZMmJWqVpOTkZE2aNElnz55V//791aVLF73xxhs0ZQBQTdn1qcwpU6YoPDxcvr6+cjgcGj16tNv5oqIidezY0XU+NDRUS5YsKXGfadOmqU6dOnI4HK7rfv6wW2ZmpmJjY13nY2NjdeDAAcO/xyqTmA0YMECStHjxYrfjw4YN09y5c3/18xcuXNDixYu1ePFihYeHu/YG+9e//qXo6Gj95z//UV5ensaPH+/aSsOI8ePHq1atWpo6darOnDmj6dOnu54cLfbaa68pJydHjzzyiCIjI3Xq1Cl99913+ve//214vCt59dVXSx3nzTfflHSpyQ0MDLxirYsWLdK0adMMT7MCAFCRTpw4ofj4eD3wwAOaOHFiifO33XabVq9erZEjRyohIUGPP/64+vTpox9++EGNGjWSdKkpGzJkiG699VY9+uijCgwM1PLly3XVVf/XRrVp00anTp3S1KlTJV3qP9q0aVNi2dCvcTi9MFmbl5en+Pj4ih7WMr9sUiqTyj43X5m/5SA3N9fbJXjM39/f2yWYUqNGDW+X4LHatWt7uwSPGf0DyW5q1qzp7RI8tnPnTgUHB1fIWHl5eQoJCdE111zjWsdcnoqKinTo0CHl5uYa/hkdDoeefPJJjRs3znUvPz8/devWTcuWLZP0fz/Pvffeqzlz5ki69M9h69attWbNmlLvm5aWpj/96U9KTU117f2ZmpqqwYMHa+nSperRo0eZa6wyU5kAAKD6yMrK0qFDh1yvvLw8w/f48ssvVVRUpP79+7uOBQcHq2HDhkpPT5ckfffddzpz5ozCw8MVFBQkHx8fhYaGumaZJGnBggWS5LYh+6BBgyRJ8+fPN1QTjRkAADCtoteYNW/eXJGRka7X5bbIupLiB/2aNm3qdjw0NNQ1y7F+/XpJ0sKFC5WYmKg5c+YoNjZWjz32mD777DNJl5rE0nZs8PPzU1ZWlqGaqswas2KffPKJ21OU5aEiotryUhFTmceOHdMdd9xR7uMAAKqvHTt2uC0tMjN1+8s/13/+Z2XxA39t27bVO++8I+nS10DWrFlTY8aMUdeuXa9477JsmfVzVa4xCwsLcy3WAwAAFaOi9zGLiIgwvY6uOCnbuXOnWrVq5Tqem5urkJAQSXLt0nDDDTe4fbZBgwaunQgiIiJK/eaggoICwz1JlWvMjhw5Uu5jkJhd2a99ZRQAAHbQvn17+fj4aPbs2brnnnskSadPn9bhw4d17733SpJuueUW+fj46Ntvv3X77LFjx1zNXN++fTVz5kzNmDHDtUvE9OnTJUmJiYmGaqpyjdmtt95a7mPwVCYAAJXD4cOHtXr1atf7nTt3au7cuYqKilJCQoLricxRo0apbdu2Gj58uHx8fFxba/j4+Oj222/X4sWLNWLECPXs2VPPPvuszp07pxdeeEGS1KtXL9WvX1/Jycmuqc+hQ4cqLCzM0BOZEttleITGzHvYLsM72C7De9guw3vYLqNsireXuPrqqytsu4wff/yxzNtlTJo0ScOHDy9xPC4uTnv37lVRUZE6d+6sNWvWqKioSCEhIZoxY0aJzd27d++uzz//XIWFhapdu7bGjx+v5ORk1/mMjAx16dJF+/fvlyTFxMRo1apVio6ONvTz0Zh5gMbMe2jMvIPGzHtozLyHxqxs7N6YVTZVbioTAABUPL7E3BqVdxU7AABAFUNiBgAATCMxswaJGQAAgE2QmAEAANNIzKxBYgYAAGATJGYAAMA0EjNrkJgBAADYBIkZAAAwjcTMGiRmAAAANkFjBgAAYBNMZQIAANOYyrQGiRkAAIBNkJgBAADTSMysQWIGAABgEyRmAADANBIza5CYAQAA2IRXErOq3u0CAOBN3vpzlj/fzfNKY3bq1CkdOXLEG0NbojLXDgAomxMnTni7BI+dOnVKISEh3i4DHvBKY9aoUSP98MMPCgoKksPh8EYJAABUOU6nU6dOnVKjRo28MnZVGsdbvNKY+fj46JprrvHG0AAAVGkkZZUbT2UCAADTSMyswVOZAAAANkFjBgAAYBNMZQIAANOYyrQGiRmAXzVz5kyFhoaWy707duyoJ554olzubcdxAeBKaMyAMrrcH+SLFy9m2xdd2vMpKSlJISEhCgkJUVJSkk6ePOk6v2rVKjkcDrdj3rRw4UI9//zz3i4DqDKKv5KpIl5VGY0ZAEvce++92rZtm5YvX67ly5dr27ZtSkpK8nZZl1W3bl0FBQV5uwwAcENjBljs2WefVatWrTR79mzFxMQoJCREd999t06dOuW6pmPHjho2bJhSUlJUt25dNWzYUM8++6zbfV599VW1aNFCtWrVUmRkpJKTk3X69GnX+eLpxbS0NDVt2lSBgYG68847debMGc2aNUsxMTGqU6eOhg4dqsLCQtfn8vPzlZKSooiICNWqVUs333yzVq1a5Tb2zJkzFRUVpcDAQPXu3Vs5OTlX/Jl37typ5cuXKzU1VQkJCUpISNDbb7+ttLQ07d69W/v371enTp0kSXXq1JHD4dCDDz7o+nxRUdEVfxe/tGnTJnXt2lX169dXSEiIOnTooC1btrjOr1q1Sv7+/lqzZo3r2CuvvKL69evrxx9/dP09+HkC+uabbyo+Pl4BAQEKDw/XnXfeecUaALgjMbMGjRlQDjIyMrR48WKlpaUpLS1Nq1ev1ksvveR2zaxZs1SrVi1t2LBBEyZM0NixY/XZZ5+5zvv4+Gjy5Mn69ttvNWvWLK1YsUIpKSlu9zh79qwmT56s999/X8uXL9eqVavUp08fLV26VEuXLtXs2bM1bdo0ffDBB67PDBgwQOvWrdP777+v7du3KzExUd27d9f3338vSdqwYYMeeughJScna9u2berUqZNeeOGFK/6869evV0hIiG6++WbXsbZt2yokJERfffWVIiMjtWDBAknS7t279eOPP+pf//pXmX8Xv3Tq1Ck98MADWrNmjdLT0xUfH6+ePXu6mt/ipispKUm5ubn65ptv9NRTT+ntt9/W1VdfXeJ+mzdv1rBhwzR27Fjt3r1by5cvV/v27a/4MwNAuXACKJMOHTo4H3/88RLHFy1a5Pz5P0rPPPOMMzAw0JmXl+c6NnLkSOfNN9/sdq9bbrnF7T433XSTc9SoUZcdf968ec569eq53s+YMcMpybl3717XsSFDhjgDAwOdp06dch279dZbnUOGDHE6nU7n3r17nQ6Hw5mVleV27z/+8Y/O0aNHO51Op/Oee+5xdu/e3e38XXfd5QwJCblsbf/85z+d8fHxJY7Hx8c7X3zxRafT6XSuXLnSKcl54sQJt2s8+V380sWLF51BQUHOjz76yHXswoULztatWzv79evnvP76652DBg0qMW7x388FCxY4g4OD3f6eASib3NxcpyRnrVq1nLVr1y73V61atZySnLm5ud7+0csFiRlQDmJiYtzWL1199dU6cuSI2zUtW7Z0e//La1auXKmuXbsqIiJCQUFB6t+/v3JycnTmzBnXNYGBgYqLi3O9Dw8PV0xMjGrXru12rPi+W7ZskdPpVJMmTVS7dm3Xa/Xq1crIyJB0aVoyISHBrbZfvi9NaQ9AOJ3OMj0Y8Wu/i186cuSIHnnkETVp0sT1sMHp06d18OBB1zX+/v76z3/+owULFujcuXOaNGnSZe/XtWtXRUdHKzY2VklJSZozZ47Onj37q3UDgNXYxwwoo+DgYOXm5pY4fvLkSQUHB7sd8/Pzc3vvcDhUVFRU5msOHDignj176pFHHtHzzz+vunXrau3atRo4cKAKCgqueI8r3beoqEi+vr76+uuv5evr63ZdcTPn9GD9RsOGDfXTTz+VOH706FGFh4f/6ufL8vv6uQcffFBHjx7VpEmTFB0drRo1aighIUH5+flu13311VeSpOPHj+v48eOqVatWqfcLCgrSli1btGrVKn366acaM2aMnn32WW3atKnctgkBqhpP/t1h53G8hcQMKKPrrrtOmzdvLnF806ZNatq0qaVjbd68WRcvXtQrr7yitm3bqkmTJsrOzjZ939atW6uwsFBHjhxR48aN3V4NGzaUJDVv3lzp6elun/vl+19KSEhQbm6uNm7c6Dq2YcMG5ebmql27dpIuJViS3B5E8NSaNWs0bNgw9ezZU9dff71q1KihY8eOuV2TkZGh4cOH6+2331bbtm3Vv3//KzZ7V111lbp06aIJEyZo+/bt2r9/v1asWGG6VgAwgsYMKKPk5GRlZGToscce0zfffKM9e/bojTfe0PTp0zVy5EhLx4qLi9PFixc1ZcoU7du3T7Nnz9Zbb71l+r5NmjTRfffdp/79+2vhwoXKzMzUpk2bNH78eC1dulSSNGzYMC1fvlwTJkzQnj179Prrr2v58uVXvG+zZs3UvXt3DR48WOnp6UpPT9fgwYPVq1cvV9MaHR0th8OhtLQ0HT161O0JU6MaN26s2bNna+fOndqwYYPuu+8+1axZ03W+sLBQSUlJ6tatmwYMGKAZM2bo22+/1SuvvFLq/dLS0jR58mRt27ZNBw4c0LvvvquioiLLG26gKnPyVKYlaMyAMoqJidGaNWuUkZGhbt266aabbtLMmTM1c+ZMJSYmWjpWq1at9Oqrr2r8+PH6zW9+ozlz5mjcuHGW3HvGjBnq37+/RowYoaZNm+r222/Xhg0bFBkZKenS05SpqamaMmWKWrVqpU8//VRPP/30r953zpw5atGihbp166Zu3bqpZcuWmj17tut8RESEnnvuOT355JMKDw/XX/7yF49/hnfeeUcnTpxQ69atlZSUpGHDhiksLMx1/p///Kf279+vadOmSbo01Zqamqqnn35a27ZtK3G/0NBQLVy4UJ07d1azZs301ltv6b333tP111/vcY0A4AmHs6q3ngAAoNzk5eUpJCREAQEBFfItKE6nU+fPn1dubm6J9b1VAYkZAACATdCYAQAA2ATbZQAAANPYLsMaJGYAAAA2QWIGAABMIzGzBokZAACATZCYAQAA00jMrEFiBgAAYBMkZgAAwDQSM2uQmAEAANgEiRkAADCNxMwaJGYAAAA2QWIGAABMIzGzBokZAACATdCYAQAA2ARTmQAAwDSmMq1BYgYAAGATJGYAAMA0EjNrkJgBAADYBIkZAACwRFVPsyoCiRkAAIBN0JgBAACP+fv7q2HDhhU6ZsOGDeXv71+hY1YUh5PcEQAAmHD+/Hnl5+dX2Hj+/v4KCAiosPEqEo0ZAACATTCVCQAAYBM0ZgAAADZBYwYAAGATNGYAAAA2QWMGAABgEzRmAAAANkFjBgAAYBP/D/8FT9ZIiM/YAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAI4CAYAAAC2kpeGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACxpklEQVR4nO29e5xXZbn+fw8H5aR44CiSB0yEtBD9pqRJaqYplpq2FbW90WqrRR5z6+5kaVpppuhWy8hzAqVZaaYdANvmtizNFArPchBEQRFFEZzfH/Njutb7M3OvGeYzDPPher9evpw1a63ncD/3s1jz3Ne6n7r6+vr6MMYYY4wxVaNLRzfAGGOMMabW8AuWMcYYY0yV8QuWMcYYY0yV8QuWMcYYY0yV8QuWMcYYY0yV8QuWMcYYY0yV8QuWMcYYY0yV8QuWMcYYY0yV8QuWMcYYY0yVWT9esPbbL2LjjSNWrSr+/gtfiOjZM6KuLqJr14hdd41YuLBtdd1yS8QWWzSUWVcXsdVWETNmFK+5556Gc7fc0ra6jDHGGLNBUtfhW+X89a8Ru+0WccYZEd/97r9+f8opEVdfHTF8eMRnPxvxl79E/PjHDS9HL7+8dnX96lcRhxwSsemmDfW9/nrEpEkRb78d8dhjESNG/Ovad787YvHiiFdeaVP3jDHGmFrnzTffjJUrV66TujbaaKPo0aPHOqmrLXT8C9Yee0Q89FDEW29FdOvW8LuVKxtWrjbfPOKll/517ec+F3HVVRFf/3rEV7/a+rqGDo2YPz/i+ecjtt664Xf33x+x994R739/xIMP/uvam2+OOP74iGuuifjP/1z7/hljjDE1zJtvvhnbbbddLGxrhKmFDBo0KJ555pn1/iWrY1+wli9vWE3affeIP/3pX7+/+uqGFayJExtWmNbwxhsRvXtH7LRTxOzZravrzTcbXtpGjIiYNat4rl+/iGXLGl7slI03bngRe+qp1tVljDHGbCAsW7Ys+vbtG3Pnzo1NN9203esaOnRovPrqq+1eV1vp1qG1X399RH19xLhxxd//7/82/P/DHy7+vlevhv/mzWt9XdOnN/z/ve+tPLfddg2raK+8ErHZZv/6/bvf3fAy9s47EV3WD7maMcYYsz6y6aabrvcvPeuSjn1r+NWvGv5/xBHF3y9e3PD/bbetvKdnz4ZwYmt5/vmG/w8YUHluiy0a/v/ss8Xf77Zbwwvgr3/d+vqMMcaYDYj6+vp18l9noWNfsF54oeH/O+7Y9PnmVo3q6ta+zuxe1rdGp/X442tfnzHGGGM2ODr2BevNNxv+v9FGxd/379/w/6efrrxnxYrK61vCu97V8P9FiyrPLVlSvGYNffo0/P+111pfnzHGGLMB4RWsIh37grUmNPfii8Xf77NPw/9/97vi7998s0HovmZlqTXsu2/D///+98pzzzwT0b17UX8V8a8VNr54GWOMMcYkdOwL1i67NPz/vvuKv58woSFc9+MfF39/9tkN/z/22NbX1aNHQ5qG2bMjFiz41+8feKAhr9bo0ZX3/OMfDf/ff//W12eMMcZsQHgFq0jHvmBNmNDw/zvuKP5+o40akou+9FJDWoXLLov41KcirryyYdXry18uXl9XV7n61BTXXNMgWh85MuIb34j4r/9qWNnq0iXiuusqr3/00QZR/XbbrUXnjDHGGLOh0vGJRvv2bcg3xTBhREMerB/+sCE02KVLw4rXr38dMWjQv65ZuDBi8OCGMN5zz5XXd/PNDVvwLF3acDx4cMPv9tuveN2acj/2sYif/3zt+2eMMcbUMGvyYL388svrJA/Wlltu2SnyYHV8cqfPfrYhLcNDD1Weu+KKBlF7fX3E6tURjzxSfLmKiPj+9xv+f+mlLavvuOMaRO319Q3/LVhQ+XIVEXHOOQ3/v+yylvbEGGOMMSYi1ocVrHfeaVjF2m67hpBca/l//6/hBY05rNrCm282ZJgfOzbiN7+pXrnGGGNMjbFmBeull15aJytY/fr18wpWy1rQJeLGGxtWplatav39f/5zdV+uIhq27dl774if/KS65RpjjDFmg6DjX7AiIg4/POLee/+12XNHs88+Eb//fcuE88asZ8ydOzdOOeWU2HHHHaNnz56xxRZbxC677BKf+cxnYu7cuY3XnXfeeVHXlqS9VWZ9a48xpnX4K8Ii68kbjTGmGsybNy9Gjx4dm222WZx55pkxfPjwePXVV2PWrFkxbdq0ePrpp2Po0KEREfHpT386DjrooA5usTHG1CZ+wTKmhrj22mvjpZdeij/96U+xnaQXOeyww+K///u/45133mn83dZbbx1br03SXmOMaYJ1scLUmVaw1o8QoTGmKrz88svRpUuXGNDUpuYR0UX222wqJPfWW2/FmWeeGYMGDYpevXrFPvvsE3/5y19i2223jf/4j/9ovO7666+Purq6mD59epx88snRr1+/2HLLLeOII46IBZrINyKmTp0aH/nIR2Lw4MHRs2fPGDFiRJxzzjnx+uuvV6/jxhiznuEXLGNqiDFjxsQ777wTRxxxRNxzzz2xbNmyVt0/YcKEuOyyy2LChAnx85//PD7xiU/E4YcfHq+88kqT13/605+O7t27x49//OP4zne+EzNmzIjjjjuucM0TTzwRBx98cEyePDl+/etfx2mnnRbTpk2LQw89dG27aYxZD7EGq4hDhMbUEOPHj48//OEPce2118a9994bdXV1sdNOO8VBBx0UX/jCF2Lbbbdt9t5Zs2bFrbfeGv/1X/8VF110UUREHHDAATFw4MA45phjmrznoIMOikmTJjUeL1myJM4+++xYuHBhDPr/c9Z9WXZeqK+vj7322itGjBgRY8eOjUcffTTe+973VqHnxhizfuEVLGNqiLq6urjmmmvi6aefjquuuiomTJgQb7/9dnzve9+L97znPTFz5sxm711z7pOf/GTh90ceeWR0a+YL34997GOF4zUvS8/JrgpPP/10jB8/PgYNGhRdu3aN7t27x9ixYyMiYvbs2a3vpDFmvcQrWEW8gmVMDbLNNtvEySef3Hg8bdq0OOaYY+KLX/xi/OlPf2rynpdffjkiIgYOHFj4fbdu3WLLLbds8h7+fuONN46IiBUrVkRExPLly+ODH/xg9OjRIy644ILYcccdo1evXjF37tw44ogjGq8zxphawy9YxmwAfPKTn4yLLrooHnvssWavWfOytGjRohgyZEjj71etWtX48tVafv/738eCBQtixowZjatWEdGspssY03nxV4RFHCI0poZ44YUXmvz98uXLY+7cubHVVls1e+8+++wTEQ1f/Sk//elPY9Xa7LIQ0fiV4pqVrTV8f80eosYYU6N4BcuYGuKb3/xm3H///fFv//ZvMWrUqOjZs2c888wzceWVV8bLL78cF198cbP3vuc974ljjjkmvvvd70bXrl1jv/32i8cffzy++93vRt++fQspHlrKBz7wgdh8883jpJNOiq997WvRvXv3uOWWW+Jvf/tbW7ppjFkP8QpWEa9gGVNDHH/88bHXXnvFlClT4thjj439998/zj777Ojfv3/86le/igkTJqT3X3fddXHqqafG5MmT49BDD40pU6bEtGnTIiJis7XYOmrLLbeMu+66K3r16hXHHXdcnHDCCdGnT5+KVTJjjGkvrrjiihg4cGB07do16urq4txzzy295/LLL49evXpFXV1ddO/ePcaPH9/qeuvqO9ProDFmnfPHP/4x9tprr7jlllvW6iFjjKltli1bFn379o0FCxbEpptu2u51bbXVVvHqq6+2uK5vfOMbce+998YHPvCBuPjii+Occ85pTEXTFPfdd1+MHTs2Ro0aFeeff3785Cc/iRtvvDHOOuusNApA/IJljGnkN7/5TTzwwAOx2267Rc+ePeNvf/tbfOtb34q+ffvGo48+Gj169OjoJhpj1jPWvGDNnz9/nbxgDRkypFUvWEpdXV3pC9Yee+wRjzzySLz11luNvxs5cmTMnTs3XnvttRbXZQ2WMaaRTTfdNO6999647LLL4rXXXot+/frFRz/60bjooov8cmWMWW+YP39+YaeKTTfdtGovd//4xz9ixIgRhd8deuih8Z3vfCfeeOON6NWrV4vK8QuWMaaRPfbYI/73f/+3o5thjOmErEuR+8iRIwu/Hzt2bMyYMaMqdaxYsaJiP9ftt98+IiLmzJkTo0aNalE5fsEyxhhjTKdi1qxZsckmmzQeVzs0uSbFzBreeeediIhWfU3tFyxjjDHGtJl1uYI1ZMiQdtN79ezZMxYtWlT43bPPPhsRETvssEOLy3GaBmOMMcaY/5+ddtqpYp/UO++8M/r06dNi/VVEB61gvfPOO7FgwYLYZJNNKpbhjDHGGLN21NfXx2uvvRZbbbXVWiUHbmvd62Oi0YULFxY2up89e3ZMnTo13vWud8WYMWNizJgx8eKLL8ZTTz0VEREXX3xxjB07Nnbbbbf4+te/HrfddlvMmjUrzjrrrFbV2yFpGubNmxdDhw5d19UaY4wxGwRz586Nrbfeep3UtSZNw/PPP79O0jS8613valWahssuuyxOP/30it8PGzYsnnzyydhhhx3ipZdeKuyRevnll8e5554bK1asiG7dusVRRx0VP/7xj1vV1g55wXr11VfXKiu0McYYY8p55ZVXom/fvuukrjUvWM8999w6ecHaZptt1joP1rqkQzRYDgsaY4wx7Yf/ne14/BWhMcYYY9rM+qrB6ij8FaExxhhjTJXxCpYxxhhj2oxXsIp4BcsYY4wxpsp4BcsYY4wxVaEzrTC1N17BMsYYY4ypMl7BMsYYY0ybsQariFewjDHGGGOqjFewjDHGGNNmvIJVxCtYxhhjjDFVxi9YxhhjjDFVxiFCY4wxxrQZhwiLeAXLGGOMMabKeAXLGGOMMW3GK1hFvIJljDHGGFNlvIJljDHGmDbjFawiXsEyxhhjjKkyXsEyxhhjTJvxClYRr2AZY4wxxlQZr2AZY4wxps14BauIV7CMMcYYY6qMV7CMMcYY02a8glXEK1jGGGOMMVXGK1jGGGOMaTNewSriFSxjjDHGmCrjFSxjjDHGtBmvYBWp+Res3r17F4432mijxp/feeedwjkO3IoVK5q8LyJi4403bvZevS8iYuXKlYXjvn37Fo6XL1/ebLk9evQoHL/22muNP7NvWk5ERJcu/1qg7NatONRsY/fu3Rt/3nTTTQvn3nzzzWbLjSj2j3Z64403CsebbLJJNMfrr79eOF69enWz5RI9/9ZbbzXbvoiILbbYotk2du3atXCOdlI7sh7aWO24ePHiZs81hfad9qef9unTp9n2Zv60dOnSwrlevXoVjtUW6h8RlX1ftWpV4VjbPGDAgMK5zE/ffvvtwrnM/uwbr+3Xr1+z9Zb5tPopfY9jqTalD7CNL7/8cuPPtCmv7dmzZ+FY/ZTPBdpf+0OfztpfZtPsPOe2+jCPeY7P4rq6usafaQf6j/aP19Iu+vzkvRwPjqX6DJ+99Cetl33l2On8jSj2j3OSc1bbyHJMx1PzL1jGGGOMaX+8glXEGixjjDHGmCpT8ytYutQcUVzu1+X6iMqlXL2XS7VLliwpHOtSLa9lOIjL7hoyfOmllwrnGDbT8Bbf5Ble0WVslsN7ta+0A5fZGR7acsstmywnonLZXfvHJXiGTjVswBACQ4/aHy6Vv/LKK4Vj9kfDBFmoiPcy9LjZZpsVjrXNtMOyZcsKxwxt6L30Jx6/+uqrjT9vvvnmhXMMB+nY0t6ZP3Fcy8ZZwyAM6XDctf0cO4b51C60IfvDNuq9PMdxz8JZDJNpufQthoM0XMpwFeuhf+m8y+Y620H/Z4hcn2UcG851+ojags81zh0Nb9EuHA8tNxvHiGLf2d7s2ojivKMPEO0f2897M8kCr1X/jyg+j/jczsaZ5XQEXsEq4hUsY4wxxpgq4xcsY4wxxpgqU/MhQmOMMca0Pw4RFqn5FyxqdVTXoNqhiEqtgkIdSfaZND+LZmycOg11mIEDB6Zt0rLLPjXXa9lXOqnq0ahbYHupKVMtDHUkmc6nTDOjfS/TYaguiTajXdh37R8/yaeuRLUv1E29+OKLhWO1E+1SlvZAtTqLFi1K26S6GWquss/JqXei3kM1NLQZNYjsj44PNUvU+Wgb6dOZnag3o09QY6njwb5SP6fznddS/6TPAj4XeK/2h/Oq7NN/9TfalNpN6qxaCttLH+exzi0+a9km9Tf6E5+ZOpZlOjC1U1maBtpU28xnDOeH+gh9LUt5QrtkfY0o+jXP0ff0ecW5Yjqemn/BMsYYY0z74xWsItZgGWOMMcZUGa9gGWOMMabNeAWrSM2/YGXbTZRtdaIxecbRiWovsvw1ERH9+/cvHKtWgRogane0LJZLTYqWS30B+6r3UsNEvQc1ZRr7p24hu5Z6D+olVKNF7QHvVW1FlqsnojL/UDbOtKnqkjjO1EBkeWmoC+N4aH+pnyOqgSvbQkW1IdQoUe+h/WmNBjGiOHa8l3bSvnKsaGP1L+ppqE3L5g7ryXKjsR7qtbQ/1MBxPmcaMvotj7Ue6pvYH20z86bRx1XvV5aziXNHbVG2LZbOWeqQ6BPad57L8gpm2zA1VZZq1fhMoY+r7pBjQ5+g3yocd+Zz07GlTpXjrG3iOdPx1PwLljHGGGPaH69gFbEGyxhjjDGmytT8ChaX97PQBZduNXTEEA7JUjxwmZef9GZhJ4YYdDmZ4Tgu32ef+2afK7NOhucYstKwQmu2IKFNufSvbWT4geksslQRDB2x/RrWYeiCNmW4RWH7sy1IGKpg//SYn+9nn+RznBl+0DZmqRUiimNZ9rk4/VZtzns5V3Q82F7aW0N5HBvOB9arfpHNq4iitIA+wRQVaiemR+AzRq9lOI4+kKWD4Dyj/bXvlElwBUDTgAwaNKhwjr5Gn9F2cF4xBK3POY4d7a/lclw5nxU+w2lTPveULP1DRL59FX1aQ4YMldJ/svAi/ZQ+zWdOR+MVrCJewTLGGGOMqTI1v4JljDHGmHVDZ1pham+8gmWMMcYYU2VqfgWL+hXVEFCbwNi4ah7KPutWjQ1j7tRhsN5sqwdqK/R89ilwRFHrxTg/Y/daVpnehseqJaGWgvVq6gLalFvNqH6LOoxMq0Z9BDVv1Euo3iPbbojXUuuVbYlBm/KTcGpH1E9pF+pk1P7UbJDMZ/hZuvaHf5XyWvq8kule2KasnIjivKNNaX/6uOp+aKcsbQb9iWOnZVEbRR/R5xG1RNRqcp5pf3ku00axTdkWW3xWcdw5D7N66NNaNv0nm7PUqhF9JtInslQXEUXfy7agiij2j3bic0KPWS6fiWxztk1Qpjuk/TsCa7CKeAXLGGOMMabK1PwKljHGGGPaH69gFfEKljHGGGNMlan5FSxqgjR/EnUMzGGj+ZGo2ci2XOAbNrUg1ASphoD6CGq9VKPCmHumN6AdeK2WS20UNQTZVjpl+YVUa0HNDHUZelymeVBbZNueRFTqGrKxo4Ym25Ymy23FvF20YabnKtOqaf4h6gh5r9qReie2QbU51ChxPDKtI32C467nub0QdTDqP2w/dTxZbijN/RRRqRfSe/mcYD3Z9lXU22heKbafOaeod1I70fdYr55n+7lVl85vjjPHLsuhxbHiPNSyWQ7r6devX+PPfF7Sp7Vc6uPYJp5Xn+fzlPVoG2kn5vzKyuEcpe5W7cb2Em0/52BH4BWsIl7BMsYYY4ypMjW/gmWMMcaY9scrWEVq/gVLl5ojimGCss9adcmVS9gMZWhIhEvyXKbm59h6L5fDueyr7S8L22hokuUw7KfL1Oxb2XYM2iaWy7CZLpdn4beIYv94bUbZp9nZdjhcrmfoJUu9wJCU9pXnGP5h37PlftpCx4vhK5arYSn6C9uk9WQhtIjKUIaOHf2HfdNQPLdbYV91PGh/htjoB3rMOcl5p2E0hnhoU53vvJbt13rpl7Qx61Hop4QhRCVLZVC2JRjTBGRpb/jM1DAa28eQuT4jy3xay6K9GaZkeFQlGfTpzIb8t4N2y7aK4r1ZPWUhTx07jo3peBwiNMYYY4ypMjW/gmWMMcaY9schwiJewTLGGGOMqTI1v4LFGLbG2amBaE1KAaZTUP0K62QMntqXAQMGNP7M+Dz1Qlo2NQ/Udqk2pyxVgUKNDP9iyPpTpjfTNpVp1bSNbBPtlOnAqAXhvWrHss/U1Y7U/DDNh+pBMn1ZRKX2SPUqtBN1hdlWNNScaJvV75oqR21Kn6XWhTZV3RW1IRxnvZZ2yXRt/DSeaQ84vzNNH9uk/aUGiH3VsStLPaJpG7I0EhGV8y7bJov3aioA+iXHI7MLbUitlPad97IetSNtynLVT2kH6twyXRufc3w263lq4FQbGFGcL5wPRNvMNlGTyLQr2TZNZektOhqvYBXxCpYxxhhjTJWp+RUsY4wxxrQ/XsEq4hUsY4wxxpgqU/MrWIzBazy8LF6fnaN+RePo1DtlOh7eS30HdQyqeWCOl2yLHuojqFfRPEBldmH7M7ItbqirYhuzbSKo1dFj2pCaLKLjQxtS/6TaF+aNYi4lhTYt2+pEx5baEOpttI0cGx6rBoj25rHagjYtyy2m40H/p920HurAaH8tl/q+snHPtu+hnk51PiyH29/o2FFfQ//Xeqmjov1ZltbDXHV8HqktqP+jdlP9iVqoLI9dRFFzRh9g+3Us2SaOpY4z5wbnqGql2F72lZomPc5yxkUUfZN+yvarLTIfiMh1t+w7n3t6L891BF7BKtLxI2KMMcYYU2PU/AqWMcYYY9ofr2AV8QqWMcYYY0yVqfkVLOo9NGbN2Dc1EXo8cODAwjnqg/R82f5R1HTovWV6J21zluOL9VIPQf2W6g1oF/7FkOkAqHmgZkP1ZtRgUW+mWhfmPGJuH837wzppU/ZPtVO0N/uu9/LabL9E6qg4drxXNR3UbFCDpe1gORwrvZY6kkx7R5uxXGrK1BfLdFXaP84V+mlz90WUa120TZneLKLYX5bLsdO5xTxYrEfLyvaga+pebT+1RNRkad/L9izVeZbtkxpRqVXTPpTln1PKnr1aL32A/q/PLtq/bH8+bXOZ/lX7w7x19HEdDz7neG2m2+O9tIW2ifOqI/AKVhGvYBljjDHGVJmaX8EyxhhjTPvjFawiNf+CxZCVLs9yWZrbimjoiGEmhqG0LC41c/mebdJlbS6rZ9tNZCGpiKIjsv1cptZ6y1I6sH8a1mG5rFdDZWUhBV0qb01IgedYLkMzWjbHiuOs4QmGihi21PNsE5f6GZpR6AMsS0MMfPiwjVnYhnbRNtIOHOcsbQbDo1k6DpbDUJieZ98oB2B4S/tDO3HssjQZWSi+LHSqditLK5HJBRg6oi30GZOlq4goPuc4zhyrbDxoF84lhTYl+kzk84f9UTsyTMb0FQxx6tgx/QZDqTp2TMnCZ7r6F6UE9AmOnV7PscqeI/Qn0/HU/AuWMcYYY9ofr2AVsQbLGGOMMabKeAXLGGOMMW3GK1hFav4FqzWf2TO+rXF1xvapVdB4PT81p96AsX29nvfyk2TdziHbGodtZt+oFdG+Uh/ELSSoy+jXr1/jz9xqg9oE7R/1BUR1GGxTth1R2VYUtLHahmNFrYVqpWhvXqs6Gdqb48o0FGrTLNVCRFEbwr7zXm0Tx4pk/kMb0hdVq0N/z3yP2i7qqvRezkHCOas2z9JKRBT7Q9/L5miZ3knLKkshQP/SNrO91GSpndgGtl9tzPbTT3lvRpZigH2nBlHHlm3IdEksh/eyTWpTzkH6l17L51qWeidL1dHUvTp32CY+n9TH2TfT8dT8C5Yxxhhj2h+vYBWxBssYY4wxpsr4BcsYY4wxpsrUfIiQ+iGFehXmnVGoG6FWRHU+1GyUbY2gegRqBojqAsp0MdTqKJldWA7txHK1LGoTsu1KynIpaV+Zf4f6CNU/sU5qcbjErLlymLsn02RRH8Q8OqqtoOanzE6qP2Pfieb2KdOrqG8y9xPR/nELEvpIpovhOGd2ol10C6SI4liV5aajJkXHneOcbUlF/+GxbpvCc9QaaU4n+iF9gLbI8sKx/VlusSxPX5mGif3R+UE/5fhof6k7otZIYd84J7WeTJ8YUal/UhuzXNotK4d9V30j/z3gcZZ/kT5MnafOJdq0I3CIsIhXsIwxxhhjqkzNr2AZY4wxpv3xClaRmn/B4nK4Lidz+TVbOucyLkNs2ZYFXPrnUq4uTXPbBIZitB7u6E7H0zZyuTvb/obhLJbLz471mKEiLtmrTWkXlqvhFi7BL1q0qNl6WA7Hg/3TEBv7yiV5De9m28OwLIZAGCZjOEXtyLAM/VbDZrQ3Qzwa6qOv0Z+yT/05djzWEAnbxL7qeDHsynmmY8Vy6SPcFkXnDtubpTJgmCnzafoew07qiwy7ZqkiWHYWTo8o9o/lMESlNmf7OVeItqPsHz61MZ8/DLlpqJJtYnoR9XE+L2ljhl11fjM8Sv9RW7Aezm/tK+cgt+8hOpacD/RxfUZmEhfTMdT8C5Yxxhhj2h+vYBWxBssYY4wxpsp4BcsYY4wxVaEzrTC1NzX/gsW4uuolqEHhtRpnz3RHEcVP3rM0BhGVMXnVE1GbQK2FaiuoDWF/9F7WyUmg56mHoGaDaSZUM0C9E/USqilgG6hB0fHgtdmnzdRZ0P7UwKkmgpqrTHtEjQZ1PWo32ow2piZLtRX0NdpJ+5NtDRVR1FlR28V7M59m36n/GDRoUOPP1MHQb9VuWVoGlsVyXnzxxcIx9UM6BrQ/7aS24RzkeGjfqc1hPdompsngeNDmWi/9iWkn9Dz9n8+YTO/Ha7N/PLOtoiKKzwk+U7LnK+1PXZK2qWxrHNajvleWiiRrP+vRZxDL5fOHqT1UZ8Vrs9Qd/PfLdDw1/4JljDHGmPbHGqwi1mAZY4wxxlQZr2AZY4wxps14BatIzb9gUZehcfVsy4WIYmy8bLsDje1T80B9DTU0CmPumY6B12Z5jMryw6gtqEdZvHhx4TjTSpXlAMtyBlFrobllmP+Fk0x1GZnuqKnzOs7UQ2QavjJtiOojyrZlyrZYoRaH9s+2aqEmRTVAtGm2fRLHin7J/qkehzmastxE7CvzC2VbUtHHiZ4vy+2m86Fsmyydh9Tsse/qPxwb+g91VdoOnsu2Hxo4cGDhHH1E28ixoZ/SZ/TZQF0k55n2l3qt7FraP/OfMq1plheRejOi9ZZtddWa3G4cu2zrMY5dlpvLdDweEWOMMca0Ga9gFbEGyxhjjDGmytT8ChaXWDW0wfAhw0F6LZeeuayrS89lu9czHKFLyPxMmsvhGhYpC1tq+7ksvfXWWxeONZzFMAdtyP7o9QyfsKxsCwySheOycBavLTuvdmLf+Jm9hgKYBoAhWw13ZeVEVKbY0M/sGWYimtog8/eIYv84VgyRqI+zb+x7Nj9oU9pfwzS8lsea2oBzg3ZieDELmfNY04vQhxmi1XvLUlKoT/AvcdqYoSVtP8vNtrgp66uOXSYziKhMo6Hzmc8uouFFPmuzbV5oF4Yps9Qp9B/aVPvOceVc0v6VbX+m853llNlU21yWTkSP14eVHa9gFfEKljHGGGNMlfELljHGGGPazJoVrPb+b204+uijo3v37lFXVxe9evWKK6+8Mr3+lFNOiZ49e0ZdXV107do13v3ud8cTTzzRqjr9gmWMMcaYmuXUU0+NqVOnxvjx4+OXv/xlDB8+PCZOnBgPPPBAk9dfddVVcfXVV8fBBx8cM2fOjCuuuCLmzp0bY8eObVW9dfUdENBctmzZOkvrT62I6pSoReAnsBpnpz6F+i3VLjCmzng9Y/Cqt+Hny6xXtQrUXFFfoPobahyoN1BNFvU0hPWqfqhMb6Y6GdbDcjO9ULadD3VH3K6HbVRoQ+ondNyzFBoRRf9indRcsR4dL/a9X79+hWP1r2xrpYjiuA8ePLhwjjoSnaOcG9mn/hFF/RwfMRw77R/bu3DhwsKx9p0aK7aJttDzPMdta3QOs29ZOgW2n+Oqvkh/p/6J2q9Ms8hnmT43WA/7w2dkS+uMKI4P7ZKlyOHzh3NJ7c/2M+2EnqcGjnqtbO6znmw+ME1GljqF0G+JtjnT8LFe+svixYsrtlRqL9b8m3733XdXjGW1ef311+OjH/1ovPrqqy3uX58+fWKbbbaJxx9/vPF3G2+8cYwePbrJl6xx48bFPffcU3hmHHnkkXHHHXdU+EmGV7CMMcYY06mYP39+zJs3r/G/5j58Wr58ebz++usxbty4wu9HjBgRs2fPbvKeQw89NFatWhVf//rX45133onHHnssfvvb38aOO+7YqjbW/FeExhhjjGl/1uVXhCNHjiz8fuzYsTFjxoyK6+fMmRMREdtvv33h9wMGDIhZs2Y1Wcd//ud/xpw5c+K8886L8847LyIaNrB/6KGHWtVWv2AZY4wxplMxa9asQii8LFzI8HB9fX2zIeNf/OIXcdlll8XBBx8cEyZMiH/+859xwQUXxKhRoxpf2FpCzb9gZdvUMG8Lt85RnQy1UdRsZNsoUO/BWLkOMvUQ1HNl+ZGo61GNE/tGtE0sh9oK6j3UxmwvdQxaNu1ATZbqkHgt26Bxf8bIBwwYUDjmuKvOhDbl2KkOg3obTlbVaVA7wf5Ql6R+wDbQF3WLkmwbpoiib9LX2Eatt8wHOM7aJuYm4jhrm2gH6m00DMC+so3U46gfUB9EnZ7ahuWyP3ot+0YNk447n028N9PpZWMVUbRNlncsojh3aFNqgOgz+jxiewcNGlQ4VpvzeUT/yTRkfMZom8vyU2U6Tz63M00Z7Z9pfdkmvgjQ93S8qLdkGCzz01pnyJAhLdJgrQnrPfXUU4XfL168uGLM13DaaafF4MGD46677mr83eabbx6f+9zn4pFHHolRo0a1qI3WYBljjDGmzayPaRr69OkTvXv3LrwsRUTMnj07RowY0eQ9b731VsUfJmv+qCz7CEzxC5YxxhhjapYTTzwxHn/88ZgwYULceeedMXr06Fi5cmVccsklERExZsyYGDZsWOP1H/3oR2Pu3LlxzDHHxIwZM+Lqq6+O008/PXr37h2jR49ucb01HyLkkrAueTMFQvZJbNnyvS7Vckk427KD13OpOQsnMvzA3ew1RMLwFcMTGjZgGxg24KfPWRsWLVpUONYlXdqF9ej48Bz/ism2i+G4cnz0mOETLsmrHzAtANuo/sOQAkNhTFuiocosLUBEMeTJz8NZr4ZmaAfOB21Dtr1QRMQLL7xQONbrWxMiYYiW9lffo/9znLOQCe3NUJK2g35K/8/sxHHWa/kM4Rylf2XbD2UhKvY1C+/Sf/jco421P3xWMZSq7WD7s2cmxzGTC9AnaEOWpXbKUjhEFG3MZwzr0XZwvtKG9Bm1OcOHvFdD6LR3R7C+bpVz+eWXx6JFi+Kmm26K66+/Pnr27BmTJk2KvfbaKyIawoXqcz/84Q/jlVdeiZ/97GcxZcqU6NKlS7zrXe+Kn/zkJ62qt+ZfsIwxxhizYTNlypRmzz355JMVv/vpT3/a5jr9gmWMMcaYNrO+rmB1FNZgGWOMMcZUmZpfwWLMWnVJ1Nswrq46E741U7Ohx9QtMKUDdQIaO6eGKdvug21ivaproEYg+1SbegjqeKiTUZvyXvZdNTXUhmSaLNqMOhLVZZRp66jh0LHjOd6rZVOzQX2Hjh31WU3lZFFUe8H+8F7VzVCLQxtrG8vK1U/Eqe8omzvaX2qWeK9qsqjZY5vULmV6G6ZpUC0MP39nWXovx5X+n6XGoP+o5qcsVQHnnc4P2jRLW0JYrtqYKUzolxxn9Qv6Hu2m9TLVArV22qaybXV0XKnvowaO46zH9EuOsz7b2F76k4477cJ5x3FXm5elstFjPms7Aq9gFfEKljHGGGNMlan5FSxjjDHGtD9ewSriFSxjjDHGmCpT8ytY1GWoJoVvwtRLKGVbnahmgLF8agjYJo3fU5vANmo9ZbmtVJdBHQC1FtoG9pX5eniv1sN7mYdM9QbZljsRxa0pqD3gvaqXaG5X9TVk+c7YN46zQvtznPWYugvqSFiP+hD9hbbQ/tIu1LVledSyHEHc9oT3Upszd+7cJstp6l71TeqSuC2QzgfalOPOerTvvJZ6G7U55zN9XNvEc7SplkVdG/WLmY/Q99gfLYttop9qucyDRfvTv/R5ynHOoE/Tf9ROmT4uojifOTfKtlLR+UE7sSx9NnBssjxqhLpajqUe0yey7dHKtslaF3gFq4hXsIwxxhhjqkzNr2AZY4wxpv3xClYRr2AZY4wxxlSZml/BynKZUIvD3DKqKWA+lSy3DzUDZbqSxYsXN/5MXQnj9RpzZ3yeqMaDGhpqCFTDwfZSd0GthZaluqmISjtpni/qzbK9wDiO1Eto+6m7YJuod1L9B/Ud7HuWxyvLbUVfY7n0GbVplrcromgLjivr1fPUbFCnp75XZkMea5sybVdExPz58xt/pg3p/zo/qJdj3zmW2V543C9O6+F+cPRp7SvHhnbRNlLbVabd1HvZ/kwjWvacUF/kcy7TFbJs+gjnYaYrpAZLj2l/rmBo++lrma6W95btA5tpzOin2d6uLIfjrn2gnViPlk0f6Ai8glXEK1jGGGOMMVWm5lewjDHGGNP+eAWryAb3gqVhM4aduPyabR+ThW2yJeyIynQEGnbiUnn2OTmX6xnm0OVjfq7P9mubypbvGdrTerlEz7CBtp9L47Sb2pxjxU+o9XzZVkUcj2z7IYY5NETLsWGIStvE5XuGPehfbKPCMLKOM8vlZ/faP9qU4ZR58+Y1/jx48ODCOabu4DhrWbRpFvajb7EetTFDtIQhQg3DZuHDiKJv8hzng7aRfeU807nCcrOUMhHFZxfHlWFLZeHChYVjPn/Uf8rkABw77Q99mD6RpRHIJBe8j3NS7cZrGfJkuE7Lok+wrzrfy7al0bI49/mcJtofhpzpexoqzrZHMh3DBveCZYwxxpjq4xWsItZgGWOMMcZUGb9gGWOMMcZUmZoPEVKPo7F+6oUyvRNj4dSraFnULVBXkuklqKHJPl8m7KvqD7baaqvCOX7irpqBTHcUUamdUh0AU1BkGg62lzbOtBVcJtZjnmP7qUFRTQR1SRwP7Ss1GpluKvOXpspSW1Bbwf7o2OmWRxGVOpisTrZRU3uwHKYJoE+o73Fc2X4dL+p46O+ZtoX+lG0pxFQkWRqNbLsn3ksfoF20f5lGrKnz6ge8ltvu6DOGNqTd9F76D32vNfOZ46x9pzaNzw2d+5wrmc6Nbcj8h/C5TP2W9pVzh88nnR+ssywdhPaP8yzb/ok27Cg6UwivvfEKljHGGGNMlan5FSxjjDHGtD8WuRfxCpYxxhhjTJWp+RUsaiAU5p1hLFx1SryWOh7VWZXlXWI9mtOGOjDWqzH3rL0R+RYw1FmpjmTu3LmFc9QbDBw4sNl7qWHKtoQp0yVluZQ4rlovtQjU29Cm2bYu1NuoJoX1cOx0fJi7ipoZ3UIooqjTyLYQYpuoGaOGRu1PvUqWB4v6FPpTtu0UtSycO2pH+gv1Qnq+TAOXtZn253xQm9P+maaPvsWcR+pfbD/nM22cbd+T5fGiDbO5xGcI+0o76djRTpn2iH0n2lfOQeb00+cc5xn1r3x2qW+W9ZXzJTunbaJuinOFOjG1KX2YbdTnBp8/HYFXsIp4BcsYY4wxpsrU/AqWMcYYY9ofr2AVqfkXrCzEwCV5fiK+ePHiZs9xmVqXnhm+YpiAISs9n20ZEVFcXs5CCLyW5bL9+nk2wwQMPyxatKhwrOE53pstndOmDHvoJ+FZqDGi2FeGHxgmYNhMr+fn1vQRrYchkSz1AttAm/Lzd7UFw4e0haZQ4Gf2bGO2TceAAQMKx/ogo12yz90jiqEM9o0hQw0B8RN21qtlsW/ZViy8nvXQpjo/OK70PQ0LZqle2MayrbqydC6c65xn+txgSJZjp8/IslA8t93JUtnQxvpsYPtpC/UR2p99zVJ38Jht1LLplxxLfW5ndogo+hqfc2wTpQZqN95Lm2qb2QbT8dT8C5Yxxhhj2h+vYBWxBssYY4wxpsp4BcsYY4wxbcYrWEVq/gWLGprs82DqZDTezXKI6pL42S01BPzUVmPy1EfQmbQstom6KtUMUHtDHcD8+fMbf6ZGiboq3qtQB8NrtSzaiXoD1bpQ95J9zs8xZj20U6bB4mf3an+2gRoytT/bX/bpvGo4ss/SI4q6K7afNlWfoa8tWLCgcKzpQ7LtkZo6n33+Tr/VNtOm1G+pdocaGbaBmjJNzUC78F79RJ9jk+l82LcsrQE/16dNqdPTOZzNQd5bpk3L5lmZJkv7wPZSW6TnOa+yY9opS++SaaEiKn1G/YttoC30mLq27PnE50KZP6kPsa98NmdpS0zHU/MvWMYYY4xpf7yCVcSvvMYYY4wxVcYrWMYYY4xpM17BKlLzL1jUq2icmjlRspxZrbmW2hbqShi/17wujLlTw6EaAmorWI9eW7YFibaJmivmh6HOQTUQ1DGw/Zo/hroFagj0XurjMr0Ec+yw/bSFau1oF9pY/YDtp65H7c+cRuwP81epfqssN5dqi5gn54UXXmi2jZwb1NeoH1BHSG0LH3pqJ55j+7Vs5jiiTfU8y2V/iPot5yhtrL5Hf890Ptwmi/oz9b2yraI4H/S4TG+j9VILRTtp36l5y+ZKRHEeZlsIsWz6T5Yrin7JvHDqp7QLx4p9Vz+g/XlvtnVXlr8ts3dErrVjG1iv2r8zvXhsKNT8C5Yxxhhj2h+vYBWxBssYY4wxpsrU/AqWbncTUVya5lIzw4C65J197s5yy7bh4Bu4LnFziT5LD8HlYy6laz1ckmd4S5fKWS7DcVzi1hQVZSESDfGUfRKu17Jchni0jWw/bcqtijRsyXsZ4tQ20aaZ3WgHXsswjvaXKTbYJrUjw04Meapv0v4M6Wi9/NRcUzhE5OHFLHTNNrZmWxeGE8u22dHr2SaGlbWNZVva6Hnan9fqfOa8Ihr6jSiGmbO5wnrYBj7LtM30Fz4/OXe0XvpANh6ckzzWdrAc+qJCf2F4Lns2lKWn0XawHj4LshAuQ4JEfZM+wnHWNnOsOgKvYBXxCpYxxhhjTJXxC5YxxhhjTJWp+RChMcYYY9ofhwiL1PwLFnVWStkn4RpHp16FWgvVcNABqAXhvZlegtdqWdSMUb+imgG2IdNrsVy2gSkF9Dz1EdQ1qCaCqQuow9A2lm3VomNJLQLbS1uoLqMsdYTaie2lVkTLyj5Dj6i0hfaHW75k406fpvZL7chxzXR5tIPq7iIqNU16zL6xLG1zmYZG21imK6TN9bhMp6fn6cOZ/onjShurto76GtqF/dGxY99pf7UjNT/ZVlE8V5Y6QlOgUMeWacwyzVhEsf20A8vVsSrTOnJ81CeyZzrbzOcR7Z/1vUwnqTbnPONc0nZwrEzHU/MvWMYYY4xpf7yCVcQaLGOMMcaYKuMVLGOMMca0Ga9gFan5FyzmMtFYOXUA1DVoLhzGt6nvUF0Pt2ahvoCaAs1rxBxBRPVEzJ3E2L7qGKgJYPu1TdS9UIPCstRu1DxQk6UaDl7Lvmu5HCvm49FrqY+gXdh3HVu2gbmIVJdBf+G4qyarLI8atS+aZ4p5sHhvlkct06BQN8Jy1Q/4UCvbPkl9j2PH8VH7c6xYb+YT1KfQptk8y7b+ob/Txlpu2bZGOpacZ5kOKaJop0xHyHs5B2knnftlGiaOj0J9Fu2v9fJ5Sl2hzh3am3NJ/Yl6Rc7fLC8W7cRx1/FhXr5ME8f2slwev/jii83Wk2l0aSfT8dT8C5Yxxhhj2h+vYBWxBssYY4wxpsp4BcsYY4wxbcYrWEVq/gWLMXfVq/Ac9Qeqd6Leg/Fu1aSU7cfHeL1qFaiPoC5DczxxPzii2gTmWmHcX52WGjHmd6L+RvtL3UiWA4lt4nhkeylSL6FaCvaNe/fxXs0jRY0Dj9Wm7FumU6K/0J9ItkdalmeN2rRsjzeWQ62XlkUtS1m+LfUJ+gv9S9tUlrNJfYRzg22k9kV1V7Qp/Ut9npox9lVtTJuyHu0P5xXJ9mXM9JYRRd+kvdl+tRPbX5bvSTWJ1Lvy+aTPrkzzxjbxOcE5qTZW/VJEpdYre47T99hG1Ylle8RG5HtxclypB9RnGXW27Lv2j+NqOp6af8EyxhhjTPvjFawi1mAZY4wxxlSZml/B4ufMulzO0AWXcnXptizEpsu6XIbmMZfOs09tufSvS8R8k2ebdEmbYUvWo+WWhfmyvyC4dL5kyZLCsYZFuKRNG+uSPdvEsJ/amOGTss/sNQzCcrPtY8rScWibGG7g9j20qfaB51iPhhzKwln0A4V91WP6MEMvDHPovMvClBF5ig3aSfvDcAlDPFnaDLaX9ajPsP0cD4a2lWwusa8MBzFFgvaP4UW2Uf2H15al3FDYN/qx1ss2ZOkh+FxmG/XZxRQOHHcNUzIky3vpt9pm+gRDefrvA8OhrFev5TOFzyeeV9/jv0n0Cb022xZuXeEVrCJewTLGGGOMqTI1v4JljDHGmPbHK1hFvIJljDHGGFNlan4Fi7oSffvlJ+3UmWicneUQ1RRQW0F9Ac/rvaoniKjUR2j7+Saf6Q14LWP7ep66C5bLz98VfupPvZnamOVmZVF3xHu1zdQ0sO8cd62HmhnqMHQsqe2itkLtT+0EfS37q4z6Duqq1DYcG44H+6fQJ9TGbH+mA4uo9HGFGiyFuh2iGiC2ge2n3kbnM/Va2ZZaZakKVMfDvnHs9Fr6QKZDYjs4Hmy/9q9sqxk9pmaSfeV5HQ/2lWg99EO2X+3IvvL5pJoszkE+T9l39beyrYr03wA+16ifU8q2T2Kbtb/8d4d2Ul0b05R0BF7BKuIVLGOMMcaYKlPzK1jGGGOMWTd0phWm9sYrWMYYY4wxVWaDW8HSXCGZ5iqiqOWh3oY6GC0320YnolJboToGxtzZRtUPcRsR5ofRvySoxWE+JNVWUONAzUCmk6E2gX3X/lDbwnqzrUGyfDxlW/tkeXSyrYkiihqOTMsSUfQZjit9gPWqtoI+QF2J2inTHEYU7UjNDDUnqoMpy69FqHFSaH8dS+rj2B/VBNEnqBfKdJPUxWRbInFcWa+OHXMpcaxUX8P5y3xz2dZRHFfqlLR/ZZqfTC/H5wbr1XGmDbNtaahVo14usyl9T9vEZy/9kOfVxtnzM6I4X7JyIop2K9Pgsj86D2kXonOHPmA6ng3uBcsYY4wx1cci9yIOERpjjDHGVJmaX8HKtj7hm3CWyqBsGwVdDmdogsvUWXiFYUqGJzS0xDZwOV+XjBmSykIZbAP7k4UCGGbiEreG3Mo+S9cwJkM6WUoBXsvle4Z7tT+0IUM86iMcG9pNl+8ZUmCIk2Xp+PBa+rSGU8q2NtHxoJ0YNta+0mcHDBhQOObn+zoeDAfxWPtalpJC5xL9hWPF8dA206cZttE28tos9QjrZLl6nnODz58s5QbDftmzi/6eHWfh26bq0bHj84j3amiSfc+eXWXPabUFfZhtIFoP5yjtpD7B5xzHKtu2hqFT3qtjx3OUO+gczrZsWld4BauIV7CMMcYYY6pMza9gGWOMMab98QpWEa9gGWOMMcZUmZpfwWJKgWwLCeoa9DzPUcOksX/qMBiPz97AqUuiBkU1Klm6AbajbPsb1UCwnDL9mWor2DdqIFRfQB0G26S6noEDBzbb3oiiLomfv7M/1EConoK6pGxbIPoW+66aDWrGqEPivdmWPNl2JtT7sT+qgWPfaBfVpzB9AqHfav/KPn/PdFX0ES2XfaVPZKk8eI7Hajd+/p6l7qA2jeWqJot9LfucX8eZ19Ln9Vo+j4imh6DejMec+/psYHvpX9kWMExRofbPNIcRxb7TDmVaNfUh6puylCGcz5w7+txmnVn6Ch7z+Z9pf9cHvIJVxCtYxhhjjDFVpuZXsIwxxhjT/ngFq4hXsIwxxhhjqkzNr2BlWw1wywhqLVRfkGlBIoq6DGp+ynQNWRvZJj1eunRp4RxzwGj8viyWr9oFalmoj8i0CtT8UIOi9WZaloiiFiHbxiiiqFOiLoEaJurRsrwzrFc1cGwDNSiZNo12Yv6nbJsaXqv+VDZ22j/m8qGddJxZJ+dOlpOK/s569N4y/Z/6P+3C/FSZropk2x5R80Y9oJab6aYiiragjopwLNk/JbMbNaDZFkPUA/E5l21dxOcC9U86dhxXXqtzmM+uTBdZlouLz0w9Zt85Z9UPWG62fRX7Rp/guKptOH+zrYuodewIvIJVpONHxBhjjDGmxqj5FSxjjDHGtD9ewSpS8y9YXMrV5Vcud2fL7GXbrygMvXCZnaGlbAsMfoquS+f8jPill15qtk1cOs+2xGAbGMLkkr22n0vatIUe9+vXr3COn1hrm7ItOiKKNi3bWoYhHw0NMBTG/ujyftlWLVoWwzIMY2Z2o6+V+a2SpWmg/TmuakeGvtgm+ni2TRDRkA9TX2Sfw7NO2phtzLazop10DtB/GArTcrPwFeth+7LtbiKK/sZz2ZZIDMlyLLNtaTh/aeNBgwY1/szwVRYeZToLjofWyzZk48F5xfbSTiqrKNtSSKHvcdw17MfnRNlzQ9tMv+SzWJ8bZfPMrHtq/gXLGGOMMe2PV7CKWINljDHGGFNlvIJljDHGmDbjFawiNf+CRV2AapF4jjF31SllWzlEFDUEvJapFrItSRjLX7hwYeGYZSv83Fc1WdQx0Em1r9QEUNvFz76paVKoV1FdUtnWFNlWP9QbaBuzrXwiKsdZdRlln5rrvWVpGrTNLJf6pyyVRLaVRkRRV0VtCNuv40wdHtugPk1tGu/NtlOiv1ODovZnuZw72kb6BDVkrFf7Qy0LtTnq05wPHGetp+yTfB2fMr0W56ymdeCcY191jtL3WK/anM9EznXaWJ8j9D1eq/OF7efzVFNhsG9MtaB2oZaL/pNtx0WY9ibTOGVbL/GZTR9h39VObG827+iXpuNZqxest99+OxYuXBhvvPFG9O/fv8IRjTHGGLNh4RWsIi3WYC1fvjy+//3vx4c+9KHo27dvbLvttjFy5Mjo379/bLPNNvGZz3wm/vznP7dnW40xxhhjOgUtesH63ve+F9tuu21ce+21sd9++8Xtt98ejzzySPzzn/+MBx54IL72ta/FqlWr4oADDoiDDjoonnjiifZutzHGGGPMekuLQoR//OMfY/r06bHLLrs0ef79739/nHDCCXHNNdfE5MmTY+bMmfHud7+7qg1dWxjv1lxLPEetjmoKsnMRxdg4tQfcEiPbkoTbcFDDocujZVuBqH6COaaYX0v1HtTTUBtFtH9sA3Vh2g5qaDgeqvvhsjDHQ3UyzKXENmT5nzg21N/oeeo3qMnSNrNO+g/tpnoKbtdDXYnaiZoN+l6m06A2R3VK1OGxDfQR7Tt9ONvSgz6daX7KtI7UMGl/qKfJ8pTRL4nav6z92ia2n2OTbaFFX+PY6TzjtWyT2oL+zrlEu2kf2P5sm6ayraJUV0jfoiZLjznmlK9o3i5CrRrbqH0v8wm1BZ8ptCH9Vn2c45rNJW+Vs/7Rohesn/zkJy0qbOONN45TTjmlTQ0yxhhjjOns1PxXhMYYY4xpf7yCVaRqL1hPPfVUfOYzn4nf//731SqyKmSfl3OpnNs36FIul7+5FK3L4QzLlH2mrp+08xPkbKd1LmFnYTT2jX3XZWwuyZfVo8vY2WfPEUX7005sk9qJ4US2SSnbhoPhuWyrmSxEwnK4fK+2YFigbPsb9RmGeGg3bSPHjuFeDVWybwzp6DjTD+n/9Futh+E3hle0zfQf9lXtlIXaIypDL5qCgOEUhmJ0vDh/GXbS/pVtS5OlWWEomGF8Pc85SB/WNjNsyTbqePDZVJZiJruWz14tm+2n/6jP0y6cOzp22fZCEZV91/Hg2NBvtR7alHNJ20+bZb4WURxL2olSD/VF9t10PFUbkeXLl8fMmTOrVZwxxhhjOhFewSrS4hesSZMmpefnz5/f5sYYY4wxxtQCLX7BOu2002Lw4MHNZh/OQjbGGGOMqW28glWkxS9Y22yzTXz729+OT37yk02ef+SRR2K33XarWsOqBT8v19h4WbxeXxoZ98+0IWUvmywr26aGsX09Tz0B681SF/BFWe1StoUKNQWq4Sj7rDjbKof1aJqJRYsWNVtORJ5+gBPyxRdfLByrBihrb0Sxr9SNULOhdizbQoU+oVok6p1YlvaPWi7WoxqOsi1gVJNC/+F2RNmWQrQhx0P9lqkJ2H7tH+1CnRj9SaHvUQej+ifWQ/1NtlULyVJFMIUA9WjavzKtmvoi/ZLaLu0P+0adIetRjR/7zueI9jfTHUUU5wPblG3/pOkdmmoD9YzqX9nWShHFZxvbwHu1zfSfsmekzjW2gXNH/81iPabjaXHijN122y3+8pe/NHu+rq6uU71ZGmOMMaZ6rFnBau//OgstXsH6xje+kb4hjxw5Mp555pmqNMoYY4wxpjPT4heskSNHpue7d+8e22yzTZsbZIwxxpjOhzVYRdqUpuFb3/pWnHTSSRV6jPWJbGsBahGy/DDUIlDXoJoO2oNxdGqlNH8MdWBE28H28l7VBVCLwJw1Wha1RcwPQ01Ntv0H61W7UXdEfYTmLWLuIY6HTjralxoO6nzYX4Vjqe3nuFLDpPdS89OaLTCy3EkRlX6ssO9aLh9UWd4iak5YbqbzoV9y7BTahTZV7U62PUxEpSZL76X/81hhfjb6hNZLf2deMp1ntAMjBJwfOh8I7a8+w/bTbur/9CXWyXmYPSOph9L+sG9EdUhl22TpuHJul20fo89I6nVZll7LZ0ym3+U2Wbw203NR85Zt58N6TJGjjz46brvttli1alX07NkzvvOd78TnP//5Zq9ftmxZfPSjH40HH3wwVq9eHd26dYvjjjsurrvuuhbX2abNiy688MLSxJLGGGOMqX3WVw3WqaeeGlOnTo3x48fHL3/5yxg+fHhMnDgxHnjggWbvGT58ePztb3+LCy+8MP7whz/ED37wg9hzzz1bVW+bVrA601KdMcYYYzY8Jk+eHCNHjowbbrghIiLGjRsXG2+8cZxxxhlNvmRdcMEFsXDhwnjyySdj2LBhERGx9957t7rejt9+2xhjjDE1wbpavZo/f37Mmzev8T9uC7aG5cuXx+uvvx7jxo0r/H7EiBExe/bsJu+ZMmVKbL755nHsscdG165dY6ONNordd9+91RG7Nq1gzZo1K7baaqu2FNHuZPvdMY4+cODAZsuhFoG6GNUPZbqXiFxTQF0VdTHUCTTXhoiiNoG6BbZBNUDUjdCpmLNG62G52Z6NzIXDsVKdBttPvYeWleUEiqjU9ej17Bs1D6q7osYn26etLDca9R5qx7I8ZNn+iDxWX6TuiHbRe+nvHLtMq8Z7qV1TDRC1aNQE6VhRO8c9KLmHXabTY991PGhDjofOO/o7j3U+c17RLvQvbT/txPFQ6C+0i44Pz1FzleUVpLaI7de5xOcEdUjqP2wDx0r/YaVPc5xZj7aJ7eX4qM35TOd4qM2zPVZ5LcvivyWcD+qb1LzVOvzwbuzYsTFjxoyK6+bMmRMREdtvv33h9wMGDIhZs2Y1WfbChQtj6dKl8cwzz8QPf/jDeP755+P888+PPffcs7G8ltCmF6yhQ4e25XZjjDHG1Ajr8ivCWbNmFf4g5gID4ctqfX19xe9Yx5///Od417veFRENL8oXX3xxLFmypOKlvzlaHSKcNm1aa28xxhhjjKkaQ4YMia233rrxv+ZesHbccceIiHjqqacKv1+8eHGzX7Nuttlm0a1bt8aXq4iIffbZJyIiTbhOWrWCdc0118Q3vvGNZrfLWR9hiEeXw7mczJCDLt0ydMSwgX5WzHNlaRu0nrIled0+JguB8JhL2Ayj6bWMZQ8ZMqTZ9kYU7ci+MfSVbV/CMIcurXMilC39Z9dy3LU/bB9tquEJ2p+hCx1LLu2zXIag9ZNrjgfv1c/u6XvN/YUWUfkXXzY2DGvQf7KwGdtPX9T2c54RhlsUhoKJll22rYi2ib6XpedgOJR20eeRzuWIPCQVUXw+MYzP8dF76e+8V8vlp/4MhdG/1E5lqWC0HkofOPf1POcGy9U20GZlKR7Uj1lPlrKCcyfbDodjU7Z9j/oX7Z2l8SmbO+uC9TEPVp8+faJ3795x1113xbe//e3G38+ePTtGjx7d5D1jxoyJp59+OhYuXNi4hdUf//jHiIhWbQnY4hWsCy64IL785S/H3Xff3eLCjTHGGGM6khNPPDEef/zxmDBhQtx5550xevToWLlyZVxyySUR0fBCteZrwYiISy65JLp27Rq77757/OIXv4grrrgiLrnkkhg+fHiLw4MRLVzBOu200+K6666Le++9N973vve1smvGGGOMqXXWxxWsiIjLL788Fi1aFDfddFNcf/310bNnz5g0aVLstddeEdEQLtSEwYMGDYpf/OIXcfzxx8fHP/7x6Nq1a4waNSruvffeVtXbohesSZMmxQ9+8IPYY489WlW4McYYY0xHM2XKlGbPPfnkkxW/O/jggyt2h2gtLXrB+sQnPhFf+9rXYr/99qv41HF9hzoHjaPzTZhaHdUqUMtCbYVqF6ibomaDZWk91IzxWtULccsLonqEsq1+Ms0PtWnUOagmgnbhtZlOgPoCHR/2lXZSnQxtxjrZHy2buirqb1Rjw3I5GdXGZVsgsc16nKVwiCj6LfU1HEvVe7Bc+oSOK/vKa9l+1cRxSZ3zQX2G5VJbl2mn6HvZJ/ssN9vmpWybJp3vtBOfKZk2je3Ptngq00bpvKNmkuWqj2f60IioSMujvkj/z557nGdZ2gmWQ/1WNn/p42U6K4XzTO3Eevh8yrYQolaTbdI2s+/0L9UkZjpU0zG0SIM1bdq0GDduXOy///4xf/789m6TMcYYYzoZ6+tWOR1Fi16w6urq4vvf/34cffTRsd9++7V3m4wxxhhjOjWtStNw0UUXpdnOjTHGGLNhsr6K3DuKVmdyP+2009qhGe0H86vo4DCXD7UWqj9gzD3LT8I4uebIiqjMe6IaDsbRqU1QnQZ1GIzta/uZi4s6hizn1ODBg5ttA+uhhoYaFNpNoY5B+0fdFNFx5VixrzxWXVWmz4oo6kxYTrZdDM8R1qvH1BJlOYSo56AGUTVazCnFrWZ0rLItXyIqxz3b5ujFF19sth76XrZFEvUznA/0U52HtAv1Q1oWy8k0iZzr1Dtp36mX41yhllOfT7yW/qXjxTx21C/qM4f+zucPfUb9gHqnLDcU28s2ab0sh9o1rZd5yNhePl91bOl7nEva/rLtxLT9LJd95fzOfI/+pf+GZdslmY6haps9r169Ou64445qFWeMMcaYToQ1WEXatBdhRMQ//vGP+NGPfhQ33HBDLF26tHRTW2OMMcaYWmetXrBef/31mDp1akyePDn+7//+L/bdd9/45je/GYcddliVm9d2GJLSYy6/Mkygy8m8lp/dayiA4RPCUJ6GKxjmYLhLl8d5LUOT2SfIbIOGh7iMzqVnhjh12ZohEYYcdLm/7BN81ftxuZ5t0rIY1iBsky7vZyGEiOLY8hNq3qvhCZbDsaG2MQsR0k4aAirbwkZDKAyJ81h9RLMcR1SG+dj3bEuhLNUC/YfzV8NBDBWx7/QRho8UhnyyraPYV7XbwoULC+eyNB/0aZabbYfDuc/wnPopQ1IcZy2rLMzK557amGOVhUA5NpyTavMy2YT6V1mqi2yLMIYTaSe9lnZg+7V/nCtlbVK/yPyf15Y999YF1mAVadWIPPDAA/HDH/4wpk2bFu9+97vj2GOPjQcffDAmTZoUI0eObK82GmOMMcZ0Klr8gjVy5Mh44403Yvz48fHggw82vlCdc8457dY4Y4wxxnQOvIJVpMUi9yeffDL22Wef2HfffWPEiBHt2SZjjDHGmE5Ni1ewnnnmmbj++uvj5JNPjhUrVsQxxxwTxx57bEU8eX2DsX7VJvATcGpqNK5etmWBXstYPuPo/BBANUDU27AeTYnAbSwYy2/puYiiLoDlUlPGvyD0k2u2n58Vq16CNt1yyy0Lx6rVoZaFn8pr/8p0GKxXtwmiv/BYtUW0Ez/V1nGntoXlZqklqK1gWep7vJapF9SO1LZwGxQti7o76mvo4zo+ixYtStuvu0NQy8J7tc06bhHF7W2aapP6CMeOPq0am7ItSLRe+j/7o23i3OYc5dzRNjLNQWs0TJzPep56Lc7JTJ9JmzLNBM8r1DSp1qjsOac2pc3Yftaj84H6JpalNuYzhf6jY8vnPe3P+aBw3rEePc+x6wi8glWkxStYQ4YMiS996Uvx5JNPxk033RQLFy6MvfbaK1atWhXXX399zJkzpz3baYwxxhjTaVirPFj77bdf3HzzzfHCCy/ElVdeGb///e9jp512ive+973Vbp8xxhhjOgHOg1WkTYlG+/btG6eccko89NBD8de//jU+9KEPNZ67//77K1IBGGOMMcZsCFQtccaoUaNi0qRJjccf/ehH45FHHontt9++WlWsFdS6aJyaGg3G+lUXQ80DY/CqN2DcnOVSJ6PH1FLwbV3zJ5Vpi7KtE6hN0JdhtoG6C2pHtB5qiaidyrammDt3brPtzbQsEUW9BMeKei3mQ9J7WW6Wg4flZPoO5n6i/o96IrUp76XOR6+lnci2227b+DPz/GRbCNEO73rXuwrHzz33XOFY/ZR+Sb9VjQptmOUA47kyP9V5SF1MllOL9qeuLZs71NdoPcyFRs0S+8MtbxT2R9vIc1n+Nm6LxfGgz+u91J7yWu075xnnrD4nOH85HjpW9C3qIqmzUltwQYBl6bOt7HmkbeTcJqxXn/nUk/L5qs8jPtM7AmuwilRtqxzSmYxgjDHGGFNNOj71qzHGGGM6PV7BKlLzL1hcptYlYS6/MnSXbTWT7SrPz3uz8E9EcTmZzpNtCcNlabZXy+LSOMMG+ol+tr1QU23SUBjL5bW6LRC3CmFoVZf3OTbsj4aLGELIfCAiDzHw02cNZbCv2RYYtCFDUrxXfZPn6E8a6mOoZejQoc1ey5Agt8NRm5eFjhiO05DhNttsExm6RRVtSp/WsWO4hGEbtlHhPFO/jCiGpbiNUbYFT7btSUTRDxgm5r20qfoi/T/bNos+TJ/Q0CnnStn2K7oNDPvDUKr6G9NvZGFjzh32VfvHZ0iZZEHP06YcD33GUPbB+ay+WJaShW3WOZxtKxVR7A+35DEdT82/YBljjDGm/fEKVpF202Ct7wlIjTHGGGPaC4vcjTHGGGOqTKtDhDfffHMcd9xxTZ774he/GBdffHFEVMaZOwpqOvSYMXbqDzT+TX0HY+Oq4SjTLFGXoboqfrKbbfXDVUJeqzoBainYH9UXUPdCLcugQYMKx6pXoQaIn5qrPi1rQ0RxfKh5o15C+0e7UC+RbV2UfdofUdRGsf1Me6B24R8cZT6ix9Qw0W9V+8K+06Y6tsOHDy+coyZru+22a/yZuhfVTUVUalsUaoBoC9V30d7UM6rdqF2hj9BOOs5sU7YdC/VCLFfnLOcZ7a9jxbmRbXcTURwf2pu20PHitkZ8dumcZfvpT6xXfZ6aVrY/SydC/9dnDv0y01jyec85yWev9p0aJury1G85H2gnPV/ma0TryXRgEUW7lenl1gUOERZp9QrW5z//+bjzzjsrfn/66afHzTffXJVGGWOMMcZ0Zlr9gjVlypQ47rjj4r777mv83cSJE2PatGkxffr0qjbOGGOMMZ0Db5VTpNUvWAcddFBcc801cdhhh8VDDz0Up5xyStx+++0xffr02GmnndqjjcYYY4wxnYq1CtoeffTRsXTp0th7772jf//+MXPmzNhhhx2q3baqkOkyqIFgHpcsBwlj4xpXL8sjxXtVj8B4PTUPei11AGyvai/41k8Nk0I9AdtP1I6tyUVEzRvHSqEegjoG1cGw/dS1se867rQT7a/jw60pqO/QNlIHw7GjnVQ7UpYvTG3Deojahm3QXGgRxbFk7i3eS1R/xnxIHOf58+c3/pxp0XhcpmOjj+jYlt2b5UbL8qhRA5Rp79gGamj4fMq2XGGb1J+Yw4w6w0zryO15FixYUDhWfRS1m9kWT9z+JvvqnLoj2kn7zrmSaa4iiuNO+y5evLhwrHYrGyttEzVkfEbyma9l89mVaUKpN+sIrMEq0qIXrDPOOKPJ3w8YMCB23XXXuOqqqxp/d+mll1anZcYYY4wxnZQWvWA9/PDDTf5+2LBhsWzZssbzzn1ljDHGbJh4BatIi16wOrN4naGMLJTE0J3CUBF3vtdlX4Z7uHzPpWhdSucSMMNB+nl8tsVCRLE//ISay9K6xM2lfYYUGE7RUAfvpd10uZ+f4HM81KacVEwDktmQIQbaQu3IvpV9dq8wTKAhUIZEGB5iGEF9pmybnWxrDYZ4NDxKm2b2Z+iLqTqYtkHbT//nsZZNf+F46PZJZek3WpPiIUt5wrHhc0KfMQyxce7oc6MsnMsQtPanbEsYhmUV2lifibQp/Z/PUx07hr4oAWC4TqH91U/pL0TbTJ9mf1iPPqvLUi+0Zps1hWG+7DkRUZxL7A/9iTY36xcdnzjDGGOMMTVBZ1pham9a9BXhSSedFHPnzm1RgVOnTo1bbrmlTY0yxhhjjOnMtGgFq3///rHzzjvHBz7wgfjYxz4Wu+++e2y11VbRo0ePWLp0acyaNSv+93//N6ZMmRJDhgyJH/zgB+3dbmOMMcasR1iDVaRFL1jnn39+TJw4MSZPnhzXXHNNPPbYY4Xzm2yySXz4wx+OH/7wh/GRj3ykXRq6tjD1guoaqIvhwGWf7/NYY/mMsVMbwjZpHJ0x9uxTYeqBqDdQPUiZPiJL20ANCrUtqkegboRaNdWOsBxqILLP6tl+1czQvryX+oks5UB2jnon2jDbgifTgkQUfag1GqCyrZb0PDV71JGoP1GDlelpIoq+SbvQbzM/5TxT/+HWJiyXqT10vtPe7J+2I9Pd8V76Guev6p9YJ/2JY6k+RL/MtFEsl/NOx53PLrYx00Px+UPfU5/nfMi2YqK+jH6bbb/F5wTL0rlUph/Va6k5zJ5HTF9Bv822J2JfM+1s2RY8Zt3TYg3WgAED4txzz41zzz03XnnllXjuuedixYoV0a9fvxg2bJi/IDTGGGM2YLyCVWStRO6bbbZZxZu1McYYY4xpwF8RGmOMMabNeAWrSM2/YGW5rcryI6lOgJqTTANRlsuHOo3MYagp0LKoI6GuQfUTzL1FXYzqPaj5oTaBsX5tI3Vt1JG88MILjT/T3swhpOPD3E/UWWk91IGV2UnHtmy7Fc0vxHPUm6n2ouyhQF/MdFX0L7Uj9RzUnKgdqQ+i/XfcccfGn2kXanN0uxse0/7z5s0rHOsc5dfKnHfaRo4j+0ofURlDlvMromhj9j3T6tD+9EX1Gfp/2ZYwanPqerIthcp8Wn2NbaBeiH6sZXPuU6+lduNzmWOlmqYsxxTL4lyhT7MstlmhnVTvxAgOfU/7zucCtYHUVWXPimzcy7avMuuemn/BMsYYY0z74xWsIn7lNcYYY4ypMq1ewVqxYkXU19c3LuE+99xz8bOf/SxGjhy53qVoMMYYY8y6wStYRVr9gvXxj388jjjiiDjppJPilVdeiT322CO6d+8eL730Ulx66aVx8sknt0c71xru2aUxd2oEqI1SnUbZ3nGqIaBeiPoO6gT0fLZPW0Qxzs7cK7pPW0TEFlts0WybeLzNNts0/kxNQKYPiij2h3l02B/VDLBvtLHqJah7oYZD6ynTy7EetT81Dsx3o3qizF8iirag1mPgwIFpG3UsqZejLRYuXNj4M/cIpC1UD/LEE08Uzu20006F4wULFjT+zHGlfou5ldROc+bMKZyj9oh+q2QaROqD6BPU0OicpS6J9+pDnPoanVcRxf7Qp9kGHUvagboe6of0WaZj3lSbMq0m69X+leX84rNB5z71TbSpPq84r/iPptqJz0vamJpEhW2iP+mc5bwi2kbOVz43tN6yZy/bpP0ry7+ozz2Ojel4Wh0i/Otf/xof/OAHIyLipz/9aQwcODCee+65uPHGG2PSpElVb6AxxhhjTGej1StYb7zxRuPXO/fee28cccQR0aVLl9hzzz3jueeeq3oDjTHGGLP+4xBhkVa/YO2www5xxx13xOGHHx733HNPnH766RHRsFzPcNz6QLbEypAOr80+qeaxLodnn/c2VU8WiuRyuC79sw2bb7554VhDDAyJMKTwzDPPNP7MkBQ/h+fSvy5xaxqGpurVZWyGRBYtWlQ41mV4pplgiEHbkG0PE5GHQTg2HI9sSyT6v4bnGM4t+zRbfagspYD6AUOCrUlT8vjjjxeONSUFP6OnT3A8NN0C+8rP1hWGxTI4Npx3bKPamD5O31O7ZVuZRBTnKO3EcVU/YPic5XI+q++VbaGibaLv0U7qB5wrfMbQFno9w8TZVkBlaSY0BMqxylJFsK9sf7ZtFudztqVWWUoEtUsmfeC1EUW/4Fgx3KvPAif/Xv9odYjwq1/9apx11lmx7bbbxh577BFjxoyJiIbVrF133bXqDTTGGGPM+s+aFaz2/q+z0OoVrCOPPDL23nvveOGFF+J973tf4+/333//OPzww6vaOGOMMcaYzshaJRodNGhQxddK73//+6vSIGOMMcZ0PqzBKtKiF6wjjjgirr/++th0003jiCOOSK+9/fbbq9KwakFdgMas+XkvP9PNtl/JtEWM5fMzb8bktR2Mx/Na1RhQB8DP1lW7QC0OP43X/lGbQ30KNUCqKWB7qQnSNlGvxfHQeqlPIdoGjg3bS12D2pz1sCy1De1EHYy2ideyDdQe6ThTV0KfVj9gX9km1Yk9//zzaZt0uxuODdtLvY3alPos1qN+W6Zh0nqpZeF8oIYmS73AstSPOZ9pfx1b6r6yFC3UFlGbxvNKps2MKM532pTHmY6HY8X0EFk6BfZd4bW0afZM5LGOHW3Wmu24eI7PfG1jloIiovhvSaavbAr1IdaT9adsSyGz7mnRiPTt27fxHx6KE40xxhhjvIJVpEUvWNddd12TPxtjjDHGmEpa/RUhP+VWfv3rX7epMcYYY4zpnPgrwiKtDtruvvvu8Z3vfCcmTpzY+Lu33norzjzzzJg8eXJFno6OhvmeNI5OzRU1HKpVoOaBugyNf3MbHepvuFVCFkenpkDbxFg+8+oo1GfRLtoGamaoy6AttD/U6lAvkemFqIHQvlNjkuULYxuy7T0iirok6lNoY6030/ex/dmWR00dqy04ruyf+gw1GtTAqS/yQcW+qx6NPs15Tu2aapx0y52IynnHsVQyzQznUVm+J92uiNoW+pfaNPPhiHze0S7aZs4rzkm2X32I85nSDbUx/ZLt1XvZV/oP7aQ6ST67su2tynR52mbml8t0eWwv5wNtrD7BejLdJ9vAerU/HGf6D59Pei/tlP37kM0j0zG0+gXrlltuic9+9rPxq1/9Kq677rpYuHBhjB8/PiIi7r///qo30BhjjDHrP9ZgFWl1iPCII46IRx99NFatWhU777xzjBkzJj70oQ/FX/7ylxg9enR7tNEYY4wxplOxVt91rl69OlauXBmrV6+O1atXx6BBg0p3Ye8ouMSqS8RMVcBlal2O5fIx7+3fv3/jz1wap21Ylp7XJeuIfOsWhk+4pJ1tA8H2Z9tlMCyQhdEYNsu27+HyPUM+GlIoS1+hIQW2gXbJ0isw/JZtS1O2JE/fU7jUz2MN27AchsLUZ1gObaq20a1wIvItnJjSIdsCJqI4XmXhUW0/7c9QnvoazzFMw1CYfv7emi1g+Lk+57fOLc4N+khrUmrQb7X9bG8Wrqb96f/PPvts4898TvDabN6x71kYlvVkqV/4XGY92kam3+C9tKn2h/dmW4aVpVnRcvmsLZv72bZfDNXrPKT/dARewSrS6hWsKVOmxHvf+97o27dvzJkzJ+666674wQ9+EB/84Afj6aefbo82GmOMMcZ0Klr9gnXiiSfGhRdeGL/4xS+if//+ccABB8Tf//73GDJkSIwaNaodmmiMMcaY9R1/RVik1SHCv/71rzF8+PDC7zbffPOYNm1a3HTTTVVrmDHGGGNMZ6XVL1h8uVKOP/74NjWmPaB+QmE8mzF4jddTB0MtgsbZqSegBiKrh/H47FpCvZPqb6ilyFJHcLuPsnQWagtey212VFtEu/BzZu1r2XYZWi/1QFmqC5Jt7xFRqR1RqJ/LthCiBoj1Ll68uPFn1fdFVOqqdNypxenXr1/hWO1E3Qjton0t+1w/S7lBXVWWXmHevHmFc9nWJxznsi2R1J/oe7xWfZxzjj6uWjbqYDjPdKyoEaNv8S917Tv9h+1XnSfroS9yLim0MZ9Hags+N7I20idoY/XFsi1stP2skzpDjl1rVkOyLbXop9pmatHop1kaDbaPei6Fz+WOwBqsImslcp83b1784he/iOeff77iQXXppZdWpWHGGGOMMZ2VVr9g/e53v4uPfexjsd1228U///nP2HnnnePZZ5+N+vp6p2kwxhhjNlC8glWk1WuK5557bpx55pnx2GOPRY8ePeK2226LuXPnxtixY+Ooo45qjzYaY4wxxnQqWr2CNXv27Lj11lsbbu7WLVasWBF9+vSJb3zjG/Hxj388Tj755Ko3si1kOamoW+B2ExrTZuyb8W6NyVNf8NJLLxWOqZXSNjLkSk2W5vGi3oBaC33TZ3upoVH9E89RG0Ktjuo0qI+gjVWjQm2C6o4iitoE9pV/xWQ5s6i1o55IdRpsA1FNU5mOR9tMLRTHNRs79oe6Hmq/lGyLpDL/eeGFFxp/znK3ReR5mMr0Wmq3Mv9RW3Becd5Ra6R+S5+mLdSfOM7U3+i2QdQscUshLYt2Yd85Htpfzh1uAbNw4cLGn2kX9l3LYns51/kc0bGkH7KNWnaWc431sBzaJdOlUjvLZ3ymFWRftc3Um9H/1Q+yvGkRlX6qPl+WMyt7TpiOp9UrWL17924cyK222iqeeuqpxnN84BljjDFmw8BpGoq0egVrzz33jPvvvz9GjhwZhxxySJx55pnx97//PW6//fbYc88926ONxhhjjDGdila/YF166aWNYZ7zzjsvli9fHlOnTo0ddtghvve971W9gW2Fy/BKa0JfDJHwc2VdeubSMpeT2Sa9nmEChrP0OAtJRRRDkWVbO6gtykJHWSiVS/LZ5+MMu/KTag3X0aYMiWTXZmkBIorjzlAel921LC7XZ6EKjjnLzcIema9FFPtDH84+82aYj6EMDf+wfQybZSFOrmxzLmkqD85JjqXanPZmmzjOOgYMG7NN6re0Kcc9Sz/AkJvey1Ap7cRngZbNtAAMUem99AHOSbU5fY33Ut6g58tCd2pj2oVhQB13Po/oE9ofjiNhf7TvbD+PtY0Mh2ZpGsrSfGRtKgsRallsQ0dgkXuRVr9gbb/99o0/9+rVK6666qqqNsgYY4wxprOzVnmwjDHGGGNIZ1pham86PvWrMcYYY0yNUfMrWIzta8yaOgDG7zV2Tr0EdQBaFvU21IJkmiDqI6gV0f7op9gRlfqIbGsQ6gs0fs++sf3UhWk9vJf2V20C9TbcVkfL5V9FbL+OD23IseNn0Vo29TbZJ+5ZORHF8ShLHcGyVFNDO/FYx4M6DG7doj5OvQ3boD7DdA+0KfVcqsWjBjHbkod2odZFxyPT4kRUzkPtOzVLvJbzJUPnPm1IvY2e59ZQrJP3qhaJduHcV1twnDke+hyhXog6MOomtd6y1CPUUin0Ce07n8t8fqof0Iacv7SFnqdP898HPc9xpt2y1CPU2rFN2l/ajDbWsczStawrrMEq4hUsY4wxxpgq0+oXrBkzZrRDM4wxxhjTmXEerCKtfsE66KCDYtiwYXHBBRfE3Llz26NNxhhjjDGdmlZrsBYsWBA333xzXH/99XHeeefF/vvvHyeeeGIcdthhFTHs9QHGrFXjwXOM7Wu+IeoJqJ/QeH1Z3hzqVVQnw3O0qWphmDcqy0PDvFdsUxa/p9YlywlGLUuW74b6gv79+xeOsy2EOFaqeaDui5qlTKPFPF7UMNEWCrUtWhbza1Gzkf1VxvZSm6O2oZ1ao9fKcsZl28NEVOpIVJtDvQr1aHrMvnI+6LVlea94r84Pzh2Os9qCcyWD/jFw4MDCsY5zme6L+iHtT1nOKS2rTAOq9dC3aJfsGc82sI1aD21Kn9D5wjZkmj76Gm2Y6Unpe6xH21Gm/9N62TfmsaMtVB/IZ1m2/dD6sFWONVhFWr2CtcUWW8QXvvCF+Otf/xoPPfRQDB8+PD73uc/F4MGD4wtf+EL87W9/a492GmOMMcZ0Gtokch81alScc8458bnPfS5ef/31+NGPfhS77bZbfPCDH4zHH3+8Wm00xhhjzHqONVhF1uoF6+23346f/vSncfDBB8c222wT99xzT1x55ZWxaNGieOaZZ2Lo0KFx1FFHVbutxhhjjDGdglZrsCZOnBi33nprREQcd9xx8Z3vfCd23nnnxvO9e/eOb33rW7HttttWrZFtgVoRjZ1TK0VNkOqd+NZMfYceM07OvFHU4+j11ABRp6H1sL2sR8ulRoBxf9UFUK9FGxKN/TMfD3UYWm/ZnofaZraf+iHVf5S1l5oO1SmV5dzRNlKPwrFSDUeZhoz+pP0t0+qo7qRMm6PjTPuzHvUftpd7QTK3j9bLsct0YtTMsD9qJ87fsj0odTzo45yz6tP0Cd6ruh7OQbYp++ubGkTaSXWSfIawXL2XWqJsf0dqmJiXjPWo9i7b4zOiOO84f7O9Ofmsot9qPdQ3UVPG/mSaMuZ+0/FhHjX2XftDm5LsuV32LNNrvRfh+kerX7BmzZoVV1xxRXziE59o1jm32mqrmD59epsbZ4wxxhjTGWl1iHDChAlxzDHHNPly9cUvfjEiGv7iGDt2bNtbZ4wxxphOgTVYRVq9gvX5z38+Nttssxg3blzh96effnpMmTIlLr744qo1rhpwiVVDEDzHZXddZucSNpepdamWS/Bl23/o8jLDNAyvZEvndDx9CS5LFaH9YbiEoRaG2HRZPgsVRVSGgJRsq5OykIKOJcMEvJb1aIiqLKSjY8m+ZakvGP6hHXisoQ2GeLLtMxhW4rXaZoYmiPoB/6BimIxhEPVTXpttScU2sT86Puwb5y/nnbYpS8sQUUzDwlBXth0RQ+TZFkksl+HQzMacZ+yrlk3foj+pjTnOHI8s7QH7SpvqOHOuMMSm846pRhYvXtxsm5guhHOUdlOfYfuzrXP4XGA9OlYcZ/aVY6c2Zz30+SxtjOl4Wj06U6ZMieOOOy7uu+++xt9NnDgxpk2b5rCgMcYYs4HiFawia5XJ/ZprronDDjssHnrooTjllFPi9ttvj+nTp8dOO+3UHm00xhhjjOlUtDpEGBFx9NFHx9KlS2PvvfeO/v37x8yZM2OHHXaodtuMMcYYYzolLXrBOuOMM5r8/YABA2LXXXeNq666qvF3l156aXVaViWoa9AYNvUS1GXoUiR1PSxXr2VcnNcytq96KJ6jXkWhloj9UT0Cy6E+Qu3CNlAzwGMta8sttyyco45EoZ2yrUKoW6NOTNtEzQN1IxznLPUCtWqqraDugn3VVAbU+1GzxDZp2bQLx059jz7BerSNmWaP9ZZpu6ipUQ1ZmQ5G/YDzjG3UvrPcMn9SH6LuhXbL5k627RQ1QPS9LH0FP/3PNEwcK/qP+h7Lpd20Hm4BxnHmfNCyeW2m16IPUNeW6eUyvy171vK5Qdso2ZZO1FRyfqtP0KbZXOe9mVaW17KcjsBpGoq06AXr4YcfbvL3w4YNi2XLljWeXx8G2BhjjDGmo2nRC5bF68YYY4zJ8ApWEX/jaYwxxhhTZdZK5N6ZYAxb4+HcCoEaJs2/wtwrjKtr7hLG+cveuDWuTs1MlgeFGoFsqwTqU6hp0vPU01ArsmjRosKx5tWhBiLTo1HLldXL8DN1VjpWvJbH1GWoVqQsZ5bWy/azXM0fxlw+LJfjrHbKtDgRRR+n/ZnDTNs8YMCAZuuMKPa1LOca54Oep86F8yPbwobzQcenLDcXbay6Kz4Xsu1KqJmh3kZ1h2wT7aZl8RzvpU5MNWXZdjcRxflNP6Wd1A+WLFlSOFe2JVK21QzHWbcB47OWejntO/2S6DizPbQTnxtaL+cDx1mP+fzMdKv0f/pl9hxh+2nT7N+DjsArWEW8gmWMMcYYU2X8gmWMMcaYNrM+Jxo9+uijo3v37lFXVxe9evWKK6+8skX3XX311VFXV5fuQtIcNR8i5HKsLlO3Zpd2LgEz5KPLvDzHEEMWduK9bJM6F5eWs89/WQ7TKahdysJX2bYoDFMyvKWf7/Nctq0IQxVsgy7Zc6xYLsddw7/cRoThCb2XY8WQQpZSIEupQRjS4UTXsA3txGs1XEEbsu/a5rKQIMMgWhbbxDBUtv0T26QhE4ZLWC7R62lv9k9DR5wPDNuonehrWSib13I8iPo1Q2pZegI+J1iPhpE5ViyXoVWOj0KbarqLLCQeUZw7ZVICbT/nGedoJmFozXjw2cX0IjofyqQcbLP2h77Ha9WmHBvzL0499dSYOnVqfOpTn4qjjjoqvvKVr8TEiRNjt912izFjxjR73/PPPx9f+MIXYsstt0xTDjWHV7CMMcYY02bW1xWsyZMnx8iRI+OGG26IcePGxcMPPxwbbbRRszk+17D33nvHnnvuGTvvvPNa2aPmV7CMMcYYU1vMnz+/sNq36aabNpmYe/ny5fH666/HuHHjCr8fMWJEzJ49u9nyTzjhhHj55Zdjzpw5cdBBB61VG/2CZYwxxpg2sy6/Ihw5cmTh92PHjo0ZM2ZUXD9nzpyIiNh+++0Lvx8wYEDMmjWryTp+85vfxPXXXx933313hRShNdT8CxYHW2PYfNvlp7cav2fcnzF4jZVT30H9E9EBLNvaQfVCZZ+E6738XJ92UZ1D2XYf1CZo38sml+oRWG6mF6IN2QbVBLH91KtkE4Y6KmqltE3UQ2RbF9H+bBN9UTVx1Llkuoyyz/e1LNqB+hS1sWrnIir9n2g7qA2kXiVrg9ohouhf1ERQ28J6dT5n+iCWzXQJbKNqv6j5YV81HQSvZT3UlGmbs7GKKI4tU1BQq6NjSf8nmR/QhqxXn1ccK/q02objyLmkdivb/onPEZ0PPMd/D7TNHDvWq9eWzUnq9NSOrIdtKvu3pZaZNWtWYfyybeUiKp/X9fX1Te4+s3LlyjjssMPi6KOPjgMPPLBNbbQGyxhjjDFtZl1qsIYMGRJbb71143/NvWDtuOOOERHx1FNPFX6/ePHiJr8MfOGFF+KNN96IW2+9Nerq6qKuri5mzpwZb775ZtTV1cV3v/vdFtuj5lewjDHGGLNh0qdPn+jdu3fcdddd8e1vf7vx97Nnz47Ro0dXXD9kyJC4/fbbC7/7yle+Ek888URMmTIl9tprrxbX7RUsY4wxxrSZ9fUrwhNPPDEef/zxmDBhQtx5550xevToWLlyZVxyySURETFmzJgYNmxYRDSEcA8//PDCf/369YsuXbrE4YcfXpHxP6PmV7AY61eNAeOvXC5UHQYHNctNxBg7j7MtbahboP5A9QbUXfBeje2zb9RSqCZo4MCBhXPcGodaEbVF2bYWmmenbEse1R9Q88N8PbrtUf/+/QvnmKOJ4645wZizhnoP1VXxWuaG0jZRi0NdRradRln+FW0Tt3Sihkz9nz5NH1G9B9tLDRltqn6b5QiKKPox6+Gxai6y3GERlZoMHa8sPxvvpUaGGibV+XBuZFo1auDYBuZ/0rlF38u2SKIdWK/OQ9qbGrh+/foVjlUnRjvRn7LcYkTbz3JYjx7TLvzHkD6f5f8jWg+fP5kvUkfFcW5NXi+OpZ5nPeZfXH755bFo0aK46aab4vrrr4+ePXvGpEmTGlejFi9eXOHr1aDmX7CMMcYY0/6sz3sRTpkypdlzTz75ZHpvU18ntgSHCI0xxhhjqkzNr2AxxKZLrFx+zT7f5zJudp5LzVy+5zK2Lstn6R8iim/vvJbt177yk+/ss+5sy52m0DAU28vPpDWMyTAT0XoZmuCSvJ5n+xlqYX90fBgioZ30s+iyerLQC8vleQ0jl4WONOzHEBX7qj7DsSF6b7YVS0Rlf7QdHCu2X31Pw6oRlXZRP2adnKP8pF3DOgwHDBo0qHCcbZPFv6C1/bQ3w6F6b1nqFM5vDZWxHoZhte8MMXM8tCzKFxhu57NLQ7Zl2+qon2ZbULHN9H+G5/Q5wnBiZsOIoi9mYe6IytBkhj4nysLpTI2RaXzoIzofKAfoCNbnFayOwCtYxhhjjDFVpuZXsIwxxhizbuhMK0ztjVewjDHGGGOqTM2vYFGTovoDxvKzbRbK0g/ova3dGkF1DdQ8UCuiugDWw8909VrG/bNPzbn9AvVP1LbovdRoUBem11IfwbFS7QXtQP2N6hyoeeDYsX+aXoF6G+pXsvZnW/8wfQK1Lhw76pQUjqX2h32jLdTnqf3gverT9OEyf9Ky6e8cD20jdSS8VttEXyvb5kU1T0xF8tJLLxWOs3GmnVQzw7lBn9D5QH0WdVSZz9PebJPOpTJdpNqffsg2aEqTiKKmkj5Lm2YrGzyn456lq4goPuc4rvR/6qr0GVqm6dOy6dNZyg2mb+G9HDu9t0y/q8/mMk2rWffU/AuWMcYYY9ofi9yLOERojDHGGFNlvIJljDHGmDbjFawiNf+CRU2B5m1hPJv5VlTHwBg7Y+NaD3U72RYwbBPLpf5AtRfUwVD/oeVSs0H9R6aj4r1Ey6KOgToM1QBRi0B9hGogynIEqc3ZBtqQ+Ye0Hup4eK+2I9NJEW5xkWlOeL5M16bH1I3QTmpz+iG1IrpFkvpSRKXvsSwdD5ZL++s8Y/tZbpazLMsvF1HUQ5XZVH2e2hbqxFSnRN+jndQu1BxyPjAfks5vlss26TOn7DmhNmUbqAvjM1L7y3rYP9Ua8ZnIZ6aWyzmZ6RXZPj67snFmfjD6ouoo6dO8Vn2PduExfaY1/5Zk23GZjqfmX7CMMcYY0/54BauINVjGGGOMMVWm5lewuHSrWwvwXLbVBkM8DA8x5KZwSTsL45RtC5FtjZCFwrhUzjZoiJB9YUiHn2pnYRsuu+tfH7QpQzFqFy7t06b6uThDE9mnzYT1sD8aQuFfUjzWNrGvDBNw6V99j23gsYYRmP6B/dH285y2N6K4fQxDvbQx0XBQWQoKPV+WEkHnB/vKexkyUZ8v+6Rd7c9y2Catlz7Aa9XmZVsgMTyk455tjRNRnO9l6Vx07peFsrPUEpxnTAehvsc20Z9ULsD5ytQROq60IW2cpQhh2I+pVRTOFT6L1W60A+d6FjLks5bzMNtWpyPwClYRr2AZY4wxxlSZml/BMsYYY0z74xWsIl7BMsYYY4ypMjW/gqWapYiiXoJxc+oL+Plsc+VEFPUgPEf9E2Puql2gjoHtV/0Ey6GuROvNPiOOKP5VUKYZo95DNRLsOzUd1KQo/ERc9WfUo2Q6krLPujX9QETRD2hD2li1IfSPTJ9CLRrr4XhkqTGoK1FNB8vNthSiXYi2ieNYlrZENTUcc9pU7cZ+0ye0zfxLlqkkWG+m9WL7tSymD6FNVbtDfU2W+qUsrUSmF+IcpFanNWk+tB7qm6hpot10rnFbII6d9p26zkwXSRtmGtasfU3Vo89Xzl/6ovoE20Rfy7bJov3pt/qsKNMVKvS9jsArWEW8gmWMMcYYU2VqfgXLGGOMMe2PV7CKeAXLGGOMMabK1PwKVrbVRrZlR0Qxrk59BGPuqhHitYyNU6uQbQnDe1XrRb0EdTKsR2H7sy1gaBfmgMny22RaI9bDNqnOhHoUaiCyXD7U0PTv379wrDam7oJ6m2y7FY6V5qxhjh3qLqj/0P6yXPZPx4PtpQ5G7ZTpRiKKY5dpuSIqbaz1lG0fo7bJtvZhm3kuy0UUUfQZtiHLd0bf43jo/KX/sE06VrQ/cxqxHvUZahL5LNPnHucZ+6PPFPoWbZxppfg8IloP7c1x1/aXaWO1fywn05qyLOZV47Wq52IbqKvSdvD5WTZHtc2cZ9kcLcvtti7wClYRr2AZY4wxxlSZml/BMsYYY0z74xWsIl7BMsYYY4ypMjW/gpXpoahFYM4U1SNQ88C4uV6b7VUWUalhUj0ItTqZpoCxfeaHUV0G7UBtiOaDYRtoJ+pX9Dw1HNSGZPanrkpz+/Ba5pXSNrEc9p15afQ8NSasR3Uw2Z6AEUVNB/cjYxt4XnUlLJdt0nEv05GonTiOHDttE/dAI/Qn1ZnQ39nXbC8/+qL6E7UsZfme9Hran31XDRD1cpz7Wi61aNnehAMHDiyco49z7us4Z5qlsmtpf7Up7U0b0sZ6zFxc1JBp/6gLY74/1RpxP1Y+p9Wm1ChxXGljtQX7Rj2dPldYLudotsrCecd6tCzmvWL717fVHK9gFfEKljHGGGNMlfELljHGGGNMlan5ECHDKRoC4ue/DAXosjXPMQylYQKGjgjPa1nZdjcRxSViLv1zSV7LYuiIbdDQAEONDCnwWMMiLDdLc8DQ0aBBgwrHmqYha29EPlash6EZXXIu+yRc28R6GKbRUADHhmGCbOzoA7R/lrqAIRMN+TD8w2O1C8eGod/MFzlWDPFoPQx7v/jii4VjDZmUhUuy+c2QJsNDaje2l+Oh58vSfKidGHZl+hA+C7T9ZaHULM0BbazpIZhqgT7BZ4Oe5zzj+Oi9DBHS/9WOLJcSDA0hcguhLEzMemhTHqvd+O8K/V/7xzZwXLl1lz6rs+cC28h6OgKHCIt4BcsYY4wxpsrU/AqWMcYYY9ofr2AV8QqWMcYYY0yVqfkVLOpVFOpTMg0BY/v8fFZ1GNnn1RGVOg29nm3K9B/ZVjgRRV0GNTPUR2j8nu3jvfxEWaEGiLoA1VKVbb+iY1eWJkPryVJDRFRqX1SXl31aHlHUwWTpKtgO6r7oE9TFZPq5rF76RKZtYTm0sdqU/k4y/ceCBQvSNqleJdNnRRS1L/QX2omauCwdQaZtoZ2I9p0+TV/L0j9QW8Q26vjwuUabZlu1UM+oNqfWjvOMPqJjRx0b79V2UFuXpT3ItguLKI4P06zw3kzPlaUPiSjOnbI5mfkP25BpIfnvDrWDaif6XkfgFawiXsEyxhhjjKkyNb+CZYwxxpj2xytYRbyCZYwxxhhTZWp+BYs6DM05RR0MdSZ6LzUDjKurjoF6G95LbYK+kVOHwXwxesztJbI8RuwbtRSqP2AbynL7qO6BOV14rZbNc7SLakXY/iw/DNtflptL25zlHYsojjM1J9wqRKEWh2OVbbGSacYi8m1RqL9Ru3ELEtpf+0N/GTp0aOGYPq4aFepVaFPN00S7UHOi48xyMs0Vy6IPZPoVPieo11K7UTfFZ4Hqb6jFYRv4jNHzbBPz8ul8KcvXpr7GNjDfk+bMiijamPo/1qvbE9H3Ml0h/TLb6odzn/6Tae/Yhqz9LIfjoT5Nf6ENqbOiXyuZhox26gi8glXEK1jGGGOMMVWm5lewjDHGGNP+eAWryAb3gqXLrwzxcOlcl9kZquOSvIY2uCScbVcSUVzm5VIzQz66RMylZC5xa9iJS/JbbbVV4VhDA1kKh6aOdTmcobxsSyHahcv7er5sawq1G8NitClTAWRpGth+tTHDDwzzqT+VhR8YJtA2MTzH/qhvZluZRORhhMGDBxeONVzKsEyZj+sxy2V/dCw5BzUsE1EcW44jQ+bceka3geF8Zhgz+3yf46yhVLaJPp2lvsi2lmHZ9HHWqzZlOVm5bAOfG1l4jueyEDrP8R9N9T3aidfqPGS5fE7Q/7XvTBVB31NbMFTHvmub6O+cO2yjPutaM+/Yd9PxbHAvWMYYY4ypPl7BKmINljHGGGNMlfEKljHGGGPajFewitT8Cxa1FqrDoN6GqB6hbGsKjX8zTk4NAXUAWg81G4zPa8ydOh7qSFqzXYaWy3PUIVHDoQ5f9vmywk/7meZAtS7sG9uouoVM4xZRaTe9lxqg7FN5Xksdko4r9R0LFy4sHFPPpakZmJYh204m0zdFRGy99dbNtp/6G9UwUSPG+ZB9/k77q2Yvomg3nuNYaRs5rzhW1KSojZn6gmOn95bphdTGTPORbaFCu1DblaVH4byi/bPtrDifMw0f4bNLt9aZN29e4RzL0nnG+cty1W60C58FalPajGNFnZ76MXVVmU6S/pKlmOE48zj794HPsiydRdnYmXWPR8QYY4wxVaEzrTC1N9ZgGWOMMcZUGa9gGWOMMabNWINVpOZfsKg3UB0GdSXUBaheizl1GO/O9Fxl25co1NdQQ5bl26JWRGP71JwwNxHLaq7Optqo/WFfs+OynFOqp6D2gPeqboHbfbANbL9en/Utoqh54ETPfIK6C7aRvqd+yntZr9ZDf+FWLWon6r6yrWboL9RKse/PP/98s+dUt8N6qK+hZkb7Tn/hvdTUqA9Rs0QfUQ0T5xV9UbVFLCfLC0d70wcy3Se3AeI4Z/pFavq0TWUaJuqhtO9l20ypbejTzLf1wgsvNP5MO/De5toTUTnOROcL+8p6de5w7HgtfVPJ9LsRxWcO+5NteUbfMx2PQ4TGGGOMMVWm5lewjDHGGNP+OERYpOZfsLhsrWFBLktrSDCi+Ckul1+5zKthA4Zp6BBc3tdwET+v5rW6NM1Pg1mPLo/zs+JsC4myZXWGljRcxHAQl7T1WvY120KC4Vy2UZfoszQSTZ2njRXaWNvIMF+2rQXDP7yXbVR/YkiKdlM7cZxpt2222abxZ/aNoWCFYQz6P0MmGgZcsGBBs+WyHRybLDzEc9l2JRHFPtD+7J/6BH2Y92rfGZbMfItpAMrCrhq+pr0ZutMwE0OE2fZVfHYxHEephG4nQ3vPnTu3cKztyEKNbH9rwuucZ6yHc0fHi/7POan3cl5RSqBlZekqIiqfezrO9D3eq/3N5q/pGGr+BcsYY4wx7Y9XsIpYg2WMMcYYU2W8gmWMMcaYNuMVrCI1/4JFrZFux0JtC+Poepx98h1RjKNT80ANAfUeGqNnOoXss2nqMHitfsJbpk1QzUy2PU9Epf5ANRHUCGR9Z/sz7RT1KosWLSoc63m2j7A/mXaBGgjV6dFOLEdtTn9hG/jQ0GPqeGhT1c1Qx5NtYcM2sT/qT0xfQagjUT+mv2efsJeNnbaRNqPvZdq7TO8XUdRn0v5MP6DjTg0Tx4M6JYWpFthGfa5wrlCXpD5CrV2mc+P2VVlfI4p2Yz2ZzrBMP6c251zhs0z7mj2XmypL50eW+oX1UL+bafj47wrnJJ/F2gc+0zl3tE3eKmf9wyNijDHGmDbjFawi1mAZY4wxxlQZr2AZY4wxps14BatIzb9gUROhcXbG2KmdUj0Iy6FmQPPBMB7PY+ZiUS1S2dYUmd6A8XnNWaN6rKbar/Uw7p9pxthmajZoN+1rmTZHdT/UTmTaNGoeyrQVWhb7Rk2K6ieoS6IuTDU1PEd9Cvun40zdC3Vhej7LxRVR1CkNGTKkcI46Q7UL7U39HG2hbaL9s22lqFmij2g9tCF9jVodbrujcC7pfGB7qYHT8aBvsU2Zhow6MNpYr2d7s+MyDZaep6+1ZpzLtvnis0yh9k79lm2gT+tzg+fotyTbUohlaX/oW3x26fmy51w2drRplieR9ZiOp+ZfsIwxxhjT/ngFq4g1WMYYY4wxVcYrWMYYY4xpM17BKlLzL1jZPoDUG1BrofHubE+xiIh+/fo1/kyNBjVBjN9nujCWpVqdsv3hNBcRtTnUG6gug5oHaleYx0W1MNSRUHehuoZs/7GIXG9G/Y3WS90C25vl5mK+LV6rbWZOI/qa9pV5c8pyW2W6MOrp9N4yDZza6YUXXiicYz06HvQJ6kioV9F2cI9P3qt+y3HNNDScK9TxZD7OuUK7qZ04d7J5Rztle4nSDtk+eRHF8aAP0Bd1PDgnmW9L7cJyaSc+u3Sucd7RFvq8ZZuyPGSZdi6i6CNsX1muPbU5fZg2VduwryxX5x3HmT5N/2KbFT4n9N6yXHVm3VPzL1jGGGOMaX+8glXEGixjjDHGmCpT8ytYXDbVEASX77lUq8vH/DSeIStdumWYg21g6EKX4bkEzOViPc8Qgm53E1FcLue1XLbWJXqGWth3ntfwStl2GWo3pibgJ/rZp860k7afYT7+xcPzan+GKrLtShi6yNIEsL0MTzM82lz7mipLfYS+xWO1f2bDiIi5c+c2/swQSBZOjCiGBTnPeK9ey1AdQz7qXwyp8VrWS1sonKPqI0zVkW1zlJXD85xXWVqGiOL4sA2c34MHD278mXOS23GpXTgHs7kSURyvLHQdUQyNsU30PR07PkM4zplEgTbM/Iv3ZuFSPv8597V/rJPHfLappIE2pE9rKJXXdgRewSriFSxjjDHGmCpT8ytYxhhjjGl/vIJVxCtYxhhjjDFVpuZXsPi2q3F1xs15rNvf8Bz1HKqB4LlsW5qIos6HWhbG+vVa3QonolITtOWWWzb+TDtQB6PtZ1oDxv2pw6CeSGEqBrUNdSPUVqimgHbhp85qF+o7eKwpNSKKGgjqYKiTUTuy32yTatVYJ/UdtEWmF6Ivqq6HvsYtetSO7Bt9Qu1PH6CPzJ8/v9myyjRkmeaEuhjtH7UrZVtf6VziXKGeS7VITGvAetQnqFniuGZbIJX1h88ChSkFsu1jqGnSNpVprvjsUj0R/Yfo3MrSDfCY56iJ07Er8zXOuywVCevV+cy5w7mv404fzvSWbGOZJlHHWZ/3Zv2g5l+wjDHGGNP+OERYxCFCY4wxxpgq4xUsY4wxxrQZr2AVqfkXLOoYNHZOLQLzw2hcvSy3lcbGy7aAYQ4qxvoVajhUt0E9BDUQqiFjG6hF0Fg/28e+UlOgOgeeo65B66WOh/m1tFxqZmgzLYtbs1CbQJ2GanV4jpNZz2e5xHjMvnE8aGPVAFFLlOUFomaDqI/Q39l+1fxQo7RgwYLCMTUp1Mko1MVo36kByvIa0WYcO2qWtCyOa7b1Cecz25jZnP6vWinagfM320KlLC9ctrXXgAEDmr2WPk2dGM9n2/ew/RxLhXm9lDLNp44Pz9FvOc76DGUbqHVUu7Um3xa3yaJf0n/UbvSJ7JnPfytMx1PzL1jGGGOMaX+8glXEGixjjDHGmCpT8ytYXCJWGLbJtjvgkjyXebNlXS4nZ5/+M6SQfTbNJXnWq9cyzMHPirPQF5fd+amwLq1zqw2GaFsTYlNb8DP0hQsXFo7V/mwf/+JhiE2X3Xkvbaxw6Z9918/7GY4r8xEtO9suhmWxHI6ztpGhCfZH+86QX9nWOTrODGswNKzjw2vZfr2W6Qc4rxgq1nvZXoZh1U60C9uofspnCsNOalP6FuthmE/TsnBOMkSo9bINnHfqT7Q3r+XzSX0zey5EFJ+h2byKKD6LaW+mPFEpRJYyJqJy7uj2YkxpQv/SZwz/rcjCc2Vznf3Tf7PKnsXapvVhZccrWEW8gmWMMcYYU2VqfgXLGGOMMe2PV7CKeAXLGGOMMabK1PwKFrVT+llx2ZuwXlumI1ENBGPujOVTW6Gf/7Ke7HP+sq0pVCfGa1lutg0EP5Om/uCFF15oth72XevlOeqs1KbUtlAropoOnqM2JNt+iJo9+o/2nZ980y5aLttAfRD9SbUX1EpxPDQNRdmWO3ovP6OfN29eNEdWTkSlnbRstl81MxHFvnNO0m7Z1iw85jjrMXV4bKPOAfoedUhqC7Yhswv1ldTw0RfVbpyjbJP2h/q/LH0C5w5tmKWCobaIY6e2YBtoJ20/+0ZdkmrTqKNiG1iWzkP2NdMkUtOabf1DvRnrybZXYvvpt6qN5Nh1BF7BKuIVLGOMMcaYKlPzK1jGGGOMWTd0phWm9sYrWMYYY4wxVabmV7CybV24hQo1EKoDoD6Img2NlTPmzrg587iolof38lj1KmU5a7Reamaog1FNB3U8We4btoN9Zb16npolXpttwcO/klTbxbGhDVmP5uthX7N6qUtijp0sl1JZHiDVpNDe9FttE7UgrIf9U7JcUPQt6ueozdFxpg057tm11CuqLoltoJ04zjrvyraa0f6Ubd+j9bJOao30Wo4FdT3U+Gn7WU+m6eOczHRu7BttnG1PxOca5yFtrtCndTyYT4vjrNeqHiui0qbsj44t20tb6BxgPqosryCvZRvoewrvpQ3VT8u2yVoXWINVxCtYxhhjjDFVpuZXsIwxxhjT/ngFq0jNv2BxGV6XuPkZNJd5dfmV5WTblfAT6rLPpLPtHRi2UefKwm8Rxf6w/dnu72Xl8l5dws/CfBHFT5QZisxCSdnn+jzPsWEbWJaOR7YFUkTRf1gO2692YQgnC8dFFH0iSzfAshnKZoqBLHTBNmah37J0BHp9WeoLDb3Qf5hORPvOcBDvZWhP6+W1me+VhZz1WqbboN005FmWPoR+q+OThWQjiv1hWI/joeeZJoblZtuJ8TlHX9Q2sx7OM7UF7cD+ZOkf2AY+uzRcVzbO2n7akGOn8442ZPv5LNDnBsOJ2TNmfQgRmiI1/4JljDHGmPbHK1hFrMEyxhhjjKkyfsEyxhhjjKkyNR8i5Ce+Gq8vS6eg9/Jalqv6CMbUqXXhp8PZp9uM7Ws7eG2mF8pSOEQUdWOsM/u0P6LYd+pKuJyruivWQ72NjhWvzaBOhPom6mT0PPVBvFa1FbQ3j5csWdL4Mz9Dp/0znQbLzXRVhBoU1b7QplnaCfo79R5sv+qf6Hut2b6HfdNjlkttC9uk8zDbxoVlcf5Sf6M2Zd9oJ/UnpqDgvdQp6Rzl84jzTHVLnFesN9O16VYsEZU6VbUNr6XGUttP+2dtKksTo3OLPk0fyZ4xhHNf50Nm74hiX2kXpmxh/1R3RR0h+549TzsChwiLeAXLGGOMMTXN0UcfHd27d4+6urro1atXXHnllc1ee/bZZ8eWW24ZXbp0ibq6uthkk03im9/8Zqvr9AuWMcYYY9rMmhWs9v6vtZx66qkxderUGD9+fPzyl7+M4cOHx8SJE+OBBx5o8vrf/OY3sccee8R1110X9957b+yyyy7x5S9/OW699dZW1VvzIUJjjDHGbLhMnjw5Ro4cGTfccENERIwbNy423njjOOOMM5p8yXr44YcLxwcccED06NEjrr322jjmmGNaXG/Nv2AxNq4agrJcLLqdTFmOHcb2lTJNlsbcmd+GWgvm2FIyPQG1EzxWXQ/1NmVaEdWkMAdVpgujFoE2Vk0By8m2bmGuGGocaFO1Be3P3D6qy2A5WW4u+hr7yvHQPlBTRv/RsjIb8jjLJ8SyqBukTan10vFgm1iv9pX+zS2d1KZl/kPUr9lX/lWsbaINM20X7ZRtq8Mxp10yvQ19INNJUoPI9uuzi3oh2oX6P52XmV9G5Pm2qP3S+c3nDeek1stnFfvKetVufIZnucaYM47PTB1b+nRZTj+FNuS1apsNTYM1f/78wnhvuummFfrIiIYxf/3112PcuHGF348YMSJmz57dojpXrVoVq1atqtDSllHzL1jGGGOMqS1GjhxZOB47dmzMmDGj4ro5c+ZERMT2229f+P2AAQNi1qxZLarr4x//eLzzzjtx3nnntaqNfsEyxhhjTJtZlytYs2bNKkSSmlq9UrjCV19f36JVv4kTJ8avfvWr+Pa3vx3vec97WtXWmn/B4hKrhhz4GS7DBrocyKVZLhHrUjkdjIPIenRpmmEnLidr6IVL51k4lHUy5KbL31waZ3+4zK7Xs9wsNFmWPkGXf8u2F9I2MlxSFnZVm3JrCoYN1A9oU/qIhvbYBpJt0cP+0P5ZKJUhW20z/YX3qi0YjsvSb0QUx4dhGqJ2WrhwYeEc7a/HHCs+YBmey7ZF4TxTmzPsxzZlWwrR19TmDP0yvJWFe9l+jrOOz8CBAwvnaBd9lpWFyegzOs5ZqouIoo05VrSxPtvYtyydCMNxtBPP61xiX+nTWhbnQwZtxnood8heFDh2ZWHxWmbIkCGlL1URETvuuGNERDz11FOF3y9evLgitEtOPfXUuPLKK+NrX/tanH322a1uo78iNMYYY0ybWR+/IuzTp0/07t077rrrrsLvZ8+eHSNGjGj2vokTJ8akSZPinHPOaXVocA1+wTLGGGNMzXLiiSfG448/HhMmTIg777wzRo8eHStXroxLLrkkIiLGjBkTw4YNa7x+4sSJceWVV8a//du/xTHHHBOPPvpoPProo/H888+3qt6aDxEaY4wxpv1ZXzO5X3755bFo0aK46aab4vrrr4+ePXvGpEmTYq+99oqIhnChhspvuummiIiYOnVqTJ06tfH3w4YNiyeffLLF9db8C1amCaI+groe/RyYn2dmn+VSI0OovdAYPGP7ixYtKhyrRoKfTDMerRonag+oIRswYECT90VU6oOYokKhloI6GdUQcKJQa6E6mKYEikq2hUq/fv0Kx9lWOtQ0sB7VlZSl7tB2UI9CbRq1O3qedsnSBlAH05rtYlqzRVLZViEsW6EGRX2xTPOj/sQ6aCeS2SnzL9qBfc/SrHBO6r3UB7ENmU6M7efzSHVKTGvAZ4HOD15LG2cpBsq2CdKxpF0yrWmWxoDlcg5y3vHfA72Xz23+e6D3cl7R9/TZQN0U/YfPAj6/FNpC62mJHmlDZsqUKc2e40sT/w1cW2r+BcsYY4wx7c/6uoLVUViDZYwxxhhTZbyCZYwxxpg24xWsIjX/gsXB0Bg9Y+Mk24KB92psnHqITI8SUdRVMcbO3FCq02DflixZUjjW+DzPMe6vOV8yLVFErieiviPL7UNtC+2kfWf72Uath9oobv9BDZZqUBh7z3JqlWmAVKfBOsv0N6oHac32N7R/ti0N20D9n/aPmhOOB7c60bLLbKrzhT5N/1fdIe3CY+pttD8cD/Yv81POB/X/sq1lFNqb40ENkOqFaJcszxrnSraVFP2nTPuoNi5rv9qUWq8sDxzbT/0ZdXoKn8Wco/rsZXv53NBrs23JIorjwbEq05SpjZmXLNsmqOzfM7PuqfkXLGOMMca0P17BKmINljHGGGNMlfEKljHGGGPajFewitT8CxZj5aq9YOyeebFUm8NzWR4g6psyjUBEMSbPXCbUe6g2gddSb6P6g7L9ELU/2b5sTR1rzhrqXnit5hPTfSEj8r3A2FeOh9qcubfK8hipdoF6CeYLUz0ItRTMA5TtcUjNT7YHYtn+dtr3Ml1b5qfsq/aH+c1Itr9jWb4znZPMRUSt1+abb974M+cGNTT0r0GDBjX+TG0U7a/jXJZLSW3MvmZau7JnCnViej3vzfbBLMv3l+XhI7Rpa/ZgzbSm1Goq9Bc+T7VeapQ4n7O9FOnjfObo84g25BxVm2b5/Zo61v5Qv0iNnJ4vywNn1j01/4JljDHGmPbHK1hFrMEyxhhjjKkyNb+CxbCTLnFruCGicildl4SzT5sjiuFEhh8YiuHysoZmuMzLJW5dEmabWI+GAXktQ4RqJy6V6zY6EXnKCn4qn30mzZAa/zLRYx2LiMrQl4YqaDOGdBh2UlswrMH267hzrLLtV1gu259tn8Q28LN1tQ2vZXhL28gQG8tVX6MPZFt2RBTDK7R3FjJnWIa+pm1mGzh/2WZtY9lWOWrHLP0Gj2lThtzUf8rCfGyj3stxZZsUjiv7qmW1JhwaUZz7fJ5mW+Xw+ck0HzrufK5lW8uUyTOyFAkcZ/qins/SekQUn20Me9OG2bZZ9H/OJfWvam3vYqpHzb9gGWOMMab9cYiwiEOExhhjjDFVxitYxhhjjGkzXsEqUvMvWNTuqFaKUAejsXHG8nmsnwdT90VdA8+rzoEaGsbVNX5PDRP7qlokakOoedB6qNngJ+xZigfWw8+K9VpqvViu9pV2oY5Ny22tBk7LppaCmg3VQPAcNShqN2rgqL/hlhg6tpmOKqLo09Ro0Ne0XGpOsjaVfQLOerQdfCBmurxsy5eIPKUJtS78ZF+vp71p40WLFjX+zHGlhkbtRl/j3NE5mul2Iip1PnqvpjuJqBz3LB0Nbazzge2nT3A+69jRhpneic/aLH0Cn4G8VzVlbAOvzXSr1Mux3myrIqY40bHlOGapUyJy/SXvzbbkMR1Pzb9gGWOMMab98QpWEWuwjDHGGGOqjFewjDHGGFMVOtMKU3tT8y9Y1BOpPofxeeoyVH/Ac9RWaPyb2iJqHpiHRnUAL774YuEcNQ+qM2E9WX4t5rOhjkf1KdSyULfA/qiGgOeo4VCdCSci71UdA9tAfYSep82oyaJ2R3Oj0YY8Vjsylw9tqsfsKzU0WZ4v6tp4r2qN6Ftsv2pUqJFhG3XsODacO5nWi+dao9ciavOyXFyc++qnZRostT/nDq/VY9qfY6d6HLa3TP+nZdNOWc4m2oFtUj+lXoj6INpNx4Plcpz1PG3I9qvflmm79DzbRzvRxup71NqVbYejsF7tO59dfG5TO6V2ov3pX5oni88f0/HU/AuWMcYYY9ofa7CKWINljDHGGFNlan4Fi8u6Gj5imIlL2rq0y+VvLgnr0i2XsLOl/ohiuJFtyMKAZekg9E2fn1+zDdpGLkszRMLQmC6tc2sHfnquIVCe46fO2uZsax+2geVwCZ7hXbUp+0b/UZuWheMUjg3vZXgiC/vRJ7RNDIHwXj0uG1e1OdM0sB6GOHV+ZO2NKIaHysLRakeWQx/JwjZM4UA7KbyWIVr1J7YpS/3CUHyW/iSiOF84R3mvXkv781mgqQD4rGK4nfXo9bQhfWbgwIGNP9N/aGNtU1nqC+0rn9NZSpaIYhhcpQIRlWkb1Ob8t4NzR/2UPsxraTedD6yHoVTtL+dzR+AVrCJewTLGGGOMqTI1v4JljDHGmPbHK1hFvIK1HnDvvffGxRdfvE7qOuSQQ2Lx4sXxpz/9Kc1qb4wxxpi1p+ZXsDINB2PhTCmgepCJEyfG5z//+Rg4cGD885//jLPPPjv++Mc/Np5Xrc6mm24aJ5xwQpx44okxdOjQiIiYPXt2XHTRRXHvvfc2qcfp2rVrbLTRRhV6A2oeVNegb/J77LFH/Pa3v40ZM2bEUUcdFRHF9ARvvPFGjB07Nq699tq44IIL4oADDoipU6fGAQccEK+99lpBr0LtwZIlS2LvvfeOM888M0aPHh1bbbVVHHHEEfGLX/yiwo7UnHALD9VhLFy4sHAu+6y+TEel2q+ytADcbkI1EEzpQB9RPQt1U2Xb3yjUnGSpPGgXai1UO0L7U+uivkeb8lrVe9Bm1LqwTWonakwyXRs1WDxu7r6ISjtlejTaidoc9VvqXugjOnZl29Kon9IOnPu0sR5z7KjnUk1c2fZD+kxhm8o0ldpf3stx12up9cp0bWwDdWFqN445n5/ZFj1l/x5k+l3O9Sx1Da+lLdSO/CM403Ky7x2BV7CKeAWrBRx11FHxzW9+M773ve/FvvvuGw888EDcdtttsfXWWzd7z4IFC+K8886LfffdN/bee++YOXNmTJs2LUaMGNEubfz3f//3uPbaa2OPPfaIIUOGVJzfddddY9q0aXH22WfHRRddFOPGjYulS5fGbbfdVvFgb4revXvHo48+Gqeeemp7NN8YY4ypKfyC1QJOP/30uOWWW+Lmm2+OJ554Ir785S/H/Pnz49Of/nSz9/z617+O3/zmN/HUU0/Fk08+Geedd14sX7483v/+95fWt99++8VTTz0Vn/zkJ1vUvl69esURRxwRP/rRj+Lee++N8ePHF87vuOOO8bOf/SzOOOOM+MEPfhARDX8Nf/zjH4/XXnstbrnlljSJXkTEPffcE1/72tfijjvuaFGbjDHGbFisWcFq7/86C37BKqF79+4xevTomD59euH3v/vd72KPPfZoURldunSJI488Mnr37h0PPvhgeu1hhx0WP/zhD+Nzn/tcTJs2rUXlH3nkkfHEE0/Ek08+GdOmTat4wZozZ05su+22ccsttxR+v3LlyvjEJz4RRx55ZMUytTHGGGPWnprXYFGro/FwxtwZV+/Tp08MGjQounXrFnPnzi3E5BctWhQDBgxofDHRt+o1epWRI0fGb3/72+jRo0csX748xo8fH0888USFjqFLly7RtWvXOPnkk+Pcc8+NI488Mu67776IqNR0NLV9zPHHHx833XRTdO/ePe67777o3bt37L///nH77bc3Xlu21Y/2jXob2imiIfbfVO4g6gCordAcVdQmZKHKsu0yMp0J+8p7VX/D9mc5m8o0NBnU/FDno3ZiPWx///79G3+mv1DHoxoU5inKtuEo20aEOhnVQ7GvzDek/kUbUoNFXaGS+VpE0a95LXVVei31Tey7toN2Yrlqi2wbqYhKn9Z62aZsixjan+OsesAybVqWv43zjP6ltlCfbQptE+2d+SmfXdRrce5o+8vyIuo40y7Ueumc5bXMS8b+qB/QR2hjHS+W2xFYg1XEK1gthINaV1dXOtBPPPFE7L333rHffvvF5MmT4/vf/34MHz68yWvHjRsX559/fhx66KGNL1ctYccdd4z3v//9MWXKlIhoeID8/Oc/j2OOOabFZShHH310LF68uPG/vfbaa63KMcYYYzZkan4Fq628/PLLsWrVqsLXbxENf4FxY2by9ttvx9NPPx319fXx8MMPx+jRo+OUU06J//qv/6q49rHHHov3vve9cfzxx8dDDz3U4vadeOKJ0b1795g3b17j7+rq6uLtt9+OzTbbrOKvsjLuvPPOQv0LFixo1f3GGGOM2QBesLIwIMMEXLZetmxZvP322/Hwww/H2LFjC5qoD3/4w3HPPfc0hkJ0KZfL92vSHnTt2jV69uxZEfZYvXp1PPHEE3HWWWfFPffcE6tWrWr8Wo8hB12K3mijjeJTn/pUfOlLX4rp06cXwmhTp06N4447Lq6++uomrFK59LxmmXrp0qUVIZumXtLq6+sbw2n6iT6X6Lkkr6t+/ASZdtNrOY6sR5fks21PIvLUFwwpZFsKlaV00DaxbwwHcTzUNrw32zqk7JN2HSuWyzCshp0Y7qH9GcahjbN7NazJEAjnyoABA5o9x/Ao5062zQ79VEOcDBszZKtpTRimaSrlyRr4/GEb6CNZCJrjo7Zhm5jOQvvDOth3lqVjSZsyNJbNB7ZfQ19MAZKF4+g/3MKJZalPqG9FVI6Hls35mqWR4TOEfss2ayiS40EpgbaD4d2OwCHCIjX/glUNJk2aFJMnT46HHnooHnjggfjsZz8bW2+9ddxwww0REXHCCSfEgQceGOPGjWu855vf/GbcfffdMXfu3Nh6663j8MMPj7322iv9MvDJJ5+MAw44IH7729/GqlWr4swzz0zbdeCBB8Zmm20WN998cyxbtqwwMW+//faYMGFCsy9YraV3796xww47NB5vu+228b73vS+WLFlSoYUxxhhjNnT8gtUCbrvttthkk03iq1/9agwePDgee+yxGD9+fGNYbosttojtttuucM/AgQPjxhtvjMGDB8eyZcti1qxZ8clPfjJmzpyZ1jVnzpz4yEc+Er/97W9j9erVceGFFzZ77fHHHx8zZ86sWLWIiPjZz34W55xzTowaNSoeeeSR1nca7L777jFjxozG40svvTQiIm644Yb44he/2ObyjTHGdG68glXEL1gt5Oqrry6sBuly8iWXXBJf//rXC9drjiyGCciBBx5YOP7HP/7RmMSUS89KJmR/5JFHqrq7+syZMxuXuhniYajDGGOM2dCp+RcsxtFVV8JYON+M9VrqCahLYmxcYQiNugZ9ieJqFLea0XoYu8+0LdQHZdu40A7UplE/oW2kPoU6Ei2bY5PprKivydpPPQf7Q12D1kvNBl9w9Tw1ZBwPTRNAfQT1Tux7ttVJtq0OX+ab0vs1Vw77o22gzTgeHGftT1NpPhSdS9k2KBHFFA/sK/2fOhn1izJdlf5xQp+g3ky1eNTb8Dmh9bC9nFccn2ybJuqS1I5lbVIfL9NQZr7I5xzblKWOoP31Xs4V3ktfVDjvaGPt76JFiwrnOM5aL/94pa/p+czeEZXbZqnPUy/HZ4zaKbPDusIrWEVq7gXrz3/+cwwaNKjxmA8MHZwyMXQGH9CZ2JPwfHP3du3atUJ4qbz44otpgtCmcnO1pI1lduG9WVmsV+3Gc2tYtGhR7L///mkbjDHGmPWZmnvBGjRoULpHYC2hL5LGGGNMR+IVrCI194K1cOHCwnFnXsFq6rg1be7MK1jGGGNMZ6bmXrD+3//7f4Vj6jQ0hk09AbUiGlennoBxdI1/UzNAfRZzyWjMnZoZ6gD0ZSYrJ6L4olS216C++NAu1DtRb6D1lulK1BbsK/VnWi/rzHI2lb0gUpeh11PzQP2NalsyjUxZnSTTYLFN1FqoHbMXfx5TM5PlS6LuhS/B2ZYq1BFy7mT+T1TrlflLRKWdVEtIH6FuT3UzZX/kaH9oQ2p1tI28ls8Y+oyOLe/NcjaxXNpJ5xLr5L18HqmfUh/EenS+0IbZc47l0se1LGq5eG327wHbxL7r3CnbfkvLok05dvxISJ912VZvEZXzrqPxClYRb5VjjDHGGFNlam4FyxhjjDHrHq9gFfEKljHGGGNMlan5FSxqOlQXwPwkjG9r/JsaAcbrVc/COqmDyXJmUbPB2H62Hxl1StpX5inK9CvULVCHlEFNANtLTZbCHEh6LculjbO976hv0lxKLJt2YnvVNiyH92Z6P5Jp/Kg3I9o/6o5Yrl5LvQrtr/dyY/OynFNaFseOuhL9izTLURaR69x4LfuTaVuy/GFlGkR9FnD+Znv70SeotctyaNGm/Ktey+Zcp59quewbod30ucg2Zc8N9pXzWXVLnIOZtos243jwvI4dx4PPwewZz2e6nqe+j33P/Inzl/3RNmVJqdcVXsEq4hUsY4wxxpgqU/MrWMYYY4xpf7yCVaTmX7C4PKtL2gxz8LN1Xd5nSJDLugwhZm3ItujhUjM/cddleDoa79XQAEONPNZleH42zLBTtq0I+5Z9Ns3lb4Z/NJTB0ATDEdoftpchNi6lZ2ERjquOZdk2HGoX2pt2Ypu1bIYU6E9aNu1NH1dbMKTGe7PwD2HoRdvUGv9ne+kTOkcZfqON6V96Pe/N2s95Rp/QehjCYZgpC2Vn2w1F5H2n3XT7FYY/+UzRvrJO+jjbqHYr2z5J20+f4PNV/TQLCfJe+inDo5xLrUkRonbitXzGaLllW6UxlK1l0ac5dtofPiNNx1PzL1jGGGOMaX+8glXEGixjjDHGmCrjFSxjjDHGtBmvYBWp+Rcsxu8VxtGpVdCBXLp0aeEcdRiqP2DcnPqITKfBz+EHDBhQOFZNCjUO/Cxa+5d93h5R1C6UbfdBDYHG/mlTaiK0LGqfqCFTvQrtnX1CzXM8JqrJokYm0ztRr8JxV/95+eWXC+doU46zakeog6H+RvvONtD/VWdFu3Ds9JhjRd/Ltu/ZfPPNC+dYltqJOrZsqxBqV6jj4b1qxzKtoF7Lc3zAqx3pE6qFiig+C1gutTr0vWzsMk0TfYLzLNNRcaxoN7UxtY3sj/adPk0Nk9o4S5/Dcmn/bAueiFy7maXMYT2ZNo1wTmZpY9h31qPPas4z0/E4RGiMMcYYU2VqfgXLGGOMMe2PQ4RFvIJljDHGGFNlan4Fi3oV1URkWoqIov6g7FqthxqBLB9MRFH3079//8I56gJao1fRmDx1GNQQqEaIugVqyKgdya6lpkmPOTa8VnUkZVumqI0zjVhTbdR6si2EIopal2zboojW5fLJtv7hveyP5sJh+6kd1DZnPhxR7Gu2vUpEriEr08Cp5oQ6QuZk03JpszINluobWS7zI3G+ZOXqvZyT2RZP1JAxxxGfBWpHtoHjofOF1/KZoteW6TqJaqk4zrSpzjtq08q0Rs2Vw2M+W6ntyraHYhuyrcfoa2XbrilsY79+/QrHakf6eJbPkPrdjqIzrTC1N17BMsYYY4ypMjW/gmWMMcaY9mddrF51phWymn/BynZiZ0iEA6dL51yW5rW6lMty+Yk+l/6zLVW4vK9L01zu5rK1lpWFPCLybWnKQoQa2uCnwgzlqW0YBmDYQJfvFy1aVDjHZXWlLFUEz+v4MGzD9msojCFNfnqehVIZ8uSn2tqOzIcj8tAXw0FZiJbhlCzFSRZmjSimAmDoi33XcArLpV2YCkDhuGZhS85J2kLD5PQBtkHDQ2UPf00FQ58eOHBg4Zj16vjQTgzH6dxi+Ip9Vfuz/Qx1ZT6SbYEUUQx9UYbAZ4GOD5+XrEftxPmb+VpEMVxHH+b81jazDaw321aH85lhfLUF28+ydJ5lW36ZjqHmX7CMMcYY0/54BauINVjGGGOMMVWmQ1awOtMbqDHGGNPZ6Ih/Z72CVaSuvgNaO2/evBg6dOi6rtYYY4zZIJg7d25svfXW66SuZcuWRd++fWPTTTet0LJVm/r6+li2bFm8+uqrFds+rW90yArWVlttFXPnzo1NNtmk3QfDGGOM2VCor6+P1157LbbaaqsOqbsW6qgWHfKC1aVLl3X2Zm2MMcZsSPCrRtMx+CtCY4wxxrQZr2AV8VeExhhjjDFVxitYxhhjjGkzXsEq4hUsY4wxxpgq4xcsY6rAhz70oTjttNM6uhkFnn322airq4tHHnlkrct4+eWXY8CAAfHss89GRMSMGTOirq6uYvuV9uKBBx6I3r17x4ABA2LOnDlVK/fvf/97bL311t5exJgqUl9fv07+6yz4BcuYGmXo0KHxwgsvxM4777zWZVx00UVx6KGHxrbbblu9hkXEZz/72ejatWtMmTKl2Wsee+yxOOSQQ+KEE06ID37wg3HAAQfEvHnzWlT+N7/5zfjABz4QvXr1anL/wl122SXe//73x/e+97217YIxxqT4BcuYGqVr164xaNCgig1uW8qKFSti8uTJ8elPf7qq7XrjjTdi6tSp8cUvfjEmT57c5DXPPvtsHHjggXHSSSfFFVdcEdOmTYt99tknPvKRj1Rs1NwUK1eujKOOOipOPvnkZq+ZMGFCXH311aUboRtjWoZXsIr4BcuYduDXv/519O3bN2688cZ488034z3veU989rOfbTz/zDPPRN++fePaa69ttoxLL700dtlll+jdu3cMHTo0TjnllFi+fHnj+RNOOCHe+973xltvvRUREW+//Xbstttuceyxx0ZEZYhw6dKlceyxx0b//v2jZ8+e8e53vzuuu+66Zuu/++67o1u3bjFmzJhmr1mxYkUccsghseeee8aSJUtaZJuf/OQnMXLkyDj33HPj/vvvbww/ruHFF1+Mj3zkI3HKKafEhRdeGBENL4s33HBD7LPPPnHwwQcX7NAUX//61+P000+PXXbZpdlrDjzwwHj55Zdj5syZLWq3Mca0Br9gGVNlpkyZEp/85CfjxhtvjE996lPRo0ePuOWWW+KGG26IO+64I1avXh3HH3987LvvvvGZz3ym2XK6dOkSkyZNisceeyxuuOGG+P3vfx9nn3124/lJkybF66+/Huecc05ERHzlK1+Jl156Ka666qomy/vKV74Ss2bNirvvvjtmz54dV199dfTr16/Z+u+7777Yfffdmz3/6quvxkc+8pFYuXJl/O53v4stttiizDQRETF58uQ47rjjom/fvnHwwQdXvOSt0Vt96UtfKvy+S5cucc0118SDDz4Yffr0aVFdGRtttFG8733viz/84Q9tLssYY4jTNBhTRa666qr47//+7/j5z38e++67b+PvR40aFRdccEF85jOfiWOOOSaeeuqpuOOOO9KyVDS/3Xbbxfnnnx8nn3xy4wtUnz594uabb46xY8fGJptsEt/97nfjd7/7XbNZnJ9//vnYddddG1+aynRVzz77bLPbbSxatCj+7d/+LYYNGxa33nprbLTRRmlZa3jiiSfi//7v/+L222+PiIjjjjsuvvCFL8TXvva16NJl3f+9N2TIkIoVNGPM2uE0DUW8gmVMlbjtttvitNNOi3vvvbfwcrWGM888M4YPHx5XXHFFXHfddenqUUTE9OnT44ADDoghQ4bEJptsEp/61Kfi5ZdfLnz5NmbMmDjrrLPi/PPPjzPPPDP22WefZss7+eSTY8qUKTFq1Kg4++yz449//GNa/4oVK6JHjx5Nnvvwhz8c22+/fUybNq3FL1cRDatXBx54YGPfDz744Hj99dfjt7/9bYvLUE466aTo06dP43+tpWfPnvHGG2+sVd3GGJPhFyxjqsSoUaOif//+cd111zX5V9aLL74Y//znP6Nr167xxBNPpGU999xzcfDBB8fOO+8ct912W/zlL3+J//mf/4mIBq3VGt555524//77W1TmRz/60XjuuefitNNOiwULFsT+++8fZ511VrPX9+vXL5YuXdrkuUMOOST+8Ic/xKxZs9I6ldWrV8eNN94Yd911V3Tr1i26desWvXr1iiVLljQrdi/jG9/4RjzyyCON/7WWJUuWRP/+/deqbmNMEYvci/gFy5gqMWzYsJg+fXr8/Oc/j4kTJ1acP+GEE2LnnXeOG2+8Mc4+++z05eShhx6KVatWxXe/+93Yc889Y8cdd4wFCxZUXHfxxRfH7NmzY+bMmXHPPfekovWIiP79+8d//Md/xM033xyXXXZZ/OAHP2j22l133bXZNn7rW9+Kf//3f4/999+/xS9Zv/rVr+K1116Lhx9+uPBS9JOf/CTuuOOOFn0dSAYMGBA77LBD43+t5bHHHotdd9211fcZY0wZ1mAZU0V23HHHmD59enzoQx+Kbt26xWWXXRYREf/zP/8TDzzwQDz66KMxdOjQuPvuu+PYY4+NBx98sMkQ27Bhw2LVqlVxxRVXxKGHHhr3339/XHPNNYVrHnnkkfjqV78aP/3pT2OvvfaKyy+/PE499dQYO3ZsbL/99hVlfvWrX43ddtst3vOe98Rbb70Vd955Z4wYMaLZvhx44IFx7rnnxtKlS2PzzTevOH/JJZfE6tWrY7/99osZM2bETjvtlNpm8uTJccghh8T73ve+wu/f8573xGmnnRY333xznHrqqWkZLeX555+PJUuWxPPPPx+rV69uXN3aYYcdGkOJzz77bMyfPz8+/OEPV6VOYzZ0rMEC9caYNjN27Nj6U089tfF41qxZ9QMGDKg/44wz6mfPnl3fs2fP+h//+MeN51999dX6bbfdtv7ss89utsxLL720fvDgwfU9e/asP/DAA+tvvPHG+oioX7p0af2KFSvqR44cWf/Zz362cM/hhx9e/4EPfKB+1apV9c8880x9RNQ//PDD9fX19fXnn39+/YgRI+p79uxZv8UWW9R//OMfr3/66afTfu25557111xzTePx9OnTG9uwhokTJ9YPHjy4/p///Gez5SxcuLC+W7du9dOmTWvy/MSJE+t32WWXtC2t4d///d/rI6Liv+nTpzdec+GFF9YfeOCBVavTmA2VV199tT4i6jfaaKP6jTfeuF3/22ijjeojov7VV1/t6G6XUldf35leB40x65Jf/epXcdZZZ8Vjjz3WIV/5tRdvvfVWvPvd745bb7019tprr45ujjGdmmXLlkXfvn2je/fuUVdX16511dfXx9tvvx2vvvpqbLrppu1aV1txiNAY0ywHH3xwPPHEEzF//vwYOnRoRzenajz33HPxpS99yS9Xxph2wytYxpiqcOGFFzZmXicf/OAH4+67717HLTLGrAvWrGB169ZtnaxgrVq1qlOsYPkFyxhTFZYsWdLsdjk9e/aMIUOGrOMWGWPWBX7BahqHCI0xVWGLLbZo8XY5xpjaY12s13SmNaHaUa0aY4wxxqwneAXLGGOMMW3GK1hFvIJljDHGGFNlvIJljDHGmDbjFawiXsEyxhhjjKkyXsEyxhhjTJvxClYRr2AZY4wxpqY5+uijG7fy6dWrV1x55ZXp9Zdffnn06tUr6urqonv37jF+/PhW1+kXLGOMMcZUhfr6+nb9b2049dRTY+rUqTF+/Pj45S9/GcOHD4+JEyfGAw880OT19913X5x22mkxfPjw+OUvfxnjx4+PW2+9Nb74xS+2ql5ncjfGGGPMWrMmk/u6pDWZ3Pv06RPbbLNNPP74442/23jjjWP06NFNvmTtscce8cgjj8Rbb73V+LuRI0fG3Llz47XXXmtxG72CZYwxxphOxfz582PevHmN/y1btqzJ65YvXx6vv/56jBs3rvD7ESNGxOzZs5u85x//+EeMGDGi8LtDDz00li9fHm+88UaL2+gXLGOMMcasNRtttFEMGjRondXXvXv3GDlyZAwdOrTxv4997GNNXjtnzpyIiNh+++0Lvx8wYECzL0srVqyIAQMGFH635v415bUEf0VojDHGmLWmR48e8cwzz8TKlSvXSX1vvvlmRV1l4UJuQl1fX59uTM1z77zzTkREdOnS8nUpv2AZY4wxpk306NEjevTosU7qaqn2KiJixx13jIiIp556qvD7xYsXR8+ePZu8p2fPnrFo0aLC75599tmIiNhhhx1aXLdDhMYYY4ypSfr06RO9e/eOu+66q/D72bNnV+is1rDTTjtV6LPuvPPO6NOnT/Tq1avFdfsFyxhjjDE1y4knnhiPP/54TJgwIe68884YPXp0rFy5Mi655JKIiBgzZkwMGzas8fqLL744Vq5cGbvttlvceeedMWHChJg1a1acdNJJrarXaRqMMcYYU9McffTR8dOf/jRWr14dPXv2jG9/+9sxceLEiGgI+7300kvxyiuvNF5/+eWXx7nnnhsrVqyIbt26xVFHHRU//vGPW1WnX7CMMcYYY6qMQ4TGGGOMMVXGL1jGGGOMMVXGL1jGGGOMMVXGL1jGGGOMMVXGL1jGGGOMMVXGL1jGGGOMMVXGL1jGGGOMMVXGL1jGGGOMMVXGL1jGGGOMMVXGL1jGGGOMMVXGL1jGGGOMMVXm/wPAMXLIox6QWQAAAABJRU5ErkJggg==", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "aligned.plot()\n", - "aligned.axes_manager" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Template Matching\n", - "\n", - "A common way to find spots in a diffraction pattern is through template matching. Template matching involves creating a template of one of the diffraction spots and convolving it with the entire dataset. Usually this is done using a flat disk or a summed image of the zero beam. Often times reducing the noise in the dataset is useful as it \n", - "\n", - "There are a couple of ways to acomplish this is pyxem. \n", - "\n", - "The first is to use the `template_match_disk` function which uses the normalized_cross_correlation to find shere some diffraction spot is. We can think of this as the template being slid across the image and multiplied at every point. The result is that objects similar to the template are very visable in the filtered dataset. \n", - "\n", - "There are multiple ways to do this:\n", - "\n", - "1. Use the vaccum probe as a template and convolve the vaccum probe with the image\n", - "2. Use the " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "[########################################] | 100% Completed | 310.78 ms\n" - ] - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmYAAAI7CAYAAABGPFejAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAABJLklEQVR4nO3deXRV5b3/8c85MSEkZJAhYAbIAFJDRaYGQnMjVIyiXJQiVqwBFOIQSor2kmjRVuJQGqqloFyZCgiUXpGUXqOhYAWlDEokiMhlaAhTMARQkkCIScj5/cHi/DwGMCd7J2cneb/WOmuRvZ/97G+wrd9+nmfvY3M4HA4BAADA4+yeLgAAAACX0JgBAABYBI0ZAACARdCYAQAAWASNGQAAgEXQmAEAAFgEjRkAAIBFXOfpAgAAQPNWWVmpqqqqJrufj4+PfH19m+x+TYnGDAAANFhlZaWioqJUXFzcZPfs0qWLCgsLW2RzRmMGAAAarKqqSsXFxTp27JgCAwMb/X5lZWWKiIhQVVUVjRkAAMCVBAQEKCAgoNHv09K/SZLN/wAAABZBYgYAAAxzOBxNkmaRmAEAAKBJ0JgBAABYBEuZAADAMJYyzUFiBgAAYBEkZgAAwDASM3OQmAEAAFgEiRkAADCMxMwcJGYAAAAWQWIGAAAMIzEzB4kZAACARZCYAQAAw0jMzEFiBgAAYBEkZgAAwDASM3OQmAEAAFgEjRkAAIBFsJQJAAAMYynTHCRmAAAAFkFiBgAADCMxMweJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFiBgAADCMxMweJGQAAgEXQmAEAAFgES5kAAMAwljLNQWIGAABgESRmAADAMBIzc5CYAQAAWASJGQAAMIzEzBwkZgAAABbhkcSstrZWJ06cUEBAgGw2mydKAACgxXE4HCovL1doaKjs9qbNXkjMzOGRxuzEiRMKj4jwxK1Nc1xSc/wNRo4c6ekSDJkzZ46nS2iwv//9754uocH++Mc/eroEQ/z9/T1dQoMNHjzY0yU02JEjRzxdgiG+vr6eLqHBXn/9dYWHh3u6DDSARxqzgIAASVKtzabzgYGeKKHB/MvKZG/h3ToAoHm7/O/ZptbS06ym4JHG7PLy5fnAQC38zW88UUKDpWRmKqC01NNlAABwVWwTar54KhMAABjGHjNz8FQmAACARZCYAQAAw0jMzEFiBgAAYBE0ZgAAABbBUiYAADCMpUxzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFjBgAADLucmDXFx115eXmKioqS3W6XzWZT27ZttWLFCuf5PXv2qHv37vLy8pLNZlPHjh21YcMGlznKysrUu3dv5xxdunTRjh07XMYUFhYqOjpaNptNNptN0dHRbn9nLI0ZAABosQoLCzVo0CBdd911Wrx4sTZv3qzMzEyFhoZKkmpraxUfH69Tp07pz3/+s9577z116tRJw4cPV0lJiXOe+Ph4ffHFF5o5c6b+8pe/6JtvvlFiYqKqqqqcY+Li4nTixAnNnz9f8+fP14kTJxQXF+dWvewxAwAAhll1j9nYsWPl7++vgwcPOo8lJCQ4/7xhwwadO3dOa9eu1T333CNJuu222+Tr66tp06Zp2bJlOnr0qPbu3au0tDSlp6dLknr27Kn+/ftr1qxZmj59unJycnT69GktWrRIEydOlCTZ7XalpKQoNzdXw4cPr1e9JGYAAKDZKSoq0vHjx52fsrKyK47Lz89XTEyMwsPDZbfb5efnp3HjxjnPnzt3TpIUEBDgPObj4yObzaYtW7ZIklavXi1Jmjp1qnNMv3795Ovrq/Xr10uS1qxZI0nOpkySJk2a5HJ9fdCYAQAAw5p6j1lsbKwiIiKcn5EjR16xrqqqKuXn56tr165auXKlRo0apeXLl+vRRx+VJA0fPlxeXl4aP368CgsLde7cOd15552qra3V2bNnJUmHDh2SJEVFRbnM7efn51zuLCoqkre3d537e3t7q6ioqN5/jyxlAgCAZmfv3r0uKVdgYOBVx7Zr105bt26VdGlpc8+ePVq1apUWLFggPz8/LV26VCkpKYqOjpYkdejQQZ06dapXHTabzZQxl5GYAQAAw5o6MQsLC1N4eLjzc7XGzMvLy7nR/7LY2FhVVFQ4f37ooYd04cIFHTlyRHv37tXp06dVUVGhzp07S5KzYSssLHSZp6KiwtnAhYWFqbq6us79q6ur69z/WmjMAABAixUeHq7i4mKXY/v375efn1+dsV27dtVNN92kDRs26Pz583rwwQclSWPGjJEkzZkzxzl2165dqqysVFJSkiRp9OjRkqQlS5Y4xyxevNjl+vpgKRMAALRYM2bM0IQJE5SUlKSMjAxlZ2crPz9fTzzxhHPMU089pa5du6pPnz5av369srKyFBoaqmeeeUbSpYYtNjZWc+fOVWhoqMLDwzV58mTnk5uSNGLECHXs2FGpqam6ePGiJGnKlCkKCQmp9xOZEo0ZAAAwgVVflzF+/HgVFBQoKytLGzZskI+Pj5KTkzVv3jznmCNHjmjOnDm6ePGivLy8FB8fr9zcXJd5tmzZosTERGVkZMjhcCgkJES5ubny8fFxjtm+fbuGDRumlJQUSVJkZKQ2bdrkVr00ZgAAoEXLzMxUZmbmVc9fftXFtQQHB2v37t3XHBMTE1NnH5q7aMwAAIBhVk3Mmhs2/wMAAFgEiRkAADCMxMwcJGYAAAAWQWIGAAAMIzEzB4kZAACARZCYAQAAw0jMzEFiBgAAYBEkZgAAwDASM3OQmAEAAFgEiRkAADCMxMwcJGYAAAAWQWMGAABgESxlAgAAw1jKNAeJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAULT3NagokZgAAABZBYgYAAAxjj5k5SMwAAAAsgsQMAAAYRmJmDhIzAAAAi/BoYuZfVqZHfvtbT5bgNv/z5yVJ3t7e6nfzzR6uxn0dOnTwdAmGZGdne7qEBtuxY4enS2iwhx9+2NMlGHL48GFPl9BgYWFhni6hwY4fP+7pEgwZNmyYp0toVkjMzOHRxszucCj43DlPlgAAAGAZHmvMzrZr56lbG/bNN9/ojLe3p8sAAAAtjMcas8yUFE/d2rAPP/zQ0yUAAGApLGWag83/AAAAFsHrMgAAgGEkZuYgMQMAALAIEjMAAGAYiZk5SMwAAAAsgsQMAAAYRmJmDhIzAAAAiyAxAwAAhpGYmYPEDAAAwCJIzAAAgGEkZuYgMQMAALAIEjMAAGAYiZk5SMwAAAAsgsYMAADAIljKBAAAhrGUaQ4SMwAAAIsgMQMAAIaRmJmDxAwAAMAiSMwAAIBhJGbmIDEDAACwCBIzAABgGImZOUjMAAAALILEDAAAGEZiZg4SMwAAAIsgMQMAAIaRmJmDxAwAAMAiaMwAAAAsgqVMAABgGEuZ5iAxAwAAsAgSMwAAYIqWnmY1BRIzAAAAiyAxAwAAhrHHzBwkZgAAABZBYgYAAAwjMTMHiRkAAIBFkJgBAADDSMzMQWIGAABatLy8PEVFRclut8tms6lt27ZasWKF83xxcbF69+4tLy8v2Ww2tWnTRmPHjnWZo6ysTL1793bO0aVLF+3YscNlTGFhoaKjo2Wz2WSz2RQdHa0jR464VSuJGQAAMMyqiVlhYaEGDRqkqKgoLV68WD169NC2bdsUGhrqHDNkyBAVFBTolVde0YABA/TGG29o5cqVioqK0ssvvyxJio+P1759+zRz5kxFREQoNTVViYmJKi0tlY+PjyQpLi5O5eXlmj9/viQpLS1NcXFxOnnyZL3rpTEDAAAt1tixY+Xv76+DBw86jyUkJLiMOXz4sBITEzV16lTn+ezsbG3evFmSdPToUe3du1dpaWlKT0+XJPXs2VP9+/fXrFmzNH36dOXk5Oj06dNatGiRJk6cKEmy2+1KSUlRbm6uhg8fXq96WcoEAADNTlFRkY4fP+78lJWVXXFcfn6+YmJiFB4eLrvdLj8/P40bN85lTHR0tLZv3668vDzV1tbq1Vdf1YULF5zLmatXr5YkZ+MmSf369ZOvr6/Wr18vSVqzZo0kOZsySZo0aZLL9fVBYgYAAAxr6qXM2NhYl+O33nqrNm3aVGd8VVWV8vPzFR8fr1mzZiknJ0fLly+Xr6+vFixYIEn65JNPdMstt+hHP/qR87rHHntMqampkqRDhw5JkqKiolzm9vPzU0lJiaRLjaK3t3ed+3t7e6uoqKjevx+NGQAAaHb27t2rgIAA58+BgYFXHduuXTtt3bpV0qWlzT179mjVqlXOxuyBBx7QsWPH9Oyzz+qWW27R//zP/2j+/PmKjo52Ll1ejc1m+95a6zPmMpYyAQCAYZcTs6b4SFJYWJjCw8Odn6s1Zl5eXi4b/aVLaVtFRYUk6auvvtK7776rX//613rhhRd03333afXq1brxxhuVlZUl6dJSp3TpQYJvq6ioUKdOnZz1VFdX17l/dXV1nftfC40ZAABoscLDw1VcXOxybP/+/fLz85MkZ4Nmt7u2RHa73dkEjhkzRpI0Z84c5/ldu3apsrJSSUlJkqTRo0dLkpYsWeIcs3jxYpfr68NjS5nfffdHc+JOJGk1GRkZni7BkOeee87TJTRYc/7PzcKFCz1dgiEDBw70dAkN9vHHH3u6hAYLDg72dAmG3HHHHZ4uoVmx6usyZsyYoQkTJigpKUkZGRnKzs5Wfn6+nnjiCUmXGregoCC9/PLLCgwMVL9+/fTmm29q3759euCBByRJXbt2VWxsrObOnavQ0FCFh4dr8uTJ8vX11bRp0yRJI0aMUMeOHZWamqqLFy9KkqZMmaKQkJB6P5EpsccMAAC0YOPHj1dBQYGysrK0YcMG+fj4KDk5WfPmzXOO+eijjzR69Gj96le/Um1trXx8fDRy5EitXLnSOWbLli1KTExURkaGHA6HQkJClJub63yHmSRt375dw4YNU0pKiiQpMjLyig8kXAuNGQAAMMyqiZkkZWZmKjMz86rne/fu7fKesysJDg7W7t27rzkmJiamzj40d7HHDAAAwCJIzAAAgGFWTsyaExIzAAAAiyAxAwAAhpGYmYPEDAAAwCJIzAAAgGEkZuYgMQMAALAIGjMAAACLYCkTAAAYxlKmOUjMAAAALILEDAAAGEZiZg4SMwAAAIsgMQMAAIaRmJmDxAwAAMAiSMwAAIBhJGbmIDEDAACwCBIzAABgGImZOUjMAAAALILEDAAAGEZiZg4SMwAAAIugMQMAALAIljIBAIApWvoyY1MgMQMAALAIEjMAAGAYm//NQWIGAABgESRmAADAMBIzc5CYAQAAWASJGQAAMIzEzBwkZgAAABZBYgYAAAwjMTMHiRkAAIBFkJgBAADDSMzMQWIGAABgESRmAADAMBIzc5CYAQAAWASNGQAAgEWwlAkAAAxjKdMcJGYAAAAWQWIGAAAMIzEzB4kZAACARZCYAQAAw0jMzEFiBgAAYBEkZgAAwDASM3OQmAEAAFiExxKzoKAgT93asF69enm6hAZ7+eWXPV2CIeXl5Z4uocGqq6s9XUKD3XvvvZ4uwRBfX19Pl9BgGzdu9HQJDfbll196ugRDMjIyPF1Cgy1btqzJ70liZg4SMwAAAItgjxkAADCMxMwcJGYAAAAWQWMGAABgESxlAgAAw1jKNAeJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFiBgAADCMxMweJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAULT3NagokZgAAABZBYwYAAFq0vLw8RUVFyW63y2azqW3btlqxYoXzvM1mu+Ln7rvvdo4pKytT7969nXN06dJFO3bscLlPYWGhoqOjnddHR0fryJEjbtXKUiYAADDMqpv/CwsLNWjQIEVFRWnx4sXq0aOHtm3bptDQUOeYzz77zOWa2bNna8mSJZo2bZrzWHx8vPbt26eZM2cqIiJCqampSkxMVGlpqXx8fCRJcXFxKi8v1/z58yVJaWlpiouL08mTJ+tdL40ZAABoscaOHSt/f38dPHjQeSwhIcFlTO/evV1+zs3N1fXXX68hQ4ZIko4ePaq9e/cqLS1N6enpkqSePXuqf//+mjVrlqZPn66cnBydPn1aixYt0sSJEyVJdrtdKSkpys3N1fDhw+tVL0uZAADAsMuJWVN8JKmoqEjHjx93fsrKyq5YV35+vmJiYhQeHi673S4/Pz+NGzfuqr/Hnj17VFxcrLFjxzqPrV69WpI0depU57F+/frJ19dX69evlyStWbNGkpxNmSRNmjTJ5fr6oDEDAADNTmxsrCIiIpyfkSNHXnFcVVWV8vPz1bVrV61cuVKjRo3S8uXL9eijj15xfHp6umw2m1566SXnsUOHDkmSoqKiXMb6+fmppKRE0qVG0dvbu8583t7eKioqqvfvxVImAAAwrKn3mO3du1cBAQHO44GBgVe9pl27dtq6daukS0ube/bs0apVq7RgwYI6Y//5z3/qhz/8oYKDg+tVj81mM2XMZTRmAACg2QkLC7tmM3aZl5eXy0Z/6VLatmfPnjpjX3vtNVVVVenZZ591OR4dHS3p0oME307NKioq1KlTJ2c91dXVdeasrq6uc/9rYSkTAAAY1tR7zOorPDxcxcXFLsf2798vPz+/OmNnz54tPz8/3X///S7Hx4wZI0maM2eO89iuXbtUWVmppKQkSdLo0aMlSUuWLHGOWbx4scv19UFiBgAAWqwZM2ZowoQJSkpKUkZGhrKzs5Wfn68nnnjCZdzx48dVUFDgsun/sq5duyo2NlZz585VaGiowsPDNXnyZPn6+jpfqTFixAh17NhRqampunjxoiRpypQpCgkJqfcTmRKNGQAAMIFV32M2fvx4FRQUKCsrSxs2bJCPj4+Sk5M1b948l3FPP/20JGnmzJlXnGfLli1KTExURkaGHA6HQkJClJub63yHmSRt375dw4YNU0pKiiQpMjJSmzZtcqteGjMAANCiZWZmKjMz85pjVqxY4fJtAN8VHBys3bt3X3OOmJgYFRYWNqjGy2jMAACAYVZNzJobNv8DAABYBI0ZAACARbCUCQAADGMp0xwkZgAAABbhdmO2c+dOff75586f//73v+vee+/Vr3/9a1VVVZlaHAAAaB6s+oLZ5sbtxuyxxx7TgQMHJF36Us8HHnhAfn5+Wr16tdLT000vEAAAoLVwuzE7cOCA+vTpI0lavXq1EhMT9Ze//EVLly7VmjVrzK4PAAA0AyRm5nC7MXM4HKqtrZUkvf/++7rrrrskSRERETp9+rS51QEAALQibj+VOWDAAL344osaNmyYPvzwQ/33f/+3pEvfuN65c2fTCwQAANbHU5nmcDsxmz17tnbu3Klf/OIXmj59urp37y5JevvttzV48GDTCwQAAGgt3E7Mevfu7fJU5mWzZs2Sl5eXKUUBAIDmhcTMHKa9YNbX19esqQAAAFqlejVm7du314EDB9SxY0ddf/31stlsVx371VdfmVYcAABoHkjMzFGvxuyPf/yjAgICnH++VmMGAACAhqlXYzZ+/HjnnydMmNBYtQAAALRqbj+VuXjx4iser6mp0TPPPGO4IAAA0PzwgllzuL35/1e/+pXee+89LVy4UO3bt5ck7du3Tw8++KBKS0v1u9/9rl7zXH5JbXNUXFzs6RIa7J577vF0CYasW7fO0yU0WHV1tadLaLAvvvjC0yUYMnz4cE+X0GA33XSTp0tosJqaGk+XYEhzrx/Nk9uJWX5+vk6ePKmbb75ZGzZs0Ouvv65+/frphz/8oXbt2tUIJQIAAKsjMTOH24lZVFSUPvroIz355JO688475eXlpTfffFMPPPBAY9QHAADQaridmElSTk6OVq1apcGDBys4OFgLFy7UiRMnzK4NAAA0EyRm5nC7MXvsscd0//33Kz09XR999JF2796tNm3a6Oabb9Zbb73VGDUCAAC0Cm4vZW7ZskUff/yxbrnlFklSly5d9N577+n111/XI488ovvvv9/0IgEAgLXxgllzuN2Yffrpp2rTpk2d45MnT9awYcNMKQoAAKA1crsxu1JTdlnPnj0NFQMAAJonEjNzNOhLzN9++2299dZbOnr0qKqqqlzO7dy505TCAAAAWhu3N//PmTNHDz/8sEJCQpSfn6+4uDh16NBBhw4datYvcQQAAMbwRKZxbjdm8+bN04IFC/Taa6/Jx8dH6enp2rBhg9LS0lRaWtoYNQIAALQKbjdmR48e1eDBgyVJbdu2VXl5uSQpOTlZq1atMrc6AADQLPAeM3O43Zh16dJFZ86ckSR169ZN27dvlyQVFha2+L8sAACAxuR2Y/aTn/xE77zzjiRp4sSJevLJJ3X77bfrZz/7mUaNGmV6gQAAAK2F209lLliwQLW1tZKkxx9/XO3bt9e//vUv/ed//qcef/xx0wsEAADWx+syzOF2Y2a322W3//+g7f777+dt/wAAACZo0HvMAAAAvo3EzBxu7zEDAABA4yAxAwAAhpGYmYPEDAAAwCIa9LqMs2fP1jleVlamn/zkJ2bUBAAAmhleMGsOtxuzTZs21fnickmqrKzU5s2bTSkKAACgNar3HrPdu3c7/7x3714VFxc7f7548aLWrVunsLAwc6sDAADNAnvMzFHvxqxPnz6y2Wyy2WxXXLJs27at5s6da2pxAAAArUm9G7PL34UZHR2tTz75RJ06dXKe8/HxUUhIiLy8vBqlSAAAYG0kZuaod2PWrVs3SXJ+HRMAAADM5fbm/2XLlundd991/pyenq7g4GANHjxYR44cMbU4AACA1sTtxuzll19W27ZtJUnbtm3Ta6+9pqysLHXs2FFPPvmk6QUCAADr43UZ5nD7zf/Hjh1T9+7dJUlr167Vfffdp0cffVQ//vGPNWTIELPrAwAAaDXcTszatWunM2fOSJLWr1+vYcOGSZJ8fX114cIFc6sDAADNAomZOdxOzG6//XZNmjRJffv21YEDB3T33XdLkr744gtFRkaaXR8AAECr4XZi9vrrrys+Pl6nTp3SmjVr1KFDB0nSp59+qrFjx5peIAAAsD4SM3O4nZgFBwfrtddeq3N8xowZphQEAADQWrmdmF1NRUWFPvroI7OmAwAAzQiJmTlMa8wOHjyooUOHmjUdAABAq+P2UiYAAMB38ZVM5qh3Y9a+fftrnr948aLhYgAAAFqzejdm33zzjZ544gndfPPNVzx/5MgRHgAAAKCVIjEzR70bsz59+igiIkLjx4+/4vnPPvuMxgwAAMCAejdmd999t86ePXvV8+3bt9e4cePMqAkAADQzJGbmqHdj9utf//qa5yMiIrRkyRLDBQEAALRWpr0uAwAAAMbwugwAAGAYS5nmIDEDAACwCBIzAABgGImZOUjMAAAALILEDAAAGEZiZo56NWbXX3+9bDZbvSb86quv6jWuV69e9RpnRV988YWnS2iw//mf//F0CYYUFxd7uoQGu+WWWzxdQoOdOnXK0yUY8tlnn3m6hAY7ceKEp0tosA4dOni6BEN++tOferoEmCQvL09jxozRkSNH5HA45Ovrq4ULF+qhhx5yjsnJydGkSZN08uRJSZK/v782bNig+Ph4SVJZWZkSEhK0Z88eORwOde7cWe+8845+9KMfOecoLCzUbbfdpsLCQklSVFSUNm7cqG7dutW71no1ZrNnz3b++cyZM3rxxRd1xx13OIvdtm2b/vGPf+i5556r940BAEDLYsU0q7CwUIMGDVJUVJQWL16sHj16aNu2bQoNDXWO+eCDDzRy5EgNGDBAf/zjH3XDDTdo06ZNCgwMdI6Jj4/Xvn37NHPmTEVERCg1NVWJiYkqLS2Vj4+PJCkuLk7l5eWaP3++JCktLU1xcXHOZq8+6tWYfftrmEaPHq3MzEz94he/cB5LS0vTa6+9pvfff19PPvlkvW8OAADQEEVFRSorK3P+HBgY6NJIXTZ27Fj5+/vr4MGDzmMJCQkuYyZMmKDIyEh98sknzmNDhgxx/vno0aPau3ev0tLSlJ6eLknq2bOn+vfvr1mzZmn69OnKycnR6dOntWjRIk2cOFGSZLfblZKSotzcXA0fPrxev5fbm///8Y9/6M4776xz/I477tD777/v7nQAAKAFuLzHrCk+khQbG6uIiAjnZ+TIkVesKz8/XzExMQoPD5fdbpefn5/LV0jW1NTo2LFjioqKUseOHWW329WuXTs988wzzjGrV6+WJE2dOtV5rF+/fvL19dX69eslSWvWrJEkZ1MmSZMmTXK5vj7cbsw6dOigv/3tb3WOr127ttnvJwAAAM3D3r17dezYMefnf//3f684rqqqSvn5+eratatWrlypUaNGafny5Xr00Ued80iXljMTEhK0atUqJSQkaObMmfrTn/4kSTp06JCkS3vGvs3Pz08lJSWSLiV43t7ede7v7e2toqKiev9ebj+VOWPGDE2cOFGbNm1y7jHbvn271q1bp0WLFrk7HQAAaAGa+qnMsLCwKy5dXkm7du20detWSZeWNvfs2aNVq1ZpwYIFqqmpkSR169ZNa9eulST97Gc/U5cuXfTqq6/ql7/85TXnrs/DkfV9gFJqQGI2YcIEbd26VcHBwcrOztaaNWsUFBSkLVu2aMKECe5OBwAA0Gi8vLxcNvpLl5ZBKyoqJEk33nijJKl79+4uY7p166avv/5akhQdHS1JzqctL6uoqFCnTp0kXWoUq6ur69y/urq6zv2vpUEvmB04cKBWrlypnTt3Kj8/XytXrtTAgQMbMhUAAECjCQ8Pr/Oqpf3798vPz0/SpTStXbt2zuXKy44dO6b27dtLksaMGSNJmjNnjvP8rl27VFlZqaSkJEmXHo6UpCVLljjHLF682OX6+mjQC2YLCgq0ZMkSHTp0SLNnz1ZISIjWrVuniIiIZv1+MgAA0DBWfcHsjBkzNGHCBCUlJSkjI0PZ2dnKz8/XE0884RyTmpqqrKwsjRs3TuPHj9cbb7yhL7/8Uq+//rokqWvXroqNjdXcuXMVGhqq8PBwTZ48Wb6+vpo2bZokacSIEerYsaNSU1N18eJFSdKUKVMUEhJS7ycypQY0Zh9++KGGDx+uH//4x/roo4/04osvKiQkRLt379aiRYv09ttvuzslAABAoxg/frwKCgqUlZWlDRs2yMfHR8nJyZo3b55zzO9//3uVlJRo5cqVWr58uXx9ffXMM88oNTXVOWbLli1KTExURkaGHA6HQkJClJub63yHmXRpz/2wYcOUkpIiSYqMjNSmTZvcqtftxuzpp5/Wiy++qKeeekoBAQHO40OHDnU+vQAAAFoXqyZmkpSZmanMzMxrjlmyZInLMuR3BQcHa/fu3decIyYmps4+NHe5vcfs888/16hRo+oc79Spk86cOWOoGAAAgNbM7cYsODhYX375ZZ3j+fn5CgsLM6UoAADQvDT1C2ZbKrcbswcffFAZGRkqLi6WzWZTbW2ttmzZov/6r/9yeZMuAAAA3ON2Y/bSSy+pa9euCgsL07lz5xQbG6vExEQNHjxYzz77bGPUCAAALI7EzBxub/739vbWypUrlZmZqfz8fNXW1qpv377q0aNHY9QHAADQajToPWbSpScPYmJizKwFAAA0U1Z+KrM5cbsxczgcevvtt7Vx40aVlJSotrbW5Xx2drZpxQEAALQmbjdmv/zlL7VgwQINHTpUnTt3duuLOQEAQMtEYmYOtxuzFStWKDs7W3fddVdj1AMAANBqud2YBQUFOb9lHQAAQCIxM4vbr8t4/vnnNWPGDF24cKEx6gEAAGi13E7MxowZo1WrVikkJESRkZHy9vZ2Ob9z507TigMAAGhN3G7MJkyYoE8//VQPPfQQm/8BAIAkljLN4nZj9u677+of//iHEhISGqMeAACAVsvtxiwiIkKBgYGNUQsAAGimSMzM4fbm/1deeUXp6ek6fPhwI5QDAADQermdmD300EOqqKhQTEyM/Pz86mz+/+qrr0wrDgAANA8kZuZwuzGbPXt2I5QBAAAAtxuz8ePHN0YdAACgGSMxM4fbjdm3XbhwQdXV1S7HeDAAAACgYdxuzM6fP6+MjAy99dZbOnPmTJ3zFy9eNKUwAADQfJCYmcPtpzLT09P1wQcfaN68eWrTpo0WLVqkGTNmKDQ0VG+++WZj1AgAANAquJ2YvfPOO3rzzTc1ZMgQPfLII/qP//gPde/eXd26ddPKlSv185//vDHqBAAAFkZiZg63E7OvvvpKUVFRki7tJ7v8eoyEhAR99NFH5lYHAADQirjdmEVHRztfLhsbG6u33npL0qUkLTg42MzaAAAAWhW3lzIffvhhffbZZ7r11lv1zDPP6O6779bcuXNVU1OjV199tTFqBAAAFsdSpjncbsyefPJJ55+HDh2qffv2KS8vTzExMbrllltMLQ4AAKA1MfQeM0nq2rWrunbtakYtAACgmSIxM0eDGrN//vOf+uc//6mSkhLV1ta6nPvzn/9sSmEAAACtjduN2YwZM5SZmakBAwbohhtukM1ma4y6AABAM9PS06ym4HZj9sYbb2jp0qVKTk5ujHoAAABaLbcbs6qqKg0ePLgxagEAAM0Ue8zM4fZ7zCZNmqS//OUvjVELAABAq+Z2YlZZWakFCxbo/fffV+/eveXt7e1ynneZAQDQ+pCYmcPtxmz37t3q06ePJGnPnj0u53gQAAAAoOHcbsw2btzYGHUAAIBmjMTMHG7vMQMAAEDjcDsxO3/+vGbOnHnVF8weOnSoXvMUFRW5e2vLGDBggKdLaLCvv/7a0yUYcurUKU+X0GDbt2/3dAkN9oMf/MDTJRhy8OBBT5fQYFVVVZ4uocFiYmI8XYIhQUFBni4BrZDbjdmkSZP04YcfKjk5mRfMAgAASSxlmsXtxiw3N1fvvvuufvzjHzdGPQAAAK2W243Z9ddfr/bt2zdGLQAAoJkiMTOH25v/X3jhBf3mN79RRUVFY9QDAADQarmdmL3yyisqKChQ586dFRkZWecFszt37jStOAAA0DyQmJnD7cbs3nvvbYQyAAAA4HZj9tvf/rYx6gAAAM0YiZk5eMEsAACARdS7MbPb7fLy8qrzuf766zVo0CBlZ2c3Zp0AAMDCLidmTfFpyeq9lPm3v/3tisfPnj2rTz75RA899JCWLVumMWPGmFYcAABAa1Lvxuyee+656rnx48crNjZWf/jDH2jMAABohdhjZg7T9pglJSXpwIEDZk0HAADQ6rj9VObVXLhwQb6+vmZNBwAAmhESM3OYlpgtXLhQffv2NWs6AACAVqfeidlTTz11xeOlpaXKy8tTQUGBNm/ebFphAAAArU29G7P8/PwrHg8MDNSdd96p1NRUdevWzbTCAABA88FSpjnq3Zht3LixMesAAABo9Uzb/A8AAFovEjNz8JVMAAAAFkFiBgAADCMxMweJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYBI0ZAAAw7HJi1hQfd+Xl5SkqKkp2u102m01t27bVihUrnOe7d+8um83m8mnXrp3LHGVlZerdu7dzji5dumjHjh0uYwoLCxUdHe2cIzo6WkeOHHGrVpYyAQBAi1VYWKhBgwYpKipKixcvVo8ePbRt2zaFhoa6jOvYsaP++c9/On/29/d3OR8fH699+/Zp5syZioiIUGpqqhITE1VaWiofHx9JUlxcnMrLyzV//nxJUlpamuLi4nTy5Ml610tjBgAAmp2ioiKVlZU5fw4MDFRgYGCdcWPHjpW/v78OHjzoPJaQkFBn3HXXXafevXtf8V5Hjx7V3r17lZaWpvT0dElSz5491b9/f82aNUvTp09XTk6OTp8+rUWLFmnixImSJLvdrpSUFOXm5mr48OH1+r1YygQAAIY19VJmbGysIiIinJ+RI0desa78/HzFxMQoPDxcdrtdfn5+GjduXJ1xxcXFstvt8vHx0Q9+8AN98cUXznOrV6+WJE2dOtV5rF+/fvL19dX69eslSWvWrJEkZ1MmSZMmTXK5vj5IzAAAQLOzd+9eBQQEOH++UlomSVVVVcrPz1d8fLxmzZqlnJwcLV++XL6+vlqwYIEk6e6779b111+vW265RTt37tQf/vAH9e/fXyUlJQoMDNShQ4ckSVFRUS5z+/n5qaSkRNKlBM/b27vO/b29vVVUVFTv34vGDAAAmKIpX2URFhZ21Wbsu9q1a6etW7dKurS0uWfPHq1atcrZmP3pT39yjh01apRGjx6tvn376sUXX1RWVtY157bZbN97//qMuYylTAAA0GJ5eXnV2egfGxurioqKq17Tp08feXt76/PPP5ckRUdHS7r0IMG3VVRUqFOnTpIuNYrV1dV15qqurq5z/2uhMQMAAIZZ9XUZ4eHhKi4udjm2f/9++fn5XfWagwcPqrq6WhEREZKkMWPGSJLmzJnjHLNr1y5VVlYqKSlJkjR69GhJ0pIlS5xjFi9e7HJ9fbCUCQAAWqwZM2ZowoQJSkpKUkZGhrKzs5Wfn68nnnhC0qVN/yNGjNCjjz6q2NhY5eXl6bnnnpPdbtfzzz8vSeratatiY2M1d+5chYaGKjw8XJMnT5avr6+mTZsmSRoxYoQ6duyo1NRUXbx4UZI0ZcoUhYSE1PuJTInGDAAAmMCqX8k0fvx4FRQUKCsrSxs2bJCPj4+Sk5M1b948SZKPj48OHz6sxx9/XA6HQ15eXoqMjNTKlStdliC3bNmixMREZWRkyOFwKCQkRLm5uc53mEnS9u3bNWzYMKWkpEiSIiMjtWnTJrfqpTEDAAAtWmZmpjIzM694rn379jp9+vT3zhEcHKzdu3dfc0xMTEydfWjuojEDAACGWTUxa27Y/A8AAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFjBgAAYBEsZQIAAMNYyjQHiRkAAIBFkJgBAADDSMzM4bHGrHv37p66tWGrVq3ydAkN5u/v7+kSDImOjvZ0CQ2WnZ3t6RIa7Cc/+YmnSzCkqqrK0yU0WM+ePT1dQoOdOXPG0yUY8vbbb3u6hAZLSEjwdAloIBIzAABgGImZOdhjBgAAYBEkZgAAwDASM3OQmAEAAFgEiRkAADCMxMwcJGYAAAAWQWIGAAAMIzEzB4kZAACARdCYAQAAWARLmQAAwDCWMs1BYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFiBgAADCMxMweJGQAAgEWQmAEAAMNIzMxBYgYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFjBgAAYBEsZQIAAFO09GXGpkBiBgAAYBEkZgAAwDA2/5uDxAwAAMAiSMwAAIBhJGbmIDEDAACwCBIzAABgGImZOUjMAAAALILEDAAAGEZiZg4SMwAAAIsgMQMAAIaRmJmDxAwAAMAiaMwAAAAsgqVMAABgGEuZ5iAxAwAAsAgSMwAAYBiJmTlIzAAAACyCxAwAABhGYmYOEjMAAACLIDEDAACGkZiZg8QMAADAIkjMAACAYSRm5vBYYzZ27FhP3dqwpKQkT5fQYMuWLfN0CYbs3bvX0yU0WHJysqdLaLDq6mpPl2DIT3/6U0+X0GD/+te/PF1Cg61fv97TJRgyaNAgT5eAVojEDAAAGEZiZg72mAEAAFgEjRkAAIBFsJQJAAAMYynTHCRmAAAAFkFjBgAADLucmDXFx115eXmKioqS3W6XzWZT27ZttWLFiiuOvemmm2Sz2TRq1CiX42VlZerdu7dzji5dumjHjh0uYwoLCxUdHS2bzSabzabo6GgdOXLErVpZygQAAC1WYWGhBg0apKioKC1evFg9evTQtm3bFBoaWmfsM888o8OHD8tur5tbxcfHa9++fZo5c6YiIiKUmpqqxMRElZaWysfHR5IUFxen8vJyzZ8/X5KUlpamuLg4nTx5st710pgBAADDrLrHbOzYsfL399fBgwedxxISEuqMy8vLU1ZWlrKzszV69GiXc0ePHtXevXuVlpam9PR0SVLPnj3Vv39/zZo1S9OnT1dOTo5Onz6tRYsWaeLEiZIku92ulJQU5ebmavjw4fWql6VMAADQ7BQVFen48ePOT1lZ2RXH5efnKyYmRuHh4bLb7fLz89O4ceNcxtTU1Oj222/XPffco3vuuafOHKtXr5YkTZ061XmsX79+8vX1db5Iec2aNZLkbMokadKkSS7X1weJGQAAMKypE7PY2FiX47feeqs2bdpUZ3xVVZXy8/MVHx+vWbNmKScnR8uXL5evr68WLFggSbr77rtlt9v19ttvX/Gehw4dkiRFRUW5HPfz81NJSYmkS42it7d3nWu9vb1VVFRU79+PxgwAADQ7e/fuVUBAgPPnwMDAq45t166dtm7dKunS0uaePXu0atUqLViwQCtWrND777+vHTt2XHFv2fex2WymjLmMxgwAABjW1IlZWFjYNZuxy7y8vOps9I+NjdWePXskXVqCrK2tVf/+/V3GrF27Vtddd51qamoUHR0t6dKDBN9OzSoqKtSpUydnPVf6XuHq6uorPmhwNewxAwAALVZ4eLiKi4tdju3fv19+fn6S5Nzw/+2P3W7XwIED9c4770iSxowZI0maM2eOc45du3apsrJSSUlJkuR8YGDJkiXOMYsXL3a5vj5IzAAAgGFWfSpzxowZmjBhgpKSkpSRkaHs7Gzl5+friSeekCT16NFDPXr0cLnGZrPphhtucD5J2bVrV8XGxmru3LkKDQ1VeHi4Jk+eLF9fX02bNk2SNGLECHXs2FGpqam6ePGiJGnKlCkKCQmp9xOZEo0ZAABowcaPH6+CggJlZWVpw4YN8vHxUXJysubNm+fWPFu2bFFiYqIyMjLkcDgUEhKi3Nxc5zvMJGn79u0aNmyYUlJSJEmRkZFXfCDhWmjMAACAKaz6PZaZmZnKzMys9/iampo6x4KDg7V79+5rXhcTE6PCwkK36/s29pgBAABYBI0ZAACARbCUCQAADLPq5v/mhsQMAADAIkjMAACAYSRm5iAxAwAAsAgSMwAAYBiJmTlIzAAAACyCxAwAABhGYmYOEjMAAACLIDEDAACGkZiZg8QMAADAIkjMAACAYSRm5iAxAwAAsAgaMwAAAItgKRMAABjGUqY5SMwAAAAsgsQMAAAYRmJmDhIzAAAAiyAxAwAAhpGYmYPEDAAAwCJIzAAAgGEkZuYgMQMAALAIEjMAAGAYiZk5SMwAAAAsgsQMAAAYRmJmDhIzAAAAiyAxAwAAhpGYmYPEDAAAwCJozAAAACyCpUwAAGAYS5nm8Fhj9sorr3jq1oZVV1d7uoQGCw0N9XQJhvj5+Xm6hAY7e/asp0totU6dOuXpEhrs6aef9nQJDTZw4EBPl2DIkSNHPF0CWiESMwAAYBiJmTnYYwYAAGARJGYAAMAwEjNzkJgBAABYBIkZAAAwjMTMHCRmAAAAFkFiBgAATNHS06ymQGIGAABgESRmHvT000/r6NGj+stf/lLvax5++GENGDBA7dq103PPPacHH3zQ7TkaIiUlRV9++aVycnIa9T4AgOaJPWbmaDGN2fDhw9WvXz/dcMMNqqqqUkFBgd5++22dPHnS06WZpnfv3kpISNDvfvc7nTp1SuXl5Zo7d64uXrzo6dIAAIAJWkxj1rNnT23cuFGHDx+W3W7XqFGj9NRTT+m5555TVVWVW3P5+fnp4sWL+uabbxqp2oYJCQnR2bNn9e9//9t57Pz58x6pJSAgQOfPn1dtba1H7g8AQEvUYhqz2bNnu/y8ZMkSzZ49W926ddPBgwe/93q73a5evXpp8ODB6tOnj1566SUdP35cM2fO1Pvvv6/333/fOTYzM1M7d+7U2rVrJV1akjx27Jiqq6t16623qqamRhs3bnSelyQfHx9NmDBB/fv3V2VlpXJzc69Yx1133aWhQ4cqODhYxcXF+vvf/668vDxNmjRJ//Ef/yFJWrZsmU6dOqX/+q//qrMcWp9aJCkxMVEDBw5UQECATp8+rQ8++EB79uyRJHl7e+vee+9Vr1699M0332jz5s116oyLi9PAgQO1a9cuffrppy0qmQQAuI+lTHO0mMbsuy5/2fX3JUphYWEaPHiwBg0aJC8vL+Xl5WnWrFk6fvy4W/dLSEjQP/7xD2VmZqp79+6aNGmSDh48qC+++EKS9MADD+gHP/iB5syZo9LSUt13332KjIzU0aNHnXOMHj1aAwYM0LJly3Ty5En17NlTjz32mMrLy7Vy5UqVlJRoyJAhmjFjxjWTqu+rJSkpSb169dLatWt1+vRpRUVF6f7779f58+dVWFiou+66S9HR0VqxYoXKy8t1xx13KCwsTF9++aXzHh9++KFKSkrUr18/TZkyRcXFxdq5c6c+++wzj6V4AAA0dy22Mbv//vt14MABnThxos45f39/DRo0SIMHD1ZoaKj27NmjlStX6rPPPmvwfq1jx445U6mTJ09q2LBhio2N1RdffKE2bdooMTFRCxYscDZHCxcu1B//+Efn9T4+Prrzzjs1c+ZMFRQUSJJOnTqlG2+8UUOHDtUbb7yhyspK1dbWqrS0tMG1eHt7KyEhQYsWLXI2hV9//bUiIyMVFxenoqIiDRgwQG+99ZZzyXT16tV6+umnXe5RU1Ojzz//XJ9//rn8/f3Vp08f9evXT8OHD9f+/fu1c+dO7du3j6VOAGglSMzM0SIbswcffFDh4eH6/e9/f8Xzt912m0aOHKkDBw7o17/+tb7++mvD9zx27JjLz2fPnlVgYKCkS3vDvL296+wNKy4udv4cFhYmHx8fpaenu8xz3XXX6ciRI6bV0rlzZ3l7e+uRRx5xGePl5aUvv/xS7du313XXXeeS5F24cEGnT5++6v3Onz+vLVu2aMuWLbrxxht13333qVevXpozZ45LygYAAK6txTVmY8eOVZ8+fZSVlXXVhuvDDz/UxYsXFR8frxdeeEGffvqptm3bpv3799fpxB0Oh2w2m8ux666r+9f23aTt29d99/oruTzm1VdfrVN3TU3N917vbi3Lli1TWVlZnftcXgJ2h4+Pj26++Wb17dtXkZGRKiwsVG5urkpKStyeCwDQPJGYmaNFNWYPPvig+vbtq1mzZl0z4SktLdW7776rd999VzExMRo8eLBSU1NVWVmpjz/+WNu2bXMugZaXlysoKMh5ra+vrzp27OhWXSdPnlRNTY26d++uTz75RNKlPXBdunTRvn37JEknTpxQVVWVOnTooP3797v7q7tVS3V1tYKDg1VYWFjn/IULF1RTU6OuXbvq888/l/T/f+dvj7fZbOrRo4f69u2r2NhYlZWVaefOnVq9evX3LrUCAIArazGN2c9//nMNHDhQr732miorK51LdxcuXFB1dfVVrysoKFBBQYFWrVqlvn37avDgwfrtb3+rzMxMFRUVad++fRo8eLBzU/u9997r9r6pb775Rh999JF+9rOf6dy5c87N/9+ep7KyUuvWrdODDz4om82mgwcPytfXVz169FBlZaW2bNnSsL+Y76iqqtLmzZt19913y2az6fDhw2rTpo26deumqqoq7dy5U3l5eRo+fLgqKip07tw5JSUl1fl/KEOHDlVCQoI+//xzLV682GXpEwDQ+pCYmaPFNGZDhw6VpDp7tP785z9r69at33t9TU2NduzYoR07digoKMj5DrP33ntPnTp10pQpU3ThwgX9/e9/V4cOHdyu769//avatGmjqVOn6sKFC1q3bp3atm3rMmbNmjUqKyvTiBEjFBISooqKCh0+fNj0t+1v2LBB58+f16233qpRo0apsrJSJ06c0MaNGyVJubm5atOmjcaNG+d8XYavr6/LHDt37tRHH33k9jIrAAC4OpvDA61nWVmZnnrqqaa+rWmulcBZXWhoqKdLMCQvL8/TJTTYd5vb5uTs2bOeLsGQvn37erqEBhs1apSnS2iwy/9nr7ly98ErK5k7d65z5aixlZWVKSgoSOHh4bLbG/8ruGtra3X8+HGVlpY22e/YlPgScwAAAItoMUuZAADAc9hjZo4W15g9++yzLTLaNIuXl1ej36O8vFyvv/56o98HAICWpsU1ZoGBgWrfvr2nywAAoFUhMTNHi2vMvvvSVLhqqsQMAAC4r8U1Zi+++GKj34OnMgEAQGNocY0ZAABoeixlmoPXZQAAAFgEiRkAADCMxMwcJGYAAAAWQWIGAAAMIzEzB4kZAABo0fLy8hQVFSW73S6bzaa2bdtqxYoVzvNDhgxRmzZtZLPZZLfb1b59ey1evNhljrKyMvXu3ds5R5cuXbRjxw6XMYWFhYqOjpbNZpPNZlN0dLTb37lKYgYAAAyzamJWWFioQYMGKSoqSosXL1aPHj20bds2l9dH9erVS3fddZfi4uJUWlqq9PR0TZo0SYMHD9ZNN90kSYqPj9e+ffs0c+ZMRUREKDU1VYmJiSotLZWPj48kKS4uTuXl5Zo/f74kKS0tTXFxcTp58mS966UxAwAALdbYsWPl7++vgwcPOo8lJCS4jPnu1wj2799fERERysnJ0U033aSjR49q7969SktLU3p6uiSpZ8+e6t+/v2bNmqXp06crJydHp0+f1qJFizRx4kRJkt1uV0pKinJzczV8+PB61ctSJgAAMOxyYtYUH0kqKirS8ePHnZ+rffNPfn6+YmJiFB4eLrvdLj8/P40bN+6qv8e5c+f0+OOPS5JGjhwpSVq9erUkaerUqc5x/fr1k6+vr9avXy9JWrNmjSQ5mzJJmjRpksv19UFjBgAAmp3Y2FhFREQ4P5ebqO+qqqpSfn6+unbtqpUrV2rUqFFavny5Hn30UZdxv/nNb2Sz2RQQEKDc3FwtXbpUPXv2lCQdOnRIkhQVFeVyjZ+fn0pKSiRdahS9vb3r3N/b21tFRUX1/r1YygQAAIY19R6zvXv3KiAgwHk8MDDwqte0a9dOW7dulXRpaXPPnj1atWqVFixY4Bzzi1/8QrfeeqsKCwuVlZWlSZMmacCAAerVq9c167HZbN9bc33GXEZiBgAAmp2wsDCFh4c7P1drzLy8vOp8T3RsbKwqKipcjoWEhOi2227TpEmTdODAAdlsNj311FOSpOjoaEmXHiT4toqKCnXq1MlZz5W+S7u6utqt76mmMQMAAC1WeHi4iouLXY7t379ffn5+17zO4XDom2++kSSNGTNGkjRnzhzn+V27dqmyslJJSUmSpNGjR0uSlixZ4hxz+ZUbl6+vD5YyAQCAYVZ9XcaMGTM0YcIEJSUlKSMjQ9nZ2crPz9cTTzwhSSopKdG9996rRx55RDfddJMOHz6szMxM1dTU6Mknn5Qkde3aVbGxsZo7d65CQ0MVHh6uyZMny9fXV9OmTZMkjRgxQh07dlRqaqouXrwoSZoyZYpCQkLq/USmRGMGAABasPHjx6ugoEBZWVnasGGDfHx8lJycrHnz5kmSfHx8dPjwYT322GOqra2V3W5XSEiIli5dqnvuucc5z5YtW5SYmKiMjAw5HA6FhIQoNzfX+Q4zSdq+fbuGDRumlJQUSVJkZKQ2bdrkVr00ZgAAwDCrJmaSlJmZqczMzCueCw4O1okTJ753juDgYO3evfuaY2JiYursQ3MXe8wAAAAsgsQMAAAYZuXErDkhMQMAALAIjyRmLb3bBQDAkzz171n+/W6czeGBv8Xjx48rIiKiqW8LAECrcOzYMYWHhzfJvcrKyhQUFKTrr7/erTfcN5TD4dDXX3+t0tLSa77tv7nySGIWGhqqY8eOKSAgoEn+IQIA0Bo4HA6Vl5e79aZ5M+/dku7jKR5pzOx2e5N18gAAtCZBQUGeLgEG8FQmAAAwjMTMHDyVCQAAYBE0ZgAAABbBUiYAADCMpUxzkJgB+F5Lly5VcHBwo8w9ZMgQTZ06tVHmtuJ9AeBaaMyAerrav8jXrl3La18kff3110pOTlZQUJCCgoKUnJyss2fPOs9v2rRJNpvN5ZgnZWdn64UXXvB0GUCLcfkrmZri05LRmAEwxYMPPqhdu3Zp3bp1WrdunXbt2qXk5GRPl3VV7du3V0BAgKfLAAAXNGaAyZ5//nn16dNHy5cvV2RkpIKCgvTAAw+ovLzcOWbIkCFKS0tTenq62rdvry5duuj55593mefVV1/VzTffLH9/f0VERCg1NVXnzp1znr+8vJiTk6OePXvKz89P9913n86fP69ly5YpMjJS119/vaZMmaKLFy86r6uqqlJ6errCwsLk7++vgQMHatOmTS73Xrp0qbp27So/Pz+NGjVKZ86cuebv/H//939at26dFi1apPj4eMXHx2vhwoXKycnR/v37dfjwYQ0dOlSSnG8HnzBhgvP62traa/5dfNeOHTt0++23q2PHjgoKCtKtt96qnTt3Os9v2rRJPj4+2rx5s/PYK6+8oo4dO+rLL790/jP4dgI6b9489ejRQ76+vurcubPuu+++a9YAwBWJmTlozIBGUFBQoLVr1yonJ0c5OTn68MMPNXPmTJcxy5Ytk7+/vz7++GNlZWUpMzNTGzZscJ632+2aM2eO9uzZo2XLlumDDz5Qenq6yxwVFRWaM2eO/vrXv2rdunXatGmTfvrTn+q9997Te++9p+XLl2vBggV6++23ndc8/PDD2rJli/76179q9+7dGjNmjO68804dPHhQkvTxxx/rkUceUWpqqnbt2qWhQ4fqxRdfvObvu23bNgUFBWngwIHOY4MGDVJQUJC2bt2qiIgIrVmzRpK0f/9+ffnll/rTn/5U77+L7yovL9f48eO1efNmbd++XT169NBdd93lbH4vN13JyckqLS3VZ599punTp2vhwoW64YYb6syXl5entLQ0ZWZmav/+/Vq3bp0SExOv+TsDQKNwAKiXW2+91fHLX/6yzvG//e1vjm//V+m3v/2tw8/Pz1FWVuY8Nm3aNMfAgQNd5kpISHCZ50c/+pEjIyPjqvd/6623HB06dHD+vGTJEockx7///W/nsccee8zh5+fnKC8vdx674447HI899pjD4XA4/v3vfztsNpujqKjIZe7bbrvN8cwzzzgcDodj7NixjjvvvNPl/M9+9jNHUFDQVWt76aWXHD169KhzvEePHo6XX37Z4XA4HBs3bnRIcnz99dcuYxryd/FdNTU1joCAAMc777zjPPbNN984+vbt67j//vsdvXr1ckyaNKnOfS//81yzZo0jMDDQ5Z8ZgPopLS11SHL4+/s72rVr1+gff39/hyRHaWmpp3/1RkFiBjSCyMhIl/1LN9xwg0pKSlzG9O7d2+Xn747ZuHGjbr/9doWFhSkgIEDjxo3TmTNndP78eecYPz8/xcTEOH/u3LmzIiMj1a5dO5djl+fduXOnHA6HbrzxRrVr1875+fDDD1VQUCDp0rJkfHy8S23f/flKrvQAhMPhqNeDEd/3d/FdJSUlevzxx3XjjTc6HzY4d+6cjh496hzj4+OjFStWaM2aNbpw4YJmz5591fluv/12devWTdHR0UpOTtbKlStVUVHxvXUDgNl4jxlQT4GBgSotLa1z/OzZswoMDHQ55u3t7fKzzWZTbW1tvcccOXJEd911lx5//HG98MILat++vf71r39p4sSJqq6uvuYc15q3trZWXl5e+vTTT+Xl5eUy7nIz52jA/o0uXbro5MmTdY6fOnVKnTt3/t7r6/P39W0TJkzQqVOnNHv2bHXr1k1t2rRRfHy8qqqqXMZt3bpVkvTVV1/pq6++kr+//xXnCwgI0M6dO7Vp0yatX79ev/nNb/T8889rx44djfaaEKClacj/dlj5Pp5CYgbU0w9+8APl5eXVOb5jxw717NnT1Hvl5eWppqZGr7zyigYNGqQbb7xRJ06cMDxv3759dfHiRZWUlKh79+4uny5dukiSYmNjtX37dpfrvvvzd8XHx6u0tFSffPKJ89jHH3+s0tJSDR48WNKlBEuSy4MIDbV582alpaXprrvuUq9evdSmTRudPn3aZUxBQYGefPJJLVy4UIMGDdK4ceOu2exdd911GjZsmLKysrR7924dPnxYH3zwgeFaAcAdNGZAPaWmpqqgoECTJ0/WZ599pgMHDuj111/X4sWLNW3aNFPvFRMTo5qaGs2dO1eHDh3S8uXL9cYbbxie98Ybb9TPf/5zjRs3TtnZ2SosLNSOHTv0+9//Xu+9954kKS0tTevWrVNWVpYOHDig1157TevWrbvmvDfddJPuvPNOpaSkaPv27dq+fbtSUlI0YsQIZ9ParVs32Ww25eTk6NSpUy5PmLqre/fuWr58uf7v//5PH3/8sX7+85+rbdu2zvMXL15UcnKykpKS9PDDD2vJkiXas2ePXnnllSvOl5OTozlz5mjXrl06cuSI3nzzTdXW1precAMtmYOnMk1BYwbUU2RkpDZv3qyCggIlJSXpRz/6kZYuXaqlS5dqzJgxpt6rT58+evXVV/X73/9eP/zhD7Vy5Ur97ne/M2XuJUuWaNy4cfrVr36lnj17auTIkfr4448VEREh6dLTlIsWLdLcuXPVp08frV+/Xs8+++z3zrty5UrdfPPNSkpKUlJSknr37q3ly5c7z4eFhWnGjBl6+umn1blzZ/3iF79o8O/w5z//WV9//bX69u2r5ORkpaWlKSQkxHn+pZde0uHDh7VgwQJJl5ZaFy1apGeffVa7du2qM19wcLCys7P1k5/8RDfddJPeeOMNrVq1Sr169WpwjQDQEDZHS289AQBAoykrK1NQUJB8fX2b5FtQHA6HKisrVVpaWmd/b0tAYgYAAGARNGYAAAAWwesyAACAYbwuwxwkZgAAABZBYgYAAAwjMTMHiRkAAIBFkJgBAADDSMzMQWIGAABgESRmAADAMBIzc5CYAQAAWASJGQAAMIzEzBwkZgAAABZBYgYAAAwjMTMHiRkAAIBF0JgBAABYBEuZAADAMJYyzUFiBgAAYBEkZgAAwDASM3OQmAEAAFgEiRkAADBFS0+zmgKJGQAAgEXQmAEAgAbz8fFRly5dmvSeXbp0kY+PT5Pes6nYHOSOAADAgMrKSlVVVTXZ/Xx8fOTr69tk92tKNGYAAAAWwVImAACARdCYAQAAWASNGQAAgEXQmAEAAFgEjRkAAIBF0JgBAABYBI0ZAACARfw/wtqE9ID46UwAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAI4CAYAAAC2kpeGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAADFi0lEQVR4nO29eZhdVZX+vxISyETClEAmMk/FkJCgEEYBEcQgU2szaXdAaaCNIAhfaFpwxAFkiDTiEJkliUqrDCq2BlRElBkyz3PCHCAEQqB+f9Qv13d/btU+Vamb1K3wfp4nT+6pc+45e6+99q5Te7177Ta1tbW1YYwxxhhjKkbbli6AMcYYY8zWhl+wjDHGGGMqjF+wjDHGGGMqjF+wjDHGGGMqjF+wjDHGGGMqjF+wjDHGGGMqjF+wjDHGGGMqjF+wjDHGGGMqjF+wjDHGGGMqTHW8YB1+eMR220Vs2JD+/POfj+jYMaJNm4httonYZ5+IVaua96w774zYaae6e7ZpE9GrV8SDD6bX/O53defuvLN5zzLGGGPM+5I2Lb5VzhNPRIwZE3HBBRHf/e4/f37uuRHf/37EsGERZ50V8fjjET/9ad3L0Usvbdqz7r8/4mMfi+jate55a9dGTJwY8c47Ec89FzFixD+vHTIk4oUXIl59tVnVM8YYY7Z23nrrrVi/fv0Weda2224bHTp02CLPag4t/4K1334Rjz0W8fbbEe3a1f1s/fq6masdd4x48cV/Xvuf/xlx440RX/lKxOWXN/1ZfftGLF8esWRJRJ8+dT97+OGIgw6K+OAHIx599J/X3nFHxKc+FXHTTRH/8R+bXj9jjDFmK+att96KAQMGxKrmRpgayW677RYLFy6s+pesln3BeuONutmkffeN+Pvf//nz73+/bgZrwoS6GaaNvPlmROfOEcOHR8yc2bRnvfVW3UvbiBERM2ak53bZJeK11+pe7JTttqt7EZs/v2nPMsYYY94nvPbaa9GtW7dYunRpdO3adbM/q2/fvrFmzZrN/qzm0q5Fn37LLRG1tRHjxqU//8tf6v7/8IfTn3fqVPdv2bKmP2vatLr/9967/NyAAXWzaK++GrHDDv/8+ZAhdS9j770X0bY65GrGGGNMNdK1a9eqf+nZkrTsW8P999f9f+KJ6c9feKHu//79y7/TsWNdOLGpLFlS93+PHuXndtqp7v9Fi9KfjxlT9wL42982/XnGGGPM+4ja2tot8q+10LIvWCtX1v0/dGj95xuaNWrTZtOfmfsun7dRpzV9+qY/zxhjjDHvO1r2Beutt+r+33bb9Ofdu9f9v2BB+XfWrSu/vjHsvnvd/6tXl597+eX0mo106VL3/+uvN/15xhhjzPsIz2CltOwL1sbQ3PPPpz8/5JC6///wh/Tnb71VJ3TfOLPUFA47rO7/Z58tP7dwYUT79qn+KuKfM2x88TLGGGOMydCyL1h77VX3/5/+lP58/Pi6cN1Pf5r+/OKL6/4/7bSmP6tDh7o0DTNnRqxY8c+fP/JIXV6t0aPLvzNrVt3/RxzR9OcZY4wx7yM8g5XSsi9Y48fX/f/LX6Y/33bbuuSiL75Yl1bhuusiPv3piBtuqJv1+u//Tq9v06Z89qk+brqpTrReUxPx1a9G/L//Vzez1bZtxM03l1//zDN1ovoBAzahcsYYY4x5v9LyiUa7davLN8UwYURdHqwf/7guNNi2bd2M129/G7Hbbv+8ZtWqiJ4968J4ixcXP++OO+q24Hnllbrjnj3rfnb44el1G+/78Y9H/OpXm14/Y4wxZitmYx6sl156aYvkwdp5551bRR6slk/udNZZdWkZHnus/Nz3vlcnaq+tjXj33YinnkpfriIifvCDuv+vuaZxzzv99DpRe21t3b8VK8pfriIiLrmk7v/rrmtsTYwxxhhjIqIaZrDee69uFmvAgLqQXFP5wAfqXtCYw6o5vPVWXYb5Qw+N+P3vK3dfY4wxZitj4wzWiy++uEVmsHbZZRfPYDWuBG0jbrutbmZqw4amf/8f/6jsy1VE3bY9Bx0U8bOfVfa+xhhjjHlf0PIvWBERJ5wQ8cAD/9zsuaU55JCIP/6xccJ5Y6qMpUuXxrnnnhtDhw6Njh07xk477RR77bVXfPazn42lS5eWrvvyl78cbZqTtLfCVFt5jDFNw6sIU6rkjcYYUwmWLVsWo0ePjh122CEuvPDCGDZsWKxZsyZmzJgRU6dOjQULFkTfvn0jIuIzn/lMHH300S1cYmOM2TrxC5YxWxE/+tGP4sUXX4y///3vMUDSixx//PHxX//1X/Hee++VftanT5/osylJe40xph62xAxTa5rBqo4QoTGmIrz00kvRtm3b6FHfpuYR0Vb226wvJPf222/HhRdeGLvttlt06tQpDjnkkHj88cejf//+8e///u+l62655ZZo06ZNTJs2Lc4555zYZZddYuedd44TTzwxVmgi34iYMmVKfOQjH4mePXtGx44dY8SIEXHJJZfE2rVrK1dxY4ypMvyCZcxWxNixY+O9996LE088MX73u9/Fa6+91qTvjx8/Pq677roYP358/OpXv4qTTjopTjjhhHj11Vfrvf4zn/lMtG/fPn7605/Gd77znXjwwQfj9NNPT66ZO3duHHPMMTFp0qT47W9/G+eff35MnTo1jj322E2tpjGmCrEGK8UhQmO2Ik499dT485//HD/60Y/igQceiDZt2sTw4cPj6KOPjs9//vPRv3//Br87Y8aMuOuuu+L//b//F9/85jcjIuLII4+MXXfdNU455ZR6v3P00UfHxIkTS8cvv/xyXHzxxbFq1arY7f/PWfffsvNCbW1tHHjggTFixIg49NBD45lnnom99967AjU3xpjqwjNYxmxFtGnTJm666aZYsGBB3HjjjTF+/Ph455134tprr4099tgjHnrooQa/u/HcJz/5yeTn//Iv/xLtGljh+/GPfzw53viytFh2VViwYEGceuqpsdtuu8U222wT7du3j0MPPTQiImbOnNn0ShpjqhLPYKV4BsuYrZB+/frFOeecUzqeOnVqnHLKKXHRRRfF3//+93q/89JLL0VExK677pr8vF27drHzzjvX+x3+fLvttouIiHXr1kVExBtvvBEHH3xwdOjQIb7+9a/H0KFDo1OnTrF06dI48cQTS9cZY8zWhl+wjHkf8MlPfjK++c1vxnPPPdfgNRtfllavXh29e/cu/XzDhg2ll6+m8sc//jFWrFgRDz74YGnWKiIa1HQZY1ovXkWY4hChMVsRK1eurPfnb7zxRixdujR69erV4HcPOeSQiKhb9af8/Oc/jw2bsstCRGmV4saZrY38YOMeosYYs5XiGSxjtiK+8Y1vxMMPPxz/+q//GqNGjYqOHTvGwoUL44YbboiXXnoprrrqqga/u8cee8Qpp5wS3/3ud2ObbbaJww8/PKZPnx7f/e53o1u3bkmKh8ZywAEHxI477hhnn312XHHFFdG+ffu488474+mnn25ONY0xVYhnsFL8gmXMVsSnPvWpiIiYPHlyXHXVVbFmzZrYaaedYsyYMXH//ffHRz/60ez3b7755ujZs2dMmjQprr322hg1alRMnTo1jj766NhhE7aO2nnnneO+++6LCy+8ME4//fTo3LlzHHfccTFlypQYPXr0plTRGGNaBW1qW9ProDFmi/PXv/41DjzwwLjzzjvj1FNPbeniGGOqjNdeey26desWK1asiK5du272Z/Xq1SvWrFmz2Z/VXDyDZYwp8fvf/z4eeeSRGDNmTHTs2DGefvrp+Na3vhVDhgyJE088saWLZ4ypYhwiTPELljGmRNeuXeOBBx6I6667Ll5//fXYZZdd4qMf/Wh885vfjA4dOrR08YwxptXgFyxjTIn99tsv/vKXv7R0MYwxrRDPYKU4TYMxxhhjTIXxDJYxxhhjmo1nsFI8g2WMMcYYU2FaZAbrvffeixUrVsT2229fyvRsjDHGmOZRW1sbr7/+evTq1WuTkgM399mewfonLfKCtWLFirjkkkta4tHGGGPMVs+3vvWt6NOnT0sX431Ni7xgbb/99i3xWGOMMeZ9QUv8nvUMVkqLaLAcFjTGGGM2H/492/J4FaExxhhjmo1nsFK8itAYY4wxpsJ4BssYY4wxzcYzWCmewTLGGGOMqTCewTLGGGNMRWhNM0ybG89gGWOMMcZUGM9gGWOMMabZWIOVUpUvWMuWLUuO165dmxy/+eabpc9vvfVWcm7Dhg3JcceOHRt8Du+7fv367PnG3nfdunXZMnXp0iU51vp06NAh+5w33nij9LlTp04NnotIHbFdu7SpWUY9v8MOOzRYPt43Iq1f+/bts99l3Rv7nO222y4599577yXH2267benzO++8k5x7++23k+NddtklOVZbbLPNNsm5d999NznWrSdoQ3535513Ln1+8cUXk3PdunVr8L4RqV/zOcxvoz5DG9Kf1I4vvfRSco6+pvVh+WhT+oS2QY8ePZJzLKOWiW3Huqt/sbzsr7vuumuD93rttdey5Vc/pU+//PLLDZaf96FPvPrqq6XP7JNsV/XpiNQX2a4cB7W92HZr1qxpsPx8JtuZz1Wbdu7cOTnHcU9tw3Psz3rMvkL/UTtyfGH/feWVV5JjbR/6U86/dtppp+SctmtEeXsoLCPtpjbnWMzya927d+/e4DNNy1CVL1jGGGOMaV14BivFGixjjDHGmArjFyxjjDHGmApTlSFCaomoGdC4OWPU1CXxWL/7wgsvJOeoVVBNFrUh/G7Xrl1Ln3fbbbfIQf3HjjvuWPrM2D21Rz179ix9ph5i9erVyXFuKpXaipwGi2XifXVTUV5LDY3WnfoUah5Um8DyUgej99K2qO+7Oa0Ry8sNU9VHeF/aTW1KzUZO28Vj1XJFlGs4VJdBvQp1SeozvXv3Ts5Rf5PTgVHHxvI3dJ+Ick2T9nfWjdoc7c/sk2wr1l3LyPag/kl1PixD3759k2PVE1GLk/sudUj0CZZJ7Ua9De+lNuc5ll/LzDJQJ0ZfVJ+hvVl+9SGOa/yu2i3XXyPSduV9WB/qnbQcORvymL+TqN/V5xSNc9RVqW+yP/fq1Ss51nJUQ+jMIcIUz2AZY4wxxlSYqpzBMsYYY0zrwjNYKVX5gsWpWobCdPqV4They6lcnTLec889k3MMO+l0M8Nvu+++e3KsU+ksE8OJrJ9eT+fhczWEwmX2vK9ONTNUwWlqtRPDAgx9MTykz+USaj53wIABpc8MIXCa/fXXX2/wmQxz5JZFM0zMaXd97vLly5NzGpKNSG3DsBlD2+qLLB9tzPbIhT2YfkD9gPbPhe40NB2R2jsiLT/Ly75CG2t9Gcpju2sZ2Vf69euXHGv/5TNpJ6bGUB9ifYieZ59kiFPTUDB0l/NLjlVFqQsUhrp4rYbyOAbyu7k0JQwJsswaIqRN+dyhQ4eWPrOv08bazrmQMr/L8vO79EU9zzLk0jYwxEnZh/oi+yDbmWVUn2e7sowqh2D/NS1PVb5gGWOMMaZ14RmsFGuwjDHGGGMqjGewjDHGGNNsPIOVUpUvWNS2cOm2xsKpu2BsnHoDjXdTM0BtjuopuAScy7H1vtSYUD/ENAJaRi4rpuZBdVW0C/UFGvtnXWk31UbRhtQQ8DlaDmqWqAvQtqMOg+2udc1tBcL7Mt0A7U303kxdwGXRahvq49juWnfalNfSv1RLkkupEZH6CPUdRLWDtCG3tNHn0i9ZXpZJy7Fy5coGyxuR2n/gwIHJObZdTu9XtAWJ6onolzn9De2f8yfetynboLAM9BGtO/sgtUf6Xd6XaQHUx4vGXtZPx72iFDk6vnL8yfk0fY9207GY5cv5ZUTE4MGDGyxTbtsv9h1q1bTMvC/HlJyekXVlezz//PMNnjMtT1W+YBljjDGmdeEZrBRrsIwxxhhjKoxnsIwxxhjTbDyDlVKVL1hFWxZo/h7GyanroX5CdSbUG1C7o8fMicK4umoieF/mxqF2RHVL1HZR66LPYXx+xYoVybHmiqJmg8f6XWoEmC+JNtf2oQ6AdsptS0MdicI8M5pTJyLNeUQfoE3ZHrkOS72QlpH+wvxnel+WidoQ6kxUh0H7MzeOPpe50VSjwTLlND4sE9uGmjLaQv2Lujw+R/V/9An2u1x+LWooWWZtS5aXaL/jGMLnan2oxaGd9Lv0F+Z3os4n1x7UVWkfZZ9k/1Wb9+/fPzm3atWq5JgaOW0Plpe+2KdPn9Jn5pvjd3M6JOY3U3L55CLKc3Npe7FfsY9q32F/ZdupfxXlwcrlhWN/4O9CvVeRT5stT1W+YBljjDGmdeEZrBRrsIwxxhhjKoxnsIwxxhjTbDyDlVKVL1jUHVHHoJoI5piiXoLxez1mzJrf1Rw2jJszF47qDag54f5qmt+Jz2EuosWLFyfHqjOhFoT786lOg7oqOqk+l/oOaoCoA8hp1fbdd9/kWMtMPUQu1xX1NayP6kyoW8hpZiJSf6M+i+2R2yON2jrVkdAH+N1criVqNHLaoiINkO5jWLR3WVPKwHupnXKasYjU/1l+ate0/1Lfx75O/Vxub0vaX8tPDRP1NurzRbnpdGygDYty4Olz2X/ZRxXalHnJ1Cfol9xzNWcLlj+XlymXyyoiHVNYV95X61eUM47+pHVnW+WeSztR66jXFu0lyjLreERfy+35ybHXtDxV+YJljDHGmNaFZ7BSrMEyxhhjjKkwVTmDxXAEQwwaOuKUL6f+OQ2v3+U5hqF0+pXXskw6nV+0fJwpBxSGzYhOETOkxjJqObi0mSEFLT9DnAy5LVmyJDnW+uVCFRHplD1DarqMm+cZ1mP4RKfZuT0Jy8+/gJqyVZFua0H7sz763T322CM5N3/+/OSYNs+lFGCIROvDdmYoNRdOzPkIQy1cvs97aZloJ/YH9Wn2DbaVhjxpM44FDJlo/+C19BmFYwr7KMcCJZeOg+FohoPo82pj3pf+pGMo0yVwfNIyUb5An2Y763OKttTSdmeIjahPMKTMlBR6X7YNfY1+qz6R28KJ51lXylq0jzIcWvT7QNOWsD45G7O8LYFnsFI8g2WMMcYYU2H8gmWMMcYYU2GqMkRojDHGmNaFQ4QpVfmCxSXtjI1rTJv6By6JZWxcG4ffpfZL9QiMb/NY9RQsL7UI1Fro9SxTTkPG2D11JZpigGWgjkG1CdRd5PRaEakuZunSpck56mB69+5d+kxtC+2iaQLYrtQxaN1pQy5t5jJp9TfWNZfSgakJcluS0F+oZeG9VHeyevXq5FxuixumlWCaBm0PtjNTj6g2R3UhEeVLy9k+ep4aMi79V+0XtVBsu5xWkNuvUOejuiX6GscJhX2Q6VC07xSlH9Ay8RcFfYJbX2m7F6V40L7FcYHtoc+lXpH9jGOzXk9fo34oN0ayndX/6e9sV7VFbsugiHKf1zKy7rnUJCwvbaywr/C+tJvahjbMbXPEPmhanqp8wTLGGGNM68IzWCnWYBljjDHGVBjPYBljjDGm2XgGK6UqX7CK4uaql2DeFmpoGBvX89Rw5HKbMGfN008/nRyrtogaIMb2qf8YOHBg6TPrSm2OllG/F1Ge40V1GMxxRM2J6jCoBWF9qCtRhx8xYkRyjhoCvZYaMuo9VC/EurE91MbUm1EXQz2U+gi3vKDWRXVWzC/E8ut3eR/qYNiWqqfgd1l+1Rax7uxL6j/ML6Q5vnhfanyo12J9tN2LtipSP+Xgyf6r/YHnWH6ifk2fpp+qlod9he2stqDeJpc/j35JqEfT/kD/p65Hy1SU30ntyL7PtqNeSOtDbSPbR3V8CxYsSM5xTNRjavaYA0yfS/uzDGzLYcOGlT5TP0o76e8a+k8uX1tRDkXWXfsl+wqPc33ftDwOERpjjDGm2Wycwdrc/5rK9773vdh1111jm222iTZt2sSll15a+J3rr78+OnXqFG3atIn27dvHqaee2uTn+gXLGGOMMVstr7zySgwZMiQuvPDCRl3/pz/9Kc4///wYNmxY3HPPPXHqqafGXXfdFRdddFGTnluVIUJOmXLaWqdui9Ia5EI8DHvkljoz/MDwik5N58obUR7G1FBTbll6RBqeYKiOYYLc8nHaWMuYS5cQUV5+Pc9l0lw6rO3BcAPtpO3BunG5uJaZ6RIYNiCDBg0qfWZIluEIbQ9uQ8Nl9Wpz3pftkdu+hPanLTSsTJvmloCzrRh+0DIzdM2QIO+lZWQfzYU5GKpjO6v/F6UTIVoOygF4L/0rmf2B6UW0rTje0Cc0xQPTb1BKwPqojWlTXqtlzoWvItJQJO3A+nB80jKx7Sjf0PA7684yqn8tXrw4Occwn27dldvGK6I87KrPZchfZR8RaftwXOB9te70gdxWUYTXcpzQ30uUvLQE1arBuvzyy+Pyyy+PiIirrrqq8PqLLroott1223jyyScjImLcuHHxj3/8I2666aZGfX8jnsEyxhhjTKti+fLlsWzZstK/3B6/TWXWrFlleuJjjz023njjjbI/QnJU5QyWMcYYY1ofW2qVX01NTXJ86KGHxoMPPliRe69bt64safPGhUhz5syJUaNGNeo+fsEyxhhjTKtixowZSbiYUormQinGxrA85QU5qvIFixoBTsnpclqeo46BGiaFhuK1c+bMKX2mhoYagv79+5c+z507NznH40WLFiXH++yzT4Nl4DJ71RdRh8Eyqc4ntww9IrUj9TW0E7VSqtOgLoxaI70375vTxFHzQB3MrFmzSp+pR2F91N4REbNnzy59ppaCvqg6DU5JUx8xb9680mfWbdmyZckxdWOqXaNPsC3VNtyaiOk51Gc4gLBMOnhRi0NtHW2sOitqrmhT1avwPrSpLrtnW3FJPs9re1EXw76k96LecubMmcnx3nvvXfrMcSK31Qnvq+NNRLnP67i3cuXK5BzbWXU91AryOaoZpf+wr7MtVVeVG6siUtsUbbWkGjL6C8c5bWdqZdnO1Cmpj7OuuS3b6C+sj47x7PtMB8HfYZqWgvZm3WnzlmZLarB69+5d8ZeqjXTs2LHM1hvbdPDgwY2+jzVYxhhjjDH/P8OHDy/7Q+ree++NLl26ZBclEL9gGWOMMabZVGserFWrVsWUKVNiypQpEVE3Cz1lypR45JFHIiJi7NixyWryq666KtavXx9jxoyJe++9N8aPHx8zZsyIs88+u0nPrcoQoTHGGGNMJZg8eXJ84QtfKB3/6le/il/96lcxaNCgmDdvXrzwwguJ/OOQQw6J6667Li699NI49thjo127dnHKKac0KUVDRJW+YFG3wFwgGpdmfJux8FyMlroSaoI0vs1riepXuI0F4+Sq14pItRjUG1BboXoJagaoqdFraVNOc6puidvFEOal0fqxrVgf1VZQL8dlsaqnYLuyPmoL3pd6CWog1MbMscO20/IX5f1RPRr/6mJ9qLdRO1Lrxefk7kutjmqc6C9sK9XM8Bzvy/rpvemn1DBszDUTEdGnT5/kHDV96hMNiVA3wrFB604dEvVaOm4sXLgwOUfNjGoshwwZkpyj3VQ7SM0Y9U/Uc+mqqaLxSLWP1ELxWMcJauCKti3Te7GdOXap7pN2YV/KjUe57c+oI2ROQo5d+ruE9831JWpA+V095u8V9hX6qcJ2Zn20P1TDHn3Vmgfr/PPPj/PPP7/B86qX3ch5550X5513XpOfpThEaIwxxhhTYapyBssYY4wxrYtqncFqKaryBYvTr1yqrSESTjVzupWNofdiCgGGHPS7TDrG6W+dOmd5uRyby3/1mEuqGeLUKWGGNZYvX54c63Qyp/oZCtBQDG1YVHe9V9Eu87rUmfZn2FJDDgzT7LrrrsmxTsPzmdzqhGEnXY5L3+NSXQ3/MqzHUJ6GT+gTRVsi5ZZqM2SiYU3dHimibjWMom3FUCmPBwwYUPrMsCuh3fR6hjlYV/Xx5557LjlHX1S7MRRPH2G4V/sofYJhVy0zwz+8VvthTs4Qkfom/SU3/kSkbcc+yNCY+ibP0f85PikMU3LMmT9/fukzfZw+o37LurE/a9sVySb0Obm0MPWVX8dFps9hW6q/0ffYlrlcSUxJwfbQ/sC6Mg2FjpG5lESmZXCI0BhjjDGmwlTlDJYxxhhjWhcOEaZ4BssYY4wxpsJU5QwW4/65pcNc2kzdBXUBGqdmjJ1brCh///vfk2Nqo/S5jIVTq8OltqrBooaJugBd4q55OyLK9VuqHeEWEbyvahNoM7YHdTFa36Il+arDoBaN2gRd8k57s+6qw8hthxGR31KIGg1qOpQivY1qK6hDoiaO2gr1Reo5uP2H+hf7CjUcvXv3Ln1mXen/el/qg1h3+q1qpfhd2kK1arwv66NaHepetG4RxdtO5a7VchTpenQM4tJ+6trUFkyXwBQI9Hn1Wz4nt6UTz3HMVD+lr7HtqBfStmT5aTe1P6/lc3QcYZn22GOP5Fj9gOWjXpF+mtMt5crI/kpdntqYz6T/c9zWcZG/O+gTei/2h5bAM1gpnsEyxhhjjKkwVTmDZYwxxpjWhWewUjyDZYwxxhhTYapyBov6AuoyNBZO3Qt1DdSgaGycOYNymhrqpmbPnp0cq/6Dsft+/folx7q1RkSa84i5rKiLUf0N66o5aSJSDRN1U9Q8qP5Jt7SIKLcxdQuq8WDbUS+kduOWQbS/6id4X+pptH2Yk4nbumh+p4iIxx9/vPSZejOimjJqudgeqr2g7oJ6M2otVEOTy+cUkbYtdVXU0+m1tAu1IqoNoU15LTUp2u+ow2MZ1Z9Yt9yWTtTm0Ia0seZ7Yr+itiWnn6OP5LbU6tu3b3I8cODA0mfml/vb3/6WHLM/qE/ofSIilixZkhyrhknHl4iIGTNmJMcLFiwofeZYxfZgv1PtEduVeijVrvG+1KrpeMrth1gGtcsHPvCB5By3xmFOs6FDh5Y+Uz9K7ZpqO1k3jpk6y8KxlvpRalFzufaoKVPdFevWEngGK8UzWMYYY4wxFaYqZ7CMMcYY07rwDFaKZ7CMMcYYYypMVc5gUePDvDMad2YsnxoI7rOle5DxOYzXawyeuinqI/S+1AzwvtwH7a9//WuD3+Vz+vTpU/o8c+bM5BxzsWjsnxoy7hOmdmzK3nERafvwWtZV24P7j1FfoPcqyi+k8C8c6trWrFnT4HeL9pHUMtGG1GVoHiDqOWhjom3J/DbUyajOjToS6lVUJ8O2Iarrod6Jeg+2ner25s2bly2T+h5tSK2RaqfYrtRccb84tQ21mdQZqk6GbcX7qh/k7hORatfoh2wPauRU+0X9H/VPOm6wbWgn1YLl9tOMKNdy6tjGvpPLC8dxjX1Wy8z7MI+X2jS3T2FEeT/kPo0K9U9aft6Hx6qbpA/QxhybdTxlP6MeU32aOsmWwDNYKZ7BMsYYY4ypMFU5g2WMMcaY1oVnsFKq8gWL090MT2iIgdP1nNblNLwu0edWDnyupj3g1DhDVjptzel7XsspYw2RTJ8+PTnHkJuGKjl9zOeq3TgVzqXmaseiLTuYekHTLXD6nnXVKW6GRBiO0I7E0BHbWaFdGOLhFL2WiWEOhqE0bMPnMKWAhmJYt9y2RhHl9VUYHtV7MUTCvqM+Qv+nr6lPcGslDnLcpkZ9iP7EkI+Wn+Xlc7WMDDHzOfQv9XmmlWDYVb/L+zLERps3VN6INJzFNuf4w3FD2+Opp55KzjGUrf2DYSXaX6/lGMKQM7eh0rG4aGsiHUM5bjPth5aZ6XR4raZaYNvMmTMnOS4aMxWGF3Uc4XP4+0HHDYYP6S8cN9TmtGHOn1gG0/JU5QuWMcYYY1oXnsFKsQbLGGOMMabCeAbLGGOMMc3GM1gpVfmCRR0M0zSoNoHbDBRt6aHxbcbnmeZAdTPUglDfoboextiLtnlRPQLrQ1uoHoQ6AF6rZWQZqMtQzQB1CvwutSJaDm7ZkYPaqCL9nEJdg6avoN6JOgv6k25zQR+ghkyXl9P+LK/qVZiqg0uzqWtTPQXLxLqrLi+XqoPfpQ6JdtO+wjanho+pANTGtDc1Tap1pPaM12pfYd048NKPVb/C7XuYNkDtxHQJOY0i+yB9nOcVtgdtoWMD60qNpWohqc2h/+hzc3qgiPz2YhxrqRdSTVNRugQdn6jLY7trv6O+jPpRPle3CaImkbpCHUeoIcttE8Q+uffee2e/q9srFW2xpWM8f6+YlqcqX7CMMcYY07rwDFaKNVjGGGOMMRXGL1jGGGOMMRWmKkOEjDNTm6OxfeZ/Ybw7px9i7JvbcqgmhRqNXH4n6mmoGWAeI80jxelPxtX1udQb6DYiEandinJxUROUuy+1InrM8lPXo8fUaLCMqj+gnoZ1f+6550qf6QPUBzFXl+pMaAdqZtQ3n3zyyeQc/Un1H9SyPPHEE8mx5meLSLVs1ABRP6cap6JcUGrTIm2U2rhI70RNisJ8QjltHX2A7ax2odaR+kvdAiYi1XpRQ0af1ucU+ZO2B8tP/1Fb0A9z943ItwdzgqkmlGWgDknHiZxmtb57aRuwrdgfVN/FtqPeSf2LeetoN9Wm0afpexx79V7UO1FPqjanVpZ51FQTyrahnWbMmJEc50JgtL/qxnK5AbcUDhGmeAbLGGOMMabCtPwrrzHGGGNaPZ7BSmkVL1hcrqxhQYYbuMyYx3ovTjXzOdqQCxcuTM4xbKBT3gxbcon+iBEjGvwu4VS0hg1Yd06H61R00fSxhu4YjmM4hcuZNSzCMjBkouVg+JDXajiObTVv3rzkWG3+zDPPZMvLELSGQegDbBsNa44aNSo5x7QfGp5jiJlbjjA0oyEGLmFnKE9DuFyST7tpeIjXcjm8XsvwCX2EIavctQzjaN3pA6yr2p/l5cDL8JaGf9mfGQZneEthmEbrx/7KMLiWkeVl3Wkn9WP6C6/VujJVAfuDjmX0d/ZR3kvTNnCcIJoSgfdl2CwnJeBzdBxkWHXIkCHJMfuh9neGTunTGkbmc+hrep7hZ7YVx3ENFVMiwrFL/TSXAsS0DK3iBcsYY4wx1Y1nsFKswTLGGGOMqTCewTLGGGNMRWhNM0ybm6p8wWIsnHFnjZszPs9YOGPuGv+mLomaFF3WTY0ANUBa5iIHmzZtWnKs8XqWIZcigXoJ6p9qamrqLV9Eud1UY8O4P/UetFtuiwamCVBdA8+xnbXuXMLOtAZq87322is5R70EtQqqU+IWKrqNDsvEdqZOSW1MPQe1RTNnzmzwu2wr6sQ05Qb1HWwbrSu1UfSRnE/QL+l7Wmaeo/5G2511pa+pprKo/1L7oluQaGqUiPL6qS6Gmp9evXo1+F3akCkGVMNEn6bui/6lmjO2M7V2StF4qu3M+/A5HAe1Dfgc9jO1E/sD9Wdqf2rt6Ld6nn2DqRaYTkTvRR9gmbTdmRKEfX/27Nmlz+p39V1Lf9K0Dhx76Yv6+43pgUzLU5UvWMYYY4xpXViDlWINljHGGGNMhfEMljHGGGOajWewUqryBYu6F+aV0vg34/yMWVPnQ42HQg2ExsqpW+B9VGfCvEXMxcX6qHaEGgfqGridT0P3iUj1Bsx9Q7SutAO1LtRP6HPZHtQb6L2ppeBzqIFQuOWFakWoG6EuL5fXi3l+VIcXkeanor01J1BEqlNiGajBoi5J8ynRhrRTbqsWDkbadmxn+rT6LfsVj1lGPU//p//od1k39gc9pt6G262wfVSPQ/+hpk/1LNTwzZo1KzlWjQ11X6y7Ppdb+bCu3LZJ25J+yrZULRXtkNNQ0g/pt0Svp9aO/Ux9k2XIbYeTG7Mj0jF+2LBhyTnaJedPbCtqv7QcRTmn1P9pf25TRu2U6nupC6ONVYdbDVvlmBS3iDHGGGOajWewUqzBMsYYY4ypMFU5g8Wlwrmd4nktp4AZhtJwEKdu+Was92ZYg1vl6FQ6tz7gFHdTtkVhGES/y7Af78vQhsLpb60rzzHkxuNcmCC3/UdRmGn16tUNnmOIRMvMqXJO5zN0oX7A+9L+GqJlKJvhXL0X68pQEv02FxahL6r9WX6GPTTsVNTO6hM8RxsylKT1YT9je+i1LBPRe7Gd1V8iysNdGm7Zfffdk3MM2+t32c+4HY6G+orClHovlpdtzrZUirYJ0n5IH2DqmqZAH9d758YqPpf+z7bUMBrHeB5rGRgSZF2ZGkPv9fTTTyfnOH5qOoUiGYLaiXUllAto/+Z9WT+VrnCMbAk8g5XiGSxjjDHGmApTlTNYxhhjjGldeAYrxTNYxhhjjDEVpipnsBi7p65H4+ZMw0C9RE6rw3g2Y+655csso8bNuQ0HdUjcZkR1V4yjc5muxuSp26HWQu9FLQK/qzalHXJ24b1YN2pQVJtADVNO08QyUIek7co2X7lyZXJMO+kSfbYdl9LntF68r9adf3XRb3ms9875cER+SXhOl0GfZvm1L/E+1MFQV6X1YVvR91SDwnZmfdT3aFNqH9k+2s5cGs8tVVQPRb+kBkvHEZaB7ao+XbSsnmk/tL24VUtOU8lr2XYcBxWmp+G4p9/lOcJ2V3JaWWq72B/UN6lnoo9wLFC/pQ6PZcrpbKnJVZ9hP6OObcSIEcmx6vhoU6YXqTY8g5XiGSxjjDHGmApTlTNYxhhjjGldeAYrxTNYxhhjjDEVpipnsBizJqqP0O1gIso1G9Rv5fILMTau+Uuo7eJbtF67aNGi5Bw1ENS6aBmp16JOQ2Py1AdRB6PPoQ6GWik95n1pl5zOh/oO6lW0PkVbg6iegrovbjehz2WOJuqH6APaliwvbTpy5MjSZ92mIqK8nfU51LLQxjmoBWH5VQdDDQrbTr/LfsYy6X3psywT66e56nhtbksnbpnC/qCaJpaf+fKYf0jbi/el/kbzHBVttzV37tzSZ9aN+bbUFkU5jujzue1ZaAv1RY4h1AupPpMaOGrV2JdUi0QfYVvq2MXxiH1fbUO75HRgJKfDi0jHkaItedRHWP6cro2/K9iO9APtSzndWkTqI0XbGpktT1W+YBljjDGmdeEQYYpDhMYYY4wxFaYqZ7A4LZpb6s+tDzglzCW9OrXLpc0MLWm4RcMAEeXT1EOHDi195jYKDFVwilhDF5yiZxl16pnT1ETtxvsy5KnhIYa6GFJg6EJtvnjx4gbLQHJbpkSkYQ+eY4hTfYLXcuqc4RQtf27Ljoh0e5OiEJuGoRg+Yd1zYQ62M6/VctAubDttd/pAz549k2P1A4YauUydfUev5zmGE3OhbIaktD+wnRmSYshH+yVDRUzPoX2SoUeOKeojLAPRMvTt2zc5x1Ak/Uu/y7YjGvajv+jWXBGpnYpSRzDcq/IGjnO5lDPsD7mxl2WiL+pYzPsUSTv090cunBuR9mf2FabUaOh7EeV24XfVF/l7hrbQvpTbWmlL4RmsFM9gGWOMMcZUmKqcwTLGGGNM68IzWCmewTLGGGOMqTBVOYNFbQVj1qpVoMaE8XnqD1SbwDh6Tv9E3RE1KBpHp76gSH+jW0FQQ8Dlv3rM+1BzonocarmojdLYPu+T21aH11MHwC16tO34l0huqxlC+2tdue0JNSe6NVFEqtHitfQ91URwCw+WP7d1CO9L7ZRqW3htTpPIZ9JH1I+pteNSeV2Wzr5BrZFq0yJSn6FdqInL/UXKa7X8TElBqFfRPjB//vzkHHUyakdqoaj71PPUUXFrE9VdcWxi32FbqiaIPsC2VDsV6S+13dlf2a7UJOqWMNSq0aZavyJdkqbuoBaKY6T+DqC/0058rvZh2oW/S9Sn2a7UUWmZ2c7sO6y7+jzHYo57WuairYq2BJ7BSvEMljHGGGNMhanKGSxjjDHGtC48g5XiGSxjjDHGmApTlTNY1F1Q86O5chiPL4pDawye+gJqajRWzmuZ62r58uWlz4zlU7PBbTlUu0BdGLdjUb0H4/HMw6RlZH4hll/1EbQ3dW7Uc+Xy6PBaLQc1J7S/Qp9gmbTMtAP1c/369UuOtfy0C5+by0XE8qsepyi/E7d0Uu0IfZrP1TLmtuyISNuDbUU7qQaFWhDmsuK9cvnmaGO9lnbK6TGpjSraJkihXmj48OHJsW6ZxJxZRG1De9NOCscu6oeonVI/4F/xuXGC24nR91Qjx7Yp0mTp9bQ/fUZ9nPfN9TP6D3VUOg4WaU1Z90GDBpU+My8ZtwnS9ijaVqcpW4JRY6btxXGBY5v6Aft+S+AZrBTPYBljjDHGVJiqnMEyxhhjTOvCM1gpnsEyxhhjjKkwVTmDRe0E49BKr169st9lvFt1JtRC8TmqhyrKg6X5YBjLZ44aonqDXN4iHjPmzvwqmluJ+gjeV79Lm+Y0V7w3NSd8rh5Ts0S9hGpUqFPI7VdZ5D/UmahWihoa5qfSulP3QrupZoY243epYVL/yu3pFpFq2Yr28VT9Cq+lnfQvRf7VyGPeS6GGjBqanF6L7aFty5xM/G5uXz32fZZJNUILFy5s8D4RaVtSb8m2UzvRhtSUEe0Duf7Le3OPQGof1UeYB446JPZD1WQx31mRTk+h3kzzTHH8zI0F1HZR00efUZtzPGJuK9Xi8Vr2bz3W3w31lYk21/Yp2rM0t+dnS+AZrBTPYBljjDHGVJiqnMEyxhhjTOvCM1gpVfmCxZACtz7RaV2Gg7j8miESDSNwuphT3DoNzJAO0ZAOn1m0JYxOpRdtq6B1L9oqR8MeDCdyOlnDQ3Pnzk3OMXUE66NlzoV/ItLl2FyanUvPwS1IGJJSG+aWoUekS/B5PcOHvFb9h2FihifUv0aOHJktP+uuqRgYamF91MZsm1zYjP2Mx1r+3NL4iPLwooaCGSZmfdQWbGfaRc/zHP2f59VPFy1alJxjGErtxHAcbaqw7zPMpKEw+hrDi+yz2vcZbmMom31A4ZiiYyjLwLZif9D68hzHGG0P+hPHHC0/Q7S59ujdu3dyjuFE/r7Q+jJszJCt/g4oCufqdlxsK4Zd2T9yaVdYHw3/5sL0pmWoyhcsY4wxxrQuPIOVYg2WMcYYY0yF8QuWMcYYY0yFqcoQIfUD1Lao3oD6IC73pU5J4fYYuSXI1FYwrq76DmpZqHlgrFx1JdQXsD6qA+B9OHWqmghul5HTJVEfQX0Nt2pRnQltSO2a2oJ6G+p6VItA3QuvVVtwWTq3l+BWOeoj1JxQJ6MwLQP1ZqrpYJnYdrkl7LyW/qW2oP/wuVrGlStXJufY7qrBKtrChj6idqRPsC/pvdj3eawaGmp+OE6wP6jduHSe6VzUT9l3qPXS/kC/zPkP24aa0FzaD+qbWNdcP6M2Te3I8YbpCNiWuVQqfK76EK+l/+tz6e8cC7Q/T58+PXst+4f2fbYdtb9qY46B9D09TxtS78exmPdSOD7plmH8PdNStKYQ3ubGM1jGGGOMMRWmKmewjDHGGNO6sMg9xTNYxhhjjDEVpipnsKgFYXxeNQSM5VNzlcvDNHPmzOQc4+r6XGpMcpoBajaYe4WaAr03tRXMkaLPZcydsX2tO+3AWL6WkVoE6lPYPmpT6kr4HL039SnUxeTyYBG1C3MCUVdCm2oOHrYr2051MizTPvvs0+C1tAO1IfQv9WteS/2T6pT4110uH1KRhk/LXFQGll+PeY7+o88p2hpEz6v+JKK8X1HLom3JfHm0k9q/yKaLFy8ufWafpF5Ly0+NFbewYX10bGCfZJn0u+z7HGNUl8S2YV/hc3I6Seqd9NoirWlOl8d219xXtAvHGLaH9lHmwcptS0PdFJ+j4wjP8b5sH/0ux0SOrzn9bkvgGawUz2AZY4wxxlSYqpzBMsYYY0zrwjNYKVX5gpULCZJcGCCifDpWp1G5fJ9T3JpigPfhlgy6dQKn9lkmbn/Qt2/f0meG5+hMely0jYJOuzMswBCPhi44Xa/pKiLKp631Xqx7ru1YV9ZHQ0cMvTAMq3ahvWlD+peGFYrC0xoa4DYoS5cuTY41tEHfYtiAYRAtM23IMqndGGLLbSfDECfbLufTfE5u6yKGRxky1DLyvkzpoMdsZ/ot67777ruXPtOHBwwY0GAZi+x/wAEHlD5zaT/DP7rtC+3PcBx9RK/nd2knbWfeNyeFyG0lE1E+Dqo0guVl/1YfZzvTpnovnuOxjtMM3TFslvt9kStDRNqW9AneV1Og5NLPRJSPDTrWMZTNMLLalNs/mZanKl+wjDHGGNO68AxWijVYxhhjjDEVxjNYxhhjjGk2nsFKqcoXrNz2GBGpvoB6DsJYv2oXqBvh8l9NezBr1qzsc3T5LHUA1DxQD6W6H6YYYPxetTBFeiFdgkwtArUUakfahekfuP2Ntgc1G9SFKdRV5TQbbGdqaNTmRbo8dlD9LjUzuSXVXNbNLXhWrFhR+sw2p4/Q51W3RL0N24d+kLuv+g/LQLs0JR0KNVo5DRk1QXpMPQrR8/SJ3BZUEakf5NKHRKQav9mzZyfnOE7o9iysa27rmaKtZagB0vbK6SD53VxKmYi0//K+RSlOtL6sey71RW5ci8hvF0MfmTdvXukzbcat1Fh3HYMGDRqUnGM767Xsz9TzajmKxn/WVccVjtvs66q/pF7LtDwOERpjjDGm2Wycwdrc/zaFk08+Odq3bx9t2rSJTp06xQ033JC9/txzz42OHTtGmzZtYptttokhQ4YkORMbg1+wjDHGGLPVct5558WUKVPi1FNPjXvuuSeGDRsWEyZMiEceeaTe62+88cb4/ve/H8ccc0w89NBD8b3vfS+WLl0ahx56aJOeW5UhQmOMMca0LqpVgzVp0qSoqamJW2+9NSIixo0bF9ttt11ccMEF9b5k3X///dGuXbv4xS9+ERERhxxySPzxj3+MX/7yl016blW+YHE7A2pF9DzzgjA/EvPD5LY7yG0Hwm0tqJdQ/QHPcXsDxtVV10ANBDVNWn7qtahjUJ0JtUXUUalOg9oiloH6Fc0jxbaj5kHLQR0G0bajjoSojVV7FlGeX4vbaagtqCOhLkOniKmhKco3pNCG9AnNPUZ9DX1ey1G0/U3OjtRVaVuyb1ALkjumX7KMep66KurntO60IevGvECqx+FU/0EHHZQcaz/kOMHnqo3Zf1l31SX16dMnOUedJ22q7cw8fHyO9geeo/+o71FzyP6Q01TyuxwH9bk8xzFHbV7kwzm9GaGuSn9fUMNEu2l75HyA99V8chERf/rTn5JjarC0DkV57dSOrUn8XQmWL1+e6OK6du1a5tsRdTZau3ZtjBs3Lvn5iBEjyrbL28ixxx4b9913X3zlK1+JL33pSzFjxoz4v//7vxg6dGiTyliVL1jGGGOMaV1syRmsmpqa5OeHHnpoPPjgg2XXz5kzJyIiBg4cmPy8R48eMWPGjHqf8R//8R8xZ86c+PKXvxxf/vKXI6Luj4DHHnusSWX1C5YxxhhjWhUzZsxIVrnWN3ulMIpTW1tb9rON/PrXv47rrrsujjnmmBg/fnzMnj07vv71r8eoUaNKL2yNoSpfsBhSy23twJDCCy+8kBwzZKjhIk79c0pYwyK65D4iP0XMqX8+h2Xkc3NoyI1bs3BJtU79c2qZoQzdrod1Y/n4XbUpUy8wjKkhBoZ/+FxtO06Vs11zYTKGtzjNq8u8GarjUnO9N8MRnG5muFRhOIV117AC2462UN+rbxBRNMzBEFSuvLwvQzxN2eqHS+k1DQj9h4Om2o39ilsX6dY4EWkoZsiQIck59m8dc2gXhnx0vGKYiT6iYWS2Occ91l3bvSg8qudz21VFpP2bYe6isKvaiXVnP9TQPfvksmXLkmMdUxjW43e1XSk7YFtxzGHKBIX9Q23KlCw5uQN/ITOlA9tZx0yWgTbNpcloCbbkDFbv3r0LX6oi/jnez58/P/n5Cy+8UCYf2cj5558fPXv2jPvuu6/0sx133DH+8z//M5566qkYNWpUo8rqVYTGGGOM2Srp0qVLdO7cOXlZiqj7g3jEiBH1fuftt98ue5Hf+MdGUyZE/IJljDHGmK2WM888M6ZPnx7jx4+Pe++9N0aPHh3r16+Pq6++OiIixo4dmyxo+uhHPxpLly6NU045JR588MH4/ve/H1/4wheic+fOMXr06EY/typDhMYYY4xpXVRrmobrr78+Vq9eHbfffnvccsst0bFjx5g4cWIceOCBEVEXLtQQ9o9//ON49dVX43//939j8uTJ0bZt29h9993jZz/7WZOeW5UvWNTXUIOlsWZqsKjvYGOoxqYodYHG9hmrZ7xbUxkwrktdAzVY+hxqBHJLeHNbm0Skmizel9oovRd1C9T8EH0udWBMk6H3ot6JddUpWvoEY+85/RBTRXCpuS7fz+lGIlI78pm0sdqRujXahakj1KY5zVtEqluiNofaKC0zNUxE+wf7CrVSrI/6AfUpbLvFixeXPhdtiaTL+Zk+hG1HP9a+wz7IFUZaX/oe/VY1NZpeI6K8j6o+k+XlGMO2U51SQ+GLjWgYgxom+q36GsvEvsPxVcc29iv6hNaH/sQxRscCjsu0qfoTxxCOvQzv6HnWTf0yItVD0S7Dhw9PjrXMvC/HaW7no7bh7z6OR9q21CCalMmTJzd4TnW4G/n5z3/e7GdW5QuWMcYYY1oX1TqD1VJYg2WMMcYYU2E8g2WMMcaYZuMZrJSqfMFifJuaE42FU7tCDQfz9ahOhg1FXYl+l1trMNeVappyeYoi8ttNUHPC45xeiNu6qB6HdaNmQ3UkzMfDfELMzaLtQ70Nc+OoNofaFubYUY0Q9UKatysi1eOwfNzmiNoWbS9qNKjjUT1F0RZI6ptF+dmKtm1SqGFSn2fdiOZ74rXUz2mZWT5qjXivXH4e6mRUE0S9EHVtmjOLGh/6Hn1ej9muzEumeijqXkaOHBkNwXxauTGGYxf1Nhy7tM+yvPQ97Q/sg7n8c3wmy88xR9uLfsl8Tzru0V9oYy0/fx8MGDAgOdYy83cF+xHtpOWnLqyhHEl8Zn3H6l/UCvKYNtZtkDjOsT46BjWUNNO0HFX5gmWMMcaY1oVnsFKswTLGGGOMqTCewTLGGGNMs/EMVkpVvmDl8vxEpHoQ5nShNoExa42NM25OXYxqczT/TkS51kufSx0J68Myq/aFWh3eS3UMLG9uLz/qO6hrUM0J60rdRf/+/ZNjzc/Da6lTUtg21HAsXLiw9DmnL4tIbcq2yeVC4zH1c2y7nIaPOhL1iZxmL6Jcr6J25B5a1M9p3elbLKPqluj/RP2SmpkiTV+u3Vkm/S7bJrd3HOtatJef9i3Wndo79QNqJrkHqGrKqFWjP7Hf5c6xf6vP5PRNEakWjH2Sx+wvSk7DyjLTx2nT3B6y9AnNS5TLExWRakTpp9Tp8buqg6OGL6eNom9RT6flYH4qjun8rv6OYvlzORabsoWL2TJU5QuWMcYYY1oXnsFKsQbLGGOMMabCVOUMFqe7Gd7SqVCGijhNylCMTqlymprTrzrdz2lqbmvB6WWFU8QMjWkYgWVi+VeuXNlgmXitTi9zGpqhVJ36Z5iS1/IvCA0pMqTAMI4uUWaoguiUfFH6jdx2GbQ/7aTfZZm4TYf6D8NZDE9oyIo2ZEiNqQw0HQFDRbSp+jxDd3qfiNSm9GGi92KqDn6XW5JoGelPTAehNmcIikvaNXxC+xP2Z/Vb3jeXooJtxbacPXt26TN9iyEpTSHCdmR5+Vw95vYrvFb7B1NSsD9omejDbA+OzTquLFiwIDm3xx57JMca8meIjbIEtQXL269fv+RYzzMlBf00FzLndkkcX3XrHNqboWBNr8O6MhRMP1CfoV8yDK73ou+1BJ7BSvEMljHGGGNMhanKGSxjjDHGtC48g5XiGSxjjDHGmApTlTNYXJrKuL/qQRgnp4aA+i2FuiTGu5cvX176TK0XNRCqGaBugbowvoHrMbVc1GXo8mzqFhifV10A7cK4v9a1aAkyn6P34lJtanO0rtTQUNuiW+dw+Tu3JFHNCe3C8rNMuuyeOgZuyzFz5szSZ7YrtSLqI9zyiHWlBktTYVBHwu+q/emntJvWneeYZkLLTM0JfZxlUr+lvdlntfyqEYuIeOKJJ5JjbQ9qGdkn6fN6nt9l31fN31577ZWcY324nYnCJfma0oR6oaLtb7Q9WFduD6Vlpo6Q46vei+Ml+xk1iupDuS3AIlJtEetGXVJu6y4+R+ujGtX6GDJkSIPfZX/Wvh6R9tEiranalH2bfYntk0vlweeqHXmflsAzWCmewTLGGGOMqTBVOYNljDHGmNZHa5ph2tx4BssYY4wxpsJU5QwWY+HM46L6CcbnqVmiJkV1GTzHXCZ6nrl8GHNXXQZ1CtQ1qA4jItViHHTQQck51UZFpPWlNod6IdUwMT6f2wKDuXuoZaFOSe1G/QB1SWpT6kb4l48+l5qZnI/Q3tR7aD6eiPxWRcyptXr16gafk8vls2TJkgbLG5HXdNCfctvSUO+R095RH0T/1+/uvffeyblnn302OaYmS3WSbGeWX21etPWV2om6KZaf7a55vZgfjP1D+xb7GfV0qpukvoztoTZnfjP6NPWYqiWkv7B/qN+yrtRVaX2oL+OYwjxrekyfJqrXYl05bg8bNqz0mT6sfTAitQvz5bH8uXxVtDf9NKcrJDqmc7xh3Tlmat/hc6i907GBmkrT8lTlC5YxxhhjWhcWuac4RGiMMcYYU2GqcgaLaQIYNtDznJbu1atXcswwgU6jMvzAqfTcVhwMHTG0pDCUlNvRnecYBtHpZW4ZwXCETpczrMcQg5afS+X53VyIpGiaWsMtDAuw7hpO5NJyPkfDrlzGzfAJwwg6Dc/wLcMEan+GWnJL/RmqKNoOSm3Oa2mnQYMGlT5rWDiiPPVCzqcZPlGbM4zB9mA/1LqzX7HttO4MNRL1TYZaCMcNHRumT5+enGN9tL6aMqC+41yIk31F+x3HKoYi58yZkxxru7P/MhWJhuaL0pRoqJLtWNTv1DfZVxhOVJsyPEqphz43t7UY0ZQrEcVyDe3D3A6K44SOr/RTygPULhyXGTKnjfV62onhUS0Hfa0l8AxWimewjDHGGGMqTFXOYBljjDGmdeEZrBTPYBljjDHGVJiqnMGi3iO37J7xeH6X+iHVS1CLwLQNqnPgMm4+V+9FbRGXGVP7pVoS6m0Y658/f37pM3Vgue0zqNuhFke/Sx1J0TJ7hfanDkOh1o5aBC1HU8r0/PPPZ59DG2vdqaVg2ynUqlFTo9oRakHYHtRWqM9Tb0Mb6zHrRv2H3pc6JOpgqN1RaBdqv3TLJC5/z6WooA/Qbtrvcv0ootzGWj/qeuhfeq8iDZ8e869rll/LzNQd9OmDDz64wfJTL8QtqhYvXlz6TJ9mn9Txim1Dn6A/1dTUlD7PmjUrOfeBD3wgOdYxlG1F7ZTq9mgXjol6ntsPEbaPjhsc1+jjqmujDo/9V59DP+XvJLaHjlcsL/uH2oK/d1oCz2CleAbLGGOMMabCVOUMljHGGGNaF57BSvEMljHGGGNMhanKGSxqrhgLV80MdUeMo/NemquIWoq+ffsmxwsWLCh9Zj4S6jI0fxL1BYyxUxOhWhFqvVhG1dusXLkyOcfnqsaDb/3UNeTIbdcTkdq4SMeg2gWWn/bX+tAO1KCojqdoWx3qlFRrRB0edW6qw8jlPotIcwbltsOIKPdTzWlDvRx1MKrZKNrSSW1OLQj1QqrpoP2Z24q6N/WRefPmJeeoI1Gbs0y8r9qR7cwy0b9Up0Q7sX9r3Yv0cto+HI9YH+13zFvEvs8cZupPvJY+rmXkfeg/2h+Yi4t1z+XJov1pJ9UoMp8WfULrw7pxLNN25TM5HrH82l68ltpNHZ94LW2q2iieK9qOS/06t9Ubj3Pa2C2FZ7BSPINljDHGGFNhWv6V1xhjjDGtHs9gpVTlCxanOhm60ClWbk/CsIGGdCLSZd66s31E+VSuTv3zOdwmRcNMXK5ftNWJ1pdL4/ldnaZm+WfPnp0c63lOwTPspNPUjz/+eHJu6NChyTHDThq24dQ/Q5G6ZJnhFIZ0dOk2n8mQmt6LIQWGLhjibKh8EeXtodsT0bd0aXxExPDhw0ufi8KJ9HG1G0MV9B8N4dLe9Gn1f/pWLn0Cy8CwE5eIq78xTMZwnIZL2c9yaQ7YNrQLn6v9bODAgck5jhv6XIbjcuF1ptRg2Ft/OVA6wHGPz9FQK/1/7ty5ybH2b4aZiIYF2XeKti7Se7OtmJ5Dy8RQF9udfqvQb3PjNMNvTK+jPsQUDxwj9bkc4/n7QP2U6YCKQp46hrK8tIt+txrSNJiUqnzBMsYYY0zrwjNYKdZgGWOMMcZUGM9gGWOMMabZeAYrpSpfsBi7pz5CDcxlxdSRMIatcXQu6SWqCeJWDtQQ9O/fv/SZOgwucWdsX2Pn1DBRZ6V6J57bZ599kmON/VMvlFvivsceeyTnmFIgpwHae++9k3PcQkX1B7QDNRCqn6AWZMCAAcmx2oX6CGquqMvQtqTWiDoZ1UBQr0U7qS/yWmqymLpD24db8lDrohoh6m2GDRuWHKtP0AeobdHnUA9E/2f7qI9QG8Lyq2+y77B/q06J/sP60E/1mGPMyJEjG7yWaUqoHezZs2fpM1Mv5Jb+67ZXEeX+w7ZUH+GYwl86+l32B2odVbf0zDPPJOcOPfTQ5Jjb+6jNWVe2h9qR2jTaOJemgX1Hz1Pfx/7M3wfqX7QhU4Rouxel+FFbsO9QJ8Z76Xf5+4DH2u+owzMtzya9YL3zzjuxatWqePPNN6N79+5lv+iNMcYY8/7CM1gpjdZgvfHGG/GDH/wgPvShD0W3bt2if//+UVNTE927d49+/frFZz/72fjHP/6xOctqjDHGGNMqaNQL1rXXXhv9+/ePH/3oR3H44YfH3XffHU899VTMnj07Hnnkkbjiiitiw4YNceSRR8bRRx/tqUpjjDHGvK9pVIjwr3/9a0ybNi322muves9/8IMfjDPOOCNuuummmDRpUjz00EMxZMiQTS4Ucx4x94fqI3iO+g7G3PW7jM9zOxOFeg/G0fU8dRjUFlFbobqGwYMHJ+eoYVLNALU5ul1PRKqTKcpRo3qhpuRHikg1Nsz5QjstXLiw9JmaDercVPNAHQnzemn9WIZcjqOItL6sK7VR+lxqfKhLUj9mLjFeS12J2oZaQfYP1TAxZxNnldU29EvqnXLbiDC3GLVq+l2WiZos1agMGjSo0WXiOWrr+Fz1A/rPs88+mxxrGIKapdx2XByPOKboti66bVREubaLdtKxgD5AW2g5OHYR1fFQ28i+zv6hfkstkWrTIlI/Vc1qRHmfzOki2XZ6Le1CzRj1XPr7geMnf3eojpK6qtyYSP/htfQn9RH6E22s9eU41xI4RJjSqBesn/3sZ4262XbbbRfnnntuswpkjDHGGNPaqcpVhMYYY4xpXXgGK6ViL1jz58+Pz372s/HHP/6x2ffiUlRO6+q0aS4sE1G+fFy3+OA5hhg07MFpdk7n6xR3bnf0iPKQj4ahOH3MMmrIgcu8GbLSMCBDgrSpbvXAKXlq6hi60HtzCw+GQ7VzMCTIqXJdJs3QBO2voUjakEu3uSRcfYihLoY59FqGyXKhGA4KDInwORqeYJoJ2k3bnf7CvqS+SH8pCqUqDJFwmyD1EbYrfUKP//KXv2TLoH2LITaGhukzeswyMRSjIcOia59++unSZy7Xp43VpxnWo12Y2kP7PstEv+W4qDAcrf2dYWP2JYb8NezH0B39VH2ToVP2Zw3bczxlX9Ey5cbWiPJxkM9VuBWT+jTHEPZ9rSv7JNNx0G+1TEXbP2l9aH/T8lTsBeuNN96Ihx56qFK3M8YYY0wrwjNYKY1+wZo4cWL2PN/ojTHGGGPerzT6Bev888+Pnj17NjilypVnxhhjjHn/4BmslEa/YPXr1y++/e1vxyc/+cl6zz/11FMxZsyYihSKGgFqflRnRe0Bt4TJLYXmSyF1SboklpoGao1UK8Jz1Bswtq/ai5qamuQc0zSo/oPlpd5G9R7UzDCWr/WjNoT6Aupt9Hram9tN6HOK7K87BDD1BXUY2lbULLFMOZ0bNRq0hR7T3vRT9U0ur6bOTTVwEakugxoNPld1J9RR8VifW6TZyG3ZQW0UtTvUD+W+q7CfUcej0C+Z4oRaqVmzZpU+Dx8+PDnHJflqJ9adbTlw4MDSZ9qUfqpL9qkNpH6UfV/1OOw7HGP0WvqApkrheY5N1FyxP+egD2iZ+EtStbER5bZR6D/aP7QtIsr1TkyZoN/lGMky6bhetNWP+h41ZPQR6qxyqRdyaTO8o0r10ejEGWPGjInHH3+8wfNt2rRpVW+WxhhjjKkcG2ewNve/1kKjZ7C++tWvlv0lrdTU1JT9ZWSMMcYY836k0S9YDF2R9u3bR79+/ZpdIGOMMca0PqzBSmlWmoZvfetbcfbZZ5dpjpoLc7xQr6Lni7aBYCxfG4f35XYsqsdhLhNqE1TDwTh5LsYekWo6nnjiieRcU/Q21BDocS6fVkSa04nX0qGpNdJjajT4XdUfMI8UtzZR/QoXV1CTlasr8wvxvLYX7c3yq++xvNSvqFaNeiDqMqgdVDvSf6g71Hux73DWWXVutGnOLwl9jzbV9shpriLS9mH52c90rGHbUJfEdtd704a0sdqG/Yo6PdXqUEfI8msZ6RM8ZvlVn0adas6/mBuKvqdaKeqOirZ0UrtRW0Qb6zG1UbncdXwm/5BXX2TbFK1u13Gb1zKHll5Le9P31Kb006Jce1oftgd/R2nfyuU+My1DszYvuvLKK8sExcYYY4x5/2ENVkqzXrBaU0WNMcYYY7YU3ovQGGOMMRXBEy//pFkvWDNmzCiLCVcC6jkY29d4N/VAzL3CmLzG1amtYAxedUoMhTKOrpoN6jCopaDOR3VkjO0zb4vmOqEOhhoajc9TC0J9jX6XOYF4zHupLdhW1Clp56NdaDetO/N2sUxqQ+oWqDmh3kbzJ9EnaCctE32fOgzNvzVz5szkHPUd1MRpfekTRJ9bpKtSn6H/sPzat4p0ec3Rf6g2ihosPke1atRQap6riHLtl9pm2LBhyTnaX7VeHBc4FqjfUhNKm6qdeF9q+HLJm9keuedwTOQejdpn2QfZrrm9+4r0sHqemkP6qR5znOAerKph4n3YrkRtUaTh07GM5WduwAEDBpQ+Uy9KG3NsOOaYY0qfi/RbOjbwOabladYLFpOtGWOMMeb9iVcRpjRZgzV16tTNUQ5jjDHGmK2GJs1g3XTTTfHVr361we1yKgW3J2EoQENUnCpn2IOpAHTKm6EuTofrcuDcNi4R6VQ0w3oMkzG0pNPNDGs0ZWsKhue0PpxaZsgtt9yXdc9t0cNwFsMTGtpjqI7T+fqXCtuZ6QfUZ4rCNNzWRcNStD9D0Boi4TYuDPFomVgGtmsuNMb2yIU8WX7eV2E4hdfqfdlWvDYX1meZ6Ke5rUFofw3Z8r4MfXHcUP9iSCe3fRX/YuY2O9o+tCnDTFqGXLgnonzLLb1XbssUlqMoFKz9hXag7/F8busu1k/bPReOjkhTM+RCvRGpTWnD/v37J8esj7YtfTq3/VCR7EPLwVRBRRIMHdvYdvzdos+lDVsCz2ClNPoF6+tf/3pcd9118Yc//GFzlscYY4wxptXTqBes888/P26++eZ44IEHYuTIkZu7TMYYY4xpZXgGK6VRL1gTJ06MH/7wh7Hffvtt7vIYY4wxxrR6GvWCddJJJ8UVV1wRhx9+eAwcOHBzl6lMe8A4tOoPuKyecXTquXRpNGPj1CWproR6AqYCUH0B9RHUejG2n1tSTa1Rbul2bqsTxucZ91cNR9F2MdREaPmp1eFzVKfBFBo5HQzbmVoKfW5ui46Ick2cpmmgtoLbdKiP0C+pDdFr6Yf0Efqt1pc25bHqPdjOLKPaje1KHZVqc6hro96GaJlYBupk1G7075wmK6cviyi3uULfo8+rvo59kv6kfYftmktFkrN3RLmGTO9FzRXJ2Ynf1fM5HWd95/WY7cr66bjBMnBM1PIX6bV0TOd9mQqD9dFj/t6hj2v5qaHMaR+ZkoVjOsdI1VhyrGIqBi1/U/S6ZsvQqFWEU6dOjXHjxsURRxxRuLeTMcYYY95/eKuclEa9YLVp0yZ+8IMfxMknnxyHH3745i6TMcYYY0yrpklpGr75zW+WLXE3xhhjjLHIPaXJmdzPP//8zVCMFMa+qS1SvQT1EYyFM7av11PjQA3WihUrSp8ZN6cmSHVW1HbpfSLKdRkagy/SSqlepWhbES1TUX4htSm1REW5lVQTRI0GdRi5PFj8rmoicvaOSG1K+7Ptnn766eRYc6XRhmwrzX/G+9JvVadHPRC34KGNVY9D3Qjtn9vShroe/S59gO2h98pp3iLK7aTXs+1YVx4r1N+ojan54bUcN/R63V4lorx/6FYnzHfGMUd9htpM9iW1f25siohYsmRJcqz1o59y7FLoA2w7fS7vW+QjCn2P/UH9gNdSf6n9g+3McUL7JDWT1GSxnXWsYB/lGKMaJ+YypP+r782bNy85t/vuuyfHzKvWp0+f0mfakDnw1E6t6cXj/UKTM7k3xLvvvhu//OUvK3U7Y4wxxrQirMFKadZehBF1G6z+5Cc/iVtvvTVeeeWV7Co3Y4wxxpj3A5v0grV27dqYMmVKTJo0Kf72t7/FYYcdFt/4xjfi+OOPr3Dx6uBUv05Tc7k1wzYMF+l0MsMeXGKtU8acWuYWDBoGzO1WH1EeEtGpc4ZTGGLQe3Pqn2VUO3GqP7d0u2gLFYYttT4sA+ujx7yWaHswfMJQTG6n+yOPPDI55kpYbR/WbcSIEcmx2pG+NmPGjORYy8xrGWrJpfbIhQ8jUh9hO/NabVumJqCv6bVFy/X5HA1d5ELKEfnUIwyR6HNzdYsot5uGnJluhuE41ZoynMXyq9SAYSaGdHSrE9o0l2aF5WD4iuh5+kQu3Msy0CfY7urj9Cems9D2KgoTa7sXbWmmduK4zLZjGbV9GOZbsGBBcqx1pc/mtr/p3bt39lr6nibz5rjBtA3aXgyztgTWYKU06QXrkUceiR//+McxderUGDJkSJx22mnx6KOPxsSJE6OmpmZzldEYY4wxplXR6BesmpqaePPNN+PUU0+NRx99tPRCdckll2y2whljjDGmdeAZrJRGi9znzZsXhxxySBx22GFlYRNjjDHGGPNPGj2DtXDhwrjlllvinHPOiXXr1sUpp5wSp512WnbZ7qbCGDVzb2n8m/qOHj16JMfUQOjbL/USujw2Io3nL1q0KDlH7VdOr1KUekHrR80Sr9V7s+7UKVFPkSuTatV4H+owcpoZnuNS9NwWK7ntP2hT6rf0ObwPtRX8rtqYNqPWS/Ue1ADR11QvUZT6gu2RswXLqN/lc6hf0Wtz6U94LetKv6ReSDVlRRqm3BjCtlJNCv2fdefyfi1z0ZY8+hz6Huuu25dwnMi1I+vNvk9/0jLndHgRabuznekTep5loo2pFVRNFvs27Z/TL+a2wuJ9iPoXt4uh1o62UJsydQdtrKkwFi5cmJzTVC8RaRoH+gt1bC+//HJyrOMV02/Qxlp3lqkl8AxWSqNnsHr37h2XXXZZzJs3L26//fZYtWpVHHjggbFhw4a45ZZbYs6cOZuznMYYY4wxrYZNyoN1+OGHxx133BErV66MG264If74xz/G8OHDY++99650+YwxxhjTCnAerJRmJRrt1q1bnHvuufHYY4/FE088ER/60IdK5x5++OGyaV9jjDHGmPcDzU40upFRo0bFxIkTS8cf/ehH46mnniqLgTcG6iG4/YHqhaiPoI6EcXQtD3UY3DpH773HHns0eC4i1SbkthyJSPPxsByM11M/pDoBxuP5XC0jNRosQ267FWqycpoCajZoY9UeFSWlVQ0T7c2/YvQ89U3UOLCM+l36D7Ui1E8o1IqofovlJ7k8OtTxsH1y7Uz/13uxXanN0fMsP21MDZbaOKfbaSq5vsI/6HJ51ugTbGfV6lAHw1xEy5YtK33WPHsR5T6hdmEfLMpLpm1Q1HZafuqDqO3Svl+0/RbP57YuYvn1Wp4judyAuS15qNel5oo58lQrxXNsy1wZ2Ee1f3AMV81efffS+uTsHZH2h6IxZktgDVZKxbbKIa3JCMYYY4wxlaRiM1jGGGOMef/iGayUqnzBYliD0/caMuT0PadJOQ2vYQVOaXOJdW76mCESncrlFhGcPuZWLTrdz9QRhGERhaEXDZEUbcuhIQbajMdsD20vpq/glHYubMNQktqF980tJ+d2GQyfsN21TGxXflfDBqwbQ8xaH7Zrbrl1ROozbDse63cZOuKx3pdba7CdtW+xTzJsw3Qc2h65UBGv5TkOplof+hK/y5Cb9g+OG+yzGt7lVif0RaVfv37J8axZs5JjtQVDRUVpV3Ln2J/VF1lX+rT6BMOHbGemE9F+yPrwXjp2cRyjXED7S5FEQctEn+DYmwsj04a77bZbcqw+0rdv3+Qcx16tD0OEtOHcuXOTYx2/6Jcso4ar2QdNy7PZQoTGGGOMef9QzasITz755Gjfvn20adMmOnXqFDfccEP2+tdeey0OPPDAaNeuXbRp0ybat28f48ePb9IzN9sM1uZIQGqMMcYY0xTOO++8mDJlSnz605+OT3ziE/GlL30pJkyYEGPGjImxY8fW+51hw4bF66+/HldeeWUccMABMXfu3MKFWWSzvWC1pjipMcYYY7ZOJk2aFDU1NXHrrbdGRMS4ceNiu+22iwsuuCAeeeSRsuu//vWvx6pVq2LevHkxaNCgiIg46KCDmvzcJr9g3XHHHXH66afXe+6iiy6Kq666KiKKtUQ5cltRRKRaEWpDGAvnvTSmXaR50Jg265NbFs0yUevCZdOqCeJ3+casuhK+xFLHo7F+loFbCqm2iEuduVyZGiDVZFEDQf2Bapxy24hEpHoJag+ot1GdDDVWbCv6iOpVuDUObbpy5crSZ2qL2B6qfWEag9yWQRGpjekT1HBoOXiOPq19h5ortrse0/60Mc+rH7Cu1PCpTxS1c267G/Zn2lyhFofPHTJkSOkzfZrP1XbnM9nX1ebUcuU0VxGpH7BMLL8eU0tEbZT6P8/l0m9EpOku2FdYJi0/r6VPqE2Zpodjuo6JvO/8+fOzZdJ7c5yg7la/y3PU6an+kuPls88+mxxzbFY/4NjL5+Zs2hJsSZH78uXLk9/nXbt2LdPBRtS1xdq1a2PcuHHJz0eMGBEzZ86s9xmTJ0+OHXfcMU477bT4xz/+Edtss03svffe8cADD2TTd5Ama7A+97nPxb333lv28y984Qtxxx13NPV2xhhjjDFNoqamJvr27Vv69/GPf7ze6zZu48ecnD169Ch7sd/IqlWr4pVXXomFCxfGj3/847jsssviqaeeiv33379JZWzyDNbkyZPj5JNPjl//+tdxyCGHRETEhAkT4u67745p06Y19XbGGGOM2QrYkjNYM2bMSGYd65u9UqgLr62tbVArvvEZ//jHP2L33XePiLpozFVXXRUvv/xyo2exmjyDdfTRR8dNN90Uxx9/fDz22GNx7rnnll6uhg8f3tTbGWOMMcY0id69e0efPn1K/xp6wRo6dGhElIeLX3jhhTJJxUZ22GGHaNeuXenlKiJKE0qPP/54o8u4SSL3k08+OV555ZU46KCDonv37vHQQw/F4MGDN+VW9cK4P42gsXDGt/lGyu/mdDHU1GhMm/F5xtw1Fs5tOJifhPmeVIPC+lDDlNPmMAav9cmdi0jtRJ2Cbs8TUa7T0Pqybrm8Osw5RU0K69fQfSJSbR3rynbmXx9aZp5jLiW1E+P31DAtXry49DmXI6u+MqtOLGeHiLQtqc1hO+sxy0QtiLY79VpFeb106p25fFgm1fWw/NT86Hn2dbYzz6vNWSb+1a06H/Zf+m0uDxztpt/lfagtYv4qHQtoF6L6RtqU+kvVibG/cvxhO2seJmobGX5RbVEub1REahu2Yy5/G/sVx3+2h/oM7c+6avmpQaT/6HZuufyKEeUaOX0Oy5+bHfJWOfXTpUuX6Ny5c9x3333x7W9/u/TzmTNnxujRo+v9ztixY2PBggWxatWqUvv89a9/jYiIMWPGNPrZjXrBuuCCC+r9eY8ePWKfffaJG2+8sfSza665ptEPN8YYY4zZnJx55pkxceLEGD9+fJx00klx+eWXx/r16+Pqq6+OiLoXqueff740y3X11VfH5MmTY999940bb7wxFi9eHFdffXUMGzasSSL3Rr1gPfnkk/X+fNCgQfHaa6+Vzjv3lTHGGPP+pBpnsCIirr/++li9enXcfvvtccstt0THjh1j4sSJceCBB0ZEXbhQV5Dvtttu8etf/zo+9alPxXHHHRfbbLNNjBo1Kh544IEmPbdRL1hbWrzOkAiPdcqboSJOkzKUoef5XV6bW+bNqWgNpzCkNnv27Ox3ddqaU+cME+h5OhpDDgrtwmt1OpzT6Fw+zu/qvVleLrHOtR3DZBrGYViJNtSQCcMcDFXwuWpHnmN9tO4b86NshG2nodYiG/JYQ5MM8fA5esw/ctjuaqeicLqWgSk1WF6GlbUtc2G++o5zz1FYN44TPK92YuiL7ZwLcTIMqOGgAQMGJOfo/zrG5CQJEeXjTy50RAlDbvl+Lr0Fry3yEb2e1+bagz6cGwvYd3Lh6dzYFFHeHnpvloHtoxoehgg5Hul32Xfo75r6JSKVn6hv1XetliPXV0zdAr2GmDdvXtnPjjnmmLK0PU2lKvciNMYYY0zrw0nG/0mjVhGeffbZsXTp0kbdcMqUKXHnnXc2q1DGGGOMMa2ZRs1gde/ePfbcc8844IAD4uMf/3jsu+++0atXr+jQoUO88sorMWPGjPjLX/4SkydPjt69e8cPf/jDzV1uY4wxxlQR1arBaika9YL1ta99LSZMmBCTJk2Km266KZ577rnk/Pbbbx8f/vCH48c//nF85CMfaXahGAtnDFs1EdQEcOk5tQnaOLyWOgyNqzPuz2s1Fk7NBuPmK1asSI5Vs8X4PG2heglqpXJLh3mfnK6tSLPEWL9qRWgn6jJyS/L5XNVhUPfClRw6w0odDLeX0KXlEfmtl6hXUX0X60pf1OXXXAKeS1VAcvqsiFRnwsGHx6pXoQ6Gmh+tH9uRGqbcMnuWn88t2jaoIYr6Crep4bYaCrfj0jJzWb1uoxORLsOnXoi+pz5NfRD7L+2mPkN781jbku3K5+j5Ir0ZfV7LWORP6ossA22h9eG1HHt1LHj++eeTcxxTmBJB2za3hVZExNNPP136TP/nc7XuzA9Jjejq1aujIXiO/VDtVJTOxWx5Gq3B6tGjR1x66aVx6aWXxquvvhqLFy+OdevWxS677BKDBg3yCkJjjDHmfYxnsFI2SeS+ww47lM2eGGOMMcaYOryK0BhjjDHNxjNYKVX5gkWNCXOMMDeIQuNTM6DbRHBLG16r8W1qHBYsWNBgmbjnEcOn1I7oeeZpYX4h1fmwTNSbqaaAeg5qCPS+1GEsX768wfJGpDoH2jCn36L2JpcHiBqlXM4a6l6KcnOpRo7X9u3bt8HnUBvILVVUO0INVpFP5HJbsS3V/tSB5fL1UAfGfqfPzdUtotymqnNj/2XbaTsXbUGiWh3alLB/672XLFmSnKNeS7dBomaGZdRj+l6unenv1AuxLXPbBOXyMLGvsy3VxvRp6qg4NqiNeY5+qtey7fgcHduYi4haKS0zfZoaJtZv7ty5pc9FOcxUv0Ufpk9o+/Ba2r9///7Jcb9+/UqfqYGjflT1Z/Q90/JU5QuWMcYYY1oXnsFKaVQeLGOMMcYY03iaPIO1bt26qK2tLYUTFi9eHP/7v/8bNTU1FUnRYIwxxpjWh2ewUpr8gnXcccfFiSeeGGeffXa8+uqrsd9++0X79u3jxRdfjGuuuSbOOeecZheKcXKicXWuZqSOhNqdXN4QahU0pw31HNRPDB48uPR54waSG2Esn99VrQV1F3yu6paKHE3rwzwzPM7lR2IZqHNQ7Qi1IMwvpDoN6haoVdAy8Ryfo+T0HPV9V+3EttEcRzxP36I+Qve36tOnT3KOdqF+TqFP0Baq92DdcvvB5bSAEWn70C5sO2rvtJ2pLcrlzMrtsxiRthXrVpRPS8cGlomaoIEDBzb6OarR4thFDaX6E8cqtkcu1xjLwOfovZmHjz6i4xz1rTkdVURqR9qQ5dfz9LXcHpocb3L7etIvd9999+SY2ju9FzVYtIXqbjl+0v7qtxwXcrkNI9K+xn1t2c/03rSLaXmaHCJ84okn4uCDD46IiJ///Oex6667xuLFi+O2226LiRMnVryAxhhjjDGtjSbPYL355pulv7YfeOCBOPHEE6Nt27ax//77x+LFiyteQGOMMcZUPw4RpjT5BWvw4MHxy1/+Mk444YT43e9+F1/4whciom6rAG4tUCkYUujdu3fpM6ePGVJgKGDnnXcufea0bi6cyDJwuxtdWsupfoaZcqGwZcuWJed4L50+5hR8bjl/UYhQ75VLgVDfsZafy4ppN4bGFE7v63JmtiPRMA5txuXjnPofNGhQ6TPDcfQnDXPQX3it+hfLVJRORENNLD/DUHovhrMYDmK7Kww75dJkMHTE52iZcyFZPodhJvqP1pU+Qf/nvdjfFfqe2pg25X01HMe+QXmApoOgDekjDHVrv+Rz6E+6ZH/XXXdNzrGd1W/pa0VhS7VbblzjvVhe+pce8/cK+6+GaBnC5HjKsKy2JcuUkzcw7Ecf0dAe25FpP2g3HUNzYfuItD2KpDVmy9PkEOHll18eX/ziF6N///6x3377xdixYyOibjZrn332qXgBjTHGGFP9bJzB2tz/WgtNnsH6l3/5lzjooINi5cqVMXLkyNLPjzjiiDjhhBMqWjhjjDHGmNbIJiUa3W233cp2Jf/gBz9YkQIZY4wxpvVhDVZKo16wTjzxxLjllluia9euceKJJ2avvfvuu5tdKOp4uF2JxpoZn2cMnnFp1XSwoaitUM0A4+TUKqgmi/oI6khYZo2j87tcHq+6JOoJcroG6oMYy1cNAbemoGaAdtJ7U0uUey7tQq2CajioV6FmQ7Uuun1ERHl9uC1K7r65rULoE/yjI+c/1FawnXNtl7sX25X31fbJtWNEWndqt3LXRqS6K2qw+FytD9uZz1GfYF+hZoZ6IU3vQj0WfWL27Nmlz/RTojZtyrY67L/Ua1E7peNiUeoLHfeoF+K1el9qiajByo2DuS2QeC19IjfGsF25nZU+l23O51AXpm3AsYspgDQNAvvvXnvtFQ3BNBksI8ccLQfbQzXEEeW/h0x10agXrG7dupUcih3BGGOMMcYzWCmNesG6+eab6/1sjDHGGGPKafIqwunTpzd47re//W2zCmOMMcaY1olXEaY0WeS+7777xne+852YMGFC6Wdvv/12XHjhhTFp0qSyuPumwG1DqMNQGL+mroFoXJ36CD5XG7JoywLVjhTlDMrlv2GZmLxVdRnUE/C+ep52Yexe6069DTUb1NDo9UW5ifQ8bcjn6LU8x/uqDallYYfkedW1UcNHvURuuwxqv+bPn1/6TC0F7USfUT/N5QiKKG93JaehoU3pT0W5xxT2UW1b+jT9R8cM1oXf1efwHH2CcgbVrxT1/dx2JXyOlon3oa/pc4vyIdGmbHeFmjL1edqbmib1Tfopj9lnVePE8ubGvdwWTjymFqpHjx7JsbYHbUhtnfb1iHI9l8K+o21Le+fyyzFvFzVZubpzqx9qylRr50Tf1UeTX7DuvPPOOOuss+L++++Pm2++OVatWhWnnnpqREQ8/PDDFS+gMcYYY6ofa7BSmhwiPPHEE+OZZ56JDRs2xJ577hljx46ND33oQ/H444/H6NGjN0cZjTHGGGNaFZuUB+vdd9+N9evXx7vvvhvvvvtu7LbbbmXLwZsDp9W5fYlOszOMwelvThFrCIhl5nd1Gnj58uXJuWHDhiXHmgqgaFf5XH2YVoIpBnSavWj3dH0uw0G5VBKc/mY4heFGDfHwOQwT5LamaMpfJtyqSG3KMA3DALSbho5Yfvri4MGDG7y2KJ2FwjAB20NtXpT2Q9uL55oSTmSIMNenGQ7KpePIbTfE57J8DMfptfRThq/YzmpHfpfhIB0LNL1Dfd/VMjMc1KdPnwbL+PzzzyfnuKUWQ2NqC9qJfUevLUqJoGE1+kDR9kNKLlVHRN6nOc5pf6b9e/Xq1WCZOFYx1QXHBu2H/F3BcGMuHUcuHMrQHdP0MI3G0qVLS5+LwsQa8qT/twSewUpp8gzW5MmTY++9945u3brFnDlz4r777osf/vCHcfDBByf6FGOMMcaY9ytNfsE688wz48orr4xf//rX0b179zjyyCPj2Wefjd69e8eoUaM2QxGNMcYYU+14FWFKk0OETzzxRFl4bMcdd4ypU6fG7bffXrGCGWOMMca0Vpr8gsWXK+VTn/pUswqzEcaoqQtQDQT1ENxWh1sL6BJfaqP4XNUBqPYmolxDoMtpqduhZonHWkZd2s/7RqQaLWoEGJ9X2/Ctn3oJ1SbwWtoplw6iSMOhegNey/Kr/qAoTUOuDGxX6jJy2gUuCVcNH7V01EvU1NSUPlPfx/tSk6VQy0L0uax7bjucXL+KSPUstDd9JJfKI+cv/G5uG52IVCtFu1Brt2rVquRYNTb0aepv1E7UZ1H/N3DgwNJn+hLToeh9acN99tknOab2SO/NvkI76b3ZdrxW250+TB0e21LHET4nl7qgaPsh1bLRDtRrqVaNGrgi39M+zD5I7ZT6F8vEbbJ0jOdYSx/h7xI9pv3ZPvqcapjZsQYrZZNE7suWLYtf//rXsWTJkrKOcs0111SkYMYYY4wxrZUmv2D94Q9/iI9//OMxYMCAmD17duy5556xaNGiqK2tdZoGY4wx5n2KZ7BSmixyv/TSS+PCCy+M5557Ljp06BC/+MUvYunSpXHooYfGJz7xic1RRmOMMcaYVkWTZ7BmzpwZd911V92X27WLdevWRZcuXeKrX/1qHHfccXHOOec0u1CMm1OzpJoI6mCoA6BWIZdzhzmo9E2Zz2FeLNWOUAvCnCncrkE1BMx9k9vmJWcXfpfaA25Voeepg1mzZk1yTJ2D6gKoL2B9tD3YNtTUUBOk5LZxoeahSIOiOhnm2Fm2bFlyrH5A+zPHzty5c0ufmZOJmiwea+idWhb6hD63SK+lNqeeI5dLieeasp0S/Sm3zRHbht/VctDf6S/0U/V5aqNmz57d4L04TnDrnJx+kfXRsYD3ZZ+kP6kmjuMR+4O2bW4bHV5LuHUUNUHaPmyP3JZI7GccC7TfUTOZ2z6JNqS+iWOzPpflZZ/N/d7hcxWOgbxvbgskagOp/dJ75drRtAxNnsHq3LlzadDo1atXIspmwjRjjDHGvD9wmoaUJs9g7b///vHwww9HTU1NfOxjH4sLL7wwnn322bj77rtj//333xxlNMYYY4xpVTT5Beuaa64phSG+/OUvxxtvvBFTpkyJwYMHx7XXXluRQjH8wKlbnfYt2oaDIRP9LqePuXWFhs341sypZg0vcrqey8VzIR9Of/NeOjXN6Xui09ZFIR0NI3Cqn2UoWmKdQ22aSxURkdaP4Vse6zQ8U3Ww7gzbaMoElonT93qeYQGm59BwEP2SZWK7a/343ZxPsO2IhqV4LY/1WoaGaEOGoBXaicdqU9qbdtLzDNMwFMPwroZbciGdiDS8O2TIkORcbksehj/33HPP5FilBRxD5s2blxyzPmpj+jhTRyhsu1zdOc7xu+wfei+OxQztqU8zzMqwmabF0a1jIsrton5AP2SZ6DP6O4BjClOp6FZGHKvop/octhV/H+RSR7DvU17C9mhpLHJPafILluZ86dSpU9x4440VLZAxxhhjTGtnk/JgGWOMMcaQ1jTDtLlpssjdGGOMMcbkqcoZLGoEqE/RLQ2K0jJwKb1qR6gloiZLY+fUOPA5uh0Lt2bJLSuOSHUO1AjwmDH53LVqm9z2EhGphoD3KdpSRZe8877U9ah2gfZnOghtK2oeWB8tP1NoUANBrYXee6eddkrOUfOg2xpRQ0O9n9qlf//+ybmFCxcmx/RjfS6XalNbpL5IfRZ9uqHvReSX5DOlAI9JTqdH++u19Bf6npaJ17Kf5foDUzjQ/trP+Bd5TlvEvs90EHPmzCl95vZb/C41odqWqgeKKPdb/S5TgFDvNGDAgAafyfGGaQLUjtSm9e7dOzlW3+Rz2JfUFuxXtL/6D/VN1Ar269cvOV6wYEHp89ixY5NzHMu0HGxXbpWj/YNjCP2U7a42Z19n38nZtCWwBivFM1jGGGOMMRWmyS9YDz744GYohjHGGGNaM86DldLkF6yjjz46Bg0aFF//+tfLls8aY4wxxphN0GCtWLEi7rjjjrjlllviy1/+chxxxBFx5plnxvHHH5/VezQFanyoWVINAfO08LvUaageh3qCXG4iaoCoN1ANgebQiYhYu3Ztcsx76TH1EozX63N4H2oV9FpqBHital2oXSH8rmotqM1hLhnVS+RyTEWk+gm2I/Po6H3pL7S/6qj4XWpzhg0b1uC9+vTpk5yjBkLbkjmy6Kf0PU3aS70WtTuqXaNuhBpEakdyZVLYrkW50VQrUrQ1i2oq6S/UY6pvFunA2Ee1LWkH2l99mn2QdtIxhc+k32r9WDfaheOplpFlYBm1PaijYt9RW9BP2df5HPVxjhtPP/10cqxlpp2oM9Rj2iXXv3muyMaq56Lej7q8/fbbr/SZuqrcFkncFoh15disv9+K9Miaa69om6wtgTVYKU2ewdppp53i85//fDzxxBPx2GOPxbBhw+I///M/o2fPnvH5z3++rFMZY4wxxrzfaJbIfdSoUXHJJZfEf/7nf8batWvjJz/5SYwZMyYOPvjgmD59eqXKaIwxxpgqxxqslE16wXrnnXfi5z//eRxzzDHRr1+/+N3vfhc33HBDrF69OhYuXBh9+/aNT3ziE5UuqzHGGGNMq6DJGqwJEybEXXfdFRERp59+enznO99J9tvq3LlzfOtb3yrL+9MUivaDU80JtR/UUlCnpBoD6lMY31Z914gRI7LXqvaFZaIuhrlZ9I189913jxyqN9D4e0S5hkDL8eKLLybnWH7Ve+T2uoso172proE5p6h50LqybZgPRjU2zN1DG6rdaAdqWZhDSHUybCvmP1uyZEnpM3Nx5XJF8T65/cci0vZijqNnnnkmOc7t5Td06NDkWLUv1PHwL0P1EepRcj4QkbYX+xm/q/WjNie31xr9nz5CH9c60E5sD9UWcUwhqsdZvHhxco79WTV+RftRUjulfZ9tx/bRfkgdGHMp6XOoK6T9OY6oz+Tyy7Ec1Avxu+oj9C32fT3PPkgfYa499Tcu2mKf1P5ODR/rqrn4eB9eS1STxTGRGl2tT24/0C2FNVgpTX7BmjFjRnzve9+Lk046qUFRe69evWLatGnNLpwxxhhjTGukySHC8ePHxymnnFLvy9VFF10UEXV/HR566KHNL50xxhhjWgXWYKU0eQbrc5/7XOywww4xbty45Odf+MIXYvLkyXHVVVc1u1BcVs9pXj3PqfHc9gYR6fQil89ySawe6xYXEeUpHvRenNrnNDuXSWv4iOFFTglrOJZ10/BVRBqCYNiP0+xaRr48c4qeIYdciGrkyJHJ8fz58xssP0NJOv3NcEpuSxumWsilHyBMtcDOrFP2nPrnczRcwW1DaFNu8aE+z+cw7Kdhb245wmu1fdiO9AkNRQ4aNCg5Rz/NhbfoEwzj6LXsg/Rb7Xdc7s7QC/1JbV6UzkXHGN6HY476DMvP52g7c3k+r2XIM7d1EcukfYvPYThO2ye3FVdEuX+pn3LcoO9p3dlWRakYFI6fmsaEPsFwNO00b9680mfahf1Bv8sy8L7aZzn+06fZ7hqGZXtwPNL6sQym5WnyDNbkyZPj9NNPjz/96U+ln02YMCGmTp3qsKAxxhjzPsUzWCmblMn9pptuiuOPPz4ee+yxOPfcc+Puu++OadOmxfDhwzdHGY0xxhhjWhVNDhFGRJx88snxyiuvxEEHHRTdu3ePhx56qCy7tDHGGGPM+5VGvWBdcMEF9f68R48esc8++8SNN95Y+tk111zT7EJxCpAxa11KnFtaHlEeR1edAOP8jHfrsl0u4eVxTkdCLUWuPtTicOmt1oc6DMbya2pqSp+pzyJaJupRdMlxRMSQIUMa/C41cLSxaja43QR1Dfpdbm9D/ZbqSLjdB3UjbDvVbFE3wmXpujybvsYZXNWJUcfDtsstWy/SC6ltqNcaMGBAcrxs2bLSZ/opfU/9lukT2M5ENWfso2xLbQ+mCXj00UeTY02XQpuyr1BTo7oq6mJ4rdqJ2/dQI6r6S9aN2kG9lpoZ2onH6gdME8Dya3vRt3isOh6OTdRvcRsw7XfUpVInqeMI25l9Sa+lho9jysMPP1z6vM8++yTnZs2alRwz7YGOi/RplknHgj322CNy0DcVjqfUGKvd6NO8r9rcaRqqj0a9YD355JP1/nzQoEHx2muvlc5bZGeMMcYY08gXLIvXjTHGGJPDM1gpzdqL0BhjjDHGlLNJIvfNDTUn1JVo3ijqdhhjZxxdtS/URzCHit6Luhceq66BoVLWhzm1VONBrQvLr2XiVi3Um7388ssNXsvn6DHj/MxZQ+2UaiKol6C+QDUefA41cKorYT4btpWWiedYV/qM5nSiZmPlypXJseonmPeHGgi1C//qKtIP6XOpOaF2SvMADRw4MHJoPiv2K+rC9LnM40VdIcukfYs5s5inTLeXoV2o49H+UKRPYT9U29CfctscFW0LpNvSULPEdte8dtRyUReW68/UFbJMep79lWVUvRm3uuIYqbrOiNSHPvCBDyTn+NzRo0eXPmtdIsrzrKkt6NO0k+omuUUbNXEce9VO7A9sHx2fqGnlWKB6LdqMdmF9tBzU1nGrn379+pU+U0PZEngGK8UzWMYYY4wxFaYqZ7CMMcYY07rwDFZKVb5g5cIlEWkIiEuOOc3LEJVO5TL8tmjRogafw5Agv6vhCE7jMnTBaXe9nuEsPlen1vkcTltrKIzPZNhPw5RFIUKGTHQ6vGibnb333rv0mWFLXssyK0y1oLZgGRg2yKW+YFoGhjyHDRtW+ky7cOm8hsYYYmP4gSE3tQ3DV/Q9bTuGjmhjXdbNEBpDFbpsnSEdhiNoC7Ubt6RiGg21E8Mn9DX1CV7LFAL0A61fLiVIRFpf+gD7qLY7z+V8REO7EeV9nXZSaQTD4AwlqT/RJzhm5sKJDN3RD7Q96P8cR7Q+9GENU/JeHP/ZrurjTIHAX8ZsHw1Xz5gxIznHUKr+fuDvGYZz1afZV9h29AMNRXKMp5+qb9LXTMtTlS9YxhhjjGldeAYrxRosY4wxxpgK4xksY4wxxjQbz2CltIoXLMaWVVfFZdyMb1NroZoOpnTIPTe35UVEqpOhjoHxeS5p12PqMKhr0Gu5BJnP0fQQ3O7j+eefT45VL8F0CQsWLEiOuexej2lT6tpUJ0MtBXUZqheizXitaivYNrqVRkT5UnTVNXALD+qfdJn97rvv3uB9IlJb5PQcEeXbdKi2gmWiLkO1LbQ/9TaaJoN6FGpFtMx8ZtHycR0EWbdcyhPqwLh1i2rXqGvjVi30Y/UZ6m2YCkB1etQw7brrrg2Wn35JvZ/2FV1iH1Gul+OYo7of9h3aX+3GcYG6NvVpnqM2ijo3tQU1Vxw3tBz0CY6ZWnf6GscCrStT4tCG1JTp+KppJCJSzVtEuk0TbUqfUD8u0iCy7toPOcZz3FYNGfuKaXlaxQuWMcYYY6obz2ClWINljDHGGFNhPINljDHGmGbjGayUqnzBYu4q6gI07sz4fC73TUQa72YeIG7hoXoJ6muooVGY04g6jFwuGWp+qP9QbQ61LNQEqaaDTsncMqqXoB1oJ5ZRNU3UJlADp3mmqOWifkU1J7QpdXmqvaBGQ7fSqO+8lp9tRY2falKo92O+JD2m3olaKWrttL2o0aCuStuDWhy2h9qY7Ugbq1+yTxJqXfQ5zBlEP9VrWQbWXXVLbCtqstjOOo7Qp3P6J9qQ1yrMuZbTrrHNWXfaTXU+7Pvss9q/VTtU33P1OczPxj7J8Ujbg/2ZPqEaIZaXZVL9HMdejmXa91lejhPUM6qmjBomPlfvTQ0ZtWrqm7wvdWLUhWn92M7UcirUwJmWpypfsIwxxhjTuvAMVoo1WMYYY4wxFaYqZ7B02XBExF577ZUca9ivKEzD6X1OuSq5N2Mu2WXYUkOGDP8UhT10upnhH4YjdIqey30ZjtOpadqFddUQYVFIkMvfeZw7p1P2TB3BbWq0/LmtTCLS+rBubHOGu3TJPkM8tLGGndhWDAPmtvop2npJj9mu/K76E5/JcITakX5Jv9Vr2c8YYmb/0HAW7c3Qnfo/z40cOTI51mXqAwYMSM7l7BKR1o/Xsj5qf5YpB/sZy9jQMyLKfY330n7JduU4oSE4Lu1ne2hfYgoTlpE+ou1OO7E/HHTQQaXPHFNyITfagbIQTbHBECe/y7CyjhUsP+Ulesy0DPx9oH2HdZ09e3ZyzNCq3pshTpZJv5sbh7cUnsFK8QyWMcYYY0yFqcoZLGOMMca0PlrTDNPmxjNYxhhjjDEVpipnsJhqgVoXjXcXaa6Ixu9zaQF4be5cRKp9YZyfMXgu21V9C+tDvYQuxaVmg2VSjQ01TNTUqF6CW3hwCTU1cqrboO6CNlbtC9uKuio9zyXIfI5qFWgH6hhy21xQ78S2Uw0E24Ztp/anzXLaLt6Lupff/OY3ybG2LbVF7EtajiJ9x/Llyxu8lhog1k/bndqQXOoUljenfeTWPhwn6Ae5VB70J7Uj+77aJSJNO1G0BZKODfRDlnfp0qXJsZaD9s/pfIYPH56co49oKhL2V7YHt8rR73Lcox7w8ccfr/d7EeXtrPWhb+W2SCpKFUFdnj6H1zKdiOr0eB+m49D2Yduw/NOnT0+Oc+lEWD8tB59jWp6qfMEyxhhjTOvCIvcUhwiNMcYYYyqMZ7CMMcYY02w8g5VSlS9Y1DxQL6RaC+oYuBUCNQXcokFhDFs1HsxzQr2E5l9hThpqHqjL0PpQB9CrV6/kWHUO1OZQF6COmNtyJyLVDFBjUqS/Ua0Iz9H+qudizpp58+Ylx6phYs4mll/1EUU5v4YMGZIca84d+gCPdasKatU0l1hEqj1iu1K/xfrNmTOn9JlaI/qetjttyueqH9MurGtuWybqbahhyumF2Ge17WgX6rf0XhwnqGvjd3UcoV3oE2oL2pTaHO0vzKPG72r5i/LN5dpj8eLFyTnaVDVmbCvqeNRO1BKxPVgf/S7HGOrRNCcY/WnhwoXJsY6RRdufaZmK9H65bdf4u4P5qrRMzNmXG6eZM4tlpC00rxe3xqFPqD+1phePluDkk0+OX/ziF7Fhw4bo2LFjfOc734nPfe5zhd/7/ve/H+eee2506NChzJ+KcIjQGGOMMc1m4wzW5v7XVM4777yYMmVKnHrqqXHPPffEsGHDYsKECfHII49kv7dkyZL4/Oc/HzvvvPMm2cMvWMYYY4zZapk0aVLU1NTErbfeGuPGjYsnn3wytt1227jggguy3zvooINi//33jz333HOTnluVIUJOmXL5vqY54BQ2UwowJKjXF4WSGIpRONWs9/rABz6QnJs1a1ZyzO0odGqdu7LntrShXfiWrWEClpfhRN3RnaGL3JYjLCO35aD9dYqV9h09enRyrCEfpmng1iZDhw4tfS5als4l+jU1NaXPuRQUEWl4haEWhvI0pKBLyes7ZhhN22DmzJnJOYZT1P5sG4Yy1E8ZVqKv6bW5LUYiysM4uS2FmDJE+yTDTAxJaciE7ciQLc+rH7BMDDeqfw0ePDg5xxC6hhsZKs1tn8RQEetKm+r1HPcYutBtqChJYF/SMvHaovQuKgHgd/fee+9oCPYdbpul/ka70P+1r3BMZyg4F17k+MkQofYt+gvbUq/lfVgGjuM65rD8fI72w2pI07AlNVjLly9Pft937dq1bPyLqOvra9eujXHjxiU/HzFiRNnYqpxxxhnx0ksvxZw5c+Loo4/epLJW5QuWMcYYY0xD6B/GERGHHnpoPPjgg2XXbdSzqrYtou6lXvehVX7/+9/HLbfcEr/5zW/K/vhtCn7BMsYYY0yz2ZIzWDNmzEgWYNU3e6UwMlNbW1v2s4i62dXjjz8+Tj755DjqqKOaVVZrsIwxxhjTqujdu3f06dOn9K+hF6yN8pH58+cnP3/hhRfKQr0RdfKAN998M+66665o06ZNtGnTJh566KF46623ok2bNvHd73630WWsyhkspjmgfkihZobXcvm7alKoGWAD6b2oZWG8WzUD1BfwOYy5q86hSP80bNiw0mdqTKit0PN0JGpDVLtAm1F/w+1kVFPAa6mJ0LoW6VX0XtxeiM9Rn6H/sD249Fl9iEvwlyxZkhxrWzKtBO2fm1qmloVaCz1m21E7pc9h2/G7qpmhDan5UejDOc1JfdcruRQPTBNA/1HtWs636jtWPSD1NvQZrQ+vpX5L0xGoljGiXP+nvkh/z23hFJHWl+MEU1Tovdk27EscRxTaJadro1aKZdT6USubSyXBbXU4/qjGiX37oIMOSo6Z3kK36CnS4GrdqRdlqEn9mFvj0E7so/p7h/2IPqI+0dQUApuDasyD1aVLl+jcuXPcd9998e1vf7v085kzZ5a1Y0Rde919993Jz770pS/F3LlzY/LkyXHggQc2+tmewTLGGGPMVsuZZ54Z06dPj/Hjx8e9994bo0ePjvXr18fVV18dERFjx44t/XHUrl27OOGEE5J/u+yyS7Rt2zZOOOGEsgUZOapyBssYY4wxrYtqnMGKiLj++utj9erVcfvtt8ctt9wSHTt2jIkTJ5Zmo1544YWy2dpK4BcsY4wxxmzVTJ48ucFzlHuQ+lYnNoaqfMGiFoR6J41LU+dCvQ31TqpHoL6JmgHV5lDHQM2A5n9ijibG8qlf0Zw21JRRm6P1YzyeGiB906cdGPenLqChZ/K+LCM1GtTJ6Hluo0O9ih4z7w87hGqamGOKWpzc9hlF2xzp9DD9kjlVVLtD3Qvro1vjRKS2YTvTb1VbxLZh3dVv6cPUujT0vYjyvsI+qz7Dds7di76Wy+2T03lFlOt81E9zOb8i0v5Bceyzzz6bHOtKJuqzWH6ta5HWlGOBjnWsO4/1Wmq52NdVt0c/pf6M57Wvcazi2Kw6saK8fDqe0ifoP+pf7NuPP/54csz20TIXlV9tTDswbKRl5pjIurNM+vuC4w99Ws9znGgJqnUGq6WwBssYY4wxpsJU5QyWMcYYY1oXnsFK8QyWMcYYY0yFqcoZrFyMPSLVlTC+TW0R4+pLly4tfdacUhHl8XuNbzP2Tb2K5l+hBohlYq4i1R8MGTIkOac5diLS2D91C9RgKbQp0fpQX0P7MydYfdlwG0Lbg7od6hpUU0A9CttKv0vdEfVztJPakVoW9ZeIdK887klHDYT6AXV59AGimiD6Gu2t9WNb5fJiUR9EbYhey37GfkXUxtQc8rl6rHqmiHJ9iuZ3YhmoLaI/qU6P2ha2u9qRZRowYEByrH5QpE3TY/ZJ5gBjbistI23IPRwVjhN8rmp+qBel/WkLtSPrmtNU0k7ss9R+KcyDpf5f1Nfpx6qD05xYEeXjtmrZ6C+8Vn2Pz2RdmXtPf9dQG8hxT9urKePw5sIzWCmewTLGGGOMqTB+wTLGGGOMqTBVGSLMLSOOSKdNOQ3NKW1OJyuckud0sk7zMszBJby5MMef//zn5JhL9DUcwann3NYhnGpmSETvxanmXH1Yt9x0Pe/NUB7DBhriYTvnyqipCCLSZdwRqf25azpDeQz35sK7tIWmh2Bb5dICsK4M8TC0p+GIpmwrkgsTR6RhBNYtF+LhtQxHMLSUW6bO0J6GVunTuW2BaFPel/6koQXan9/VMafoOVqmXDtG5LdlYuid99L24ZjI+miZGDZjOEvbmWFijmW5Lar4XY5H+lymXmCIU8cJ9n2mRNAyMvUF7cTn6u8Ljl308blz55Y+s258Ds8rtBN9XNuL/YF1V5/xVjnVh2ewjDHGGGMqTFXOYBljjDGmdeEZrBTPYBljjDHGVJiqnMGiZoNaF9VAUKNEfRO1I6qnyC2tjUjflKlZYtxc4+rUXTBuTh2DloPfzW1/UKSVUm0CdSM5HQm1K3wO20dtWrQFhuocqIeg1kW/y79aWCbVKTG1An2EZVy4cGHpc07jEJGm9qBP9O3bNznW1Ay9e/fOlp/aL61PkS5G24ttw+eoVoqaq5wmi/fNbZcUkbYt/T3n/9RU0hdzPkEdGO+l+jTqm6jp0/MjRozIlknHJ96XY4q2HduV/s/66L1ZN7aPth11edQL6b1y7RiRaqMi0rak/on6IW2vom1d1E6sK23MvqMw9QJTbKjOiu1BW+jYRTtQ56ZtyX61atWq5Jhj5JIlS0qfOR4x3Utui7OWwDNYKZ7BMsYYY4ypMFU5g2WMMcaY1oVnsFI8g2WMMcYYU2GqcgaraHsA1SnxHPPBMAav32WeE8bgNbZPHQ91JKoZ6NOnT3KuV69eyTHzregWHtT8UCejmoicFicitQV1DNQM6DGvpVaNdsppOHisWhFqKagj0fuyTNQiqI35Fw7z6PB8v379Sp+L9CpaH+pT6HuqyaIehVBLoZot3peaDd1Kh3aijkc1imxH1l2/W7TdR26bI/pwLrcV66Z9IyJtjyKb5rY64TY0LKP6DNuGeckU+gT1QeoTCxYsSM7xOSyTtg99mHpAbVv6MDWt2nfoa8wryHxVqrviWMxxTu1GDRPHLh2P2I7Uy6n/cLwnudkPzXEXkdfDUu9K/9exjZpQjke5LW5Yn5dffjk51n7JPtoSeAYrxTNYxhhjjDEVpipnsIwxxhjTuvAMVkpVvmDRgJx61nAdp9EZNmDIREN7vJbhLA2RMMzHaXedKudUM6e0uZxfp8c5XcxpXw0L8hyPNaTA+/JY7cgQAkNHDC/mtl9hyFNDDLQ/y6T3YliJoQwtM8M/RVtg6PmhQ4cm53ivwYMHlz6znXlf+pNCmzI0pj5OOzFkon5Ku/BaDREWtauGQXgfho4Yushtf8P+nNvqh3ZRG9NPGQ5le+i9a2pqstfq9kqamiOivF01HMQwH8cNvZZ2yIUEI/LhXdpY25J9ksd6LcdelqkoNYbCsKX6JsNvDBFqexRty6Rl5DnKNfgcHZvZVqy7+iLHdIYItRyUcrBMDAPqebYry6T+xt91puWpyhcsY4wxxrQuPIOV4ldeY4wxxpgK4xksY4wxxjQbz2ClVOULVi4NQERqYG6Nw2XS1DupdoRaCuonVIMyffr05Bx1Pao3oDaEy7pzS3qpESCqs2KqCMbrta7UAVBT07Nnz9Jnbs9AO9HmqhXhNhDUDKhWjTakNkTbnfoy6jvUhlxKzrpz2bReTw0H20qX3bOdeV9Nn8C68pio7oTlp53UZ6ijot1UO0iND5eea6oI+iV9ILftC9uKaDl4LbWO6vNsG+rCWCb1cbYVtzLSMuXSSkTk06HwWPsS9X4cu3is/sS2o05J+zCv5XYx6vO0N22cS0NBP6XddMzhOdpJz+c0uLwv+1VRmdTfWFeOe6ozVF+KyG/zxXO0If1Jt+4i1LQq1ZCmwaRU5QuWMcYYY1ofrWmGaXNjDZYxxhhjTIXxDJYxxhhjmo01WClV+YLFLVQY787lgmLcnLF95jrJfVcbkpol6p/0PDUPLAO1UhrbV51FRLktVNNEPQE1NKrHobaC+hS1KXULu+22W3Kc05VwCwzaSSnSPKjWokizpHmLqMFih2T7qCaC2pxcLh/qXmhj1d4V6fByW/Iw5w63j1HfY3npt9p2fCaPdUsP6vKod6LPqBaPdadP0GeU3BYwtCHhdkqqI6OOh9pB9XmeY5m0rdhf6WtqN+ralixZkv2u+nWR/2i7U1fIa3XcoK6QeiE+V9uD+ZzoE+p7tBNtocf0D45zan/eh3WnH6v+iX7Ke+nvDtqQbaV9du+9907Ocfzk2KZ6QNqbv+90PKJWzbQ8DhEaY4wxxlSYqpzBMsYYY0zrwiHClKp8wWLohSEFnXrmuaLvauNwaTbREBzTPTBsplPyDD9wGxFOEXMqvaH7RqT1YQqEXDiFW6hw+lu/W3Rfhmz13ly+z+l9nUpn3YhO/XMpM23KsJmiqSEiyqfddbk878twhJaD27gw7KHb7NAuRdtB6dLuoiX5ei+GWdnOWn7alH6o/sNri7bw0FAG/Z3+pPUpCufmthDifbkdix4XLZVnW+au1bqzrrmwE322KByn/YyhL6bn0HLktrOJSMOCbEeOGzzflLCUthfty5Cbjr18Ju2isgpKHygJYRhTy0F/4pY28+fPb/BatrOGgin7oIRBU11EpL+X6BO0hdqJ44JpearyBcsYY4wxrQvPYKVYg2WMMcYYU2E8g2WMMcaYZuMZrJSqfMFifJtLh1XHwGtpfOqhNE5NfQG/qzoSagaow9BYObVd1ABRp6FQM8YyUvejUK+i99Il9/WVQbULLAPTQXCJvrZB0VYhqtngkmMuV1abc7sJ6g20DNQtUJdBvYc+d+DAgck5apjUFty2oqamJjnW5f30F2pmcjo92pDaNdVO0S7UZGnb0k5sZ9W6sM3ZH3he2zmnGeN52ju3TJ36PpaffUc1WiwD9Vqa4oH6uZxejr5GH9cyzps3LzlHHQ/HEbUNbZrbZod1pf/oefazIv2iliNnl4hUk0joT3rMdqamTPsOfYD+RA2T9n3+ruDvHfWnoi2E9L6zZ89Ozg0aNCg5ZvtofThW0cY6rrBupuWpyhcsY4wxxrQuPIOVYg2WMcYYY0yF8QyWMcYYY5qNZ7BSqvIFqyjXih4zlwy1CdS6qF6F+hTGu/VePEd9h+pkqKdhnhNu16BaBWp1+BzdgoEagdy2NNTx8L5aZuraqCOh/kC/Sx0JdRiqVWB5+VyFOY6oy9C2og6D9qZ2SvVDLAO3qdG600/nzp2bHKt2Z86cOck55tihj9DflNxWLdQLUbOnbcmBivl5clv90H94Xm1MbQv1KtqfqeXitWoX6nbop/QvvZ51Z1vquMI+SZ/QMrH8HGNyujb20Zz+jNdy3NP+wefQ/3M516jBYn/Wvs8+yfbRMudsyPvyPvR/bStqrugDrE9uOzHWR69lzjhuy9SvX7/SZ7YV/bRovFVYv9x4alqeqnzBMsYYY0zrwjNYKdZgGWOMMcZUGM9gGWOMMabZeAYrpSpfsGhA5kfSWDhzujDezbh6LmbN56gegToA6hhU91O09xR1JfocnsvtIUgtAvU2qiGgdiK39xe1XYR6G9XYsO1ye3/xPjmdFTVK1CLofVk3loEaB81XxRw71HOpbahtod5Pv8s8S8wJxP0dc7o8PkfPF+0dp+3D8i9fvrzBMtBm7A+5HEg8x+eq1oi6F9Zd70vdS04XSaih4XNUy8Zxgb6X2xuV/YHPUdh/+Ry9F8e9nP6MuiOWSfsL/Z/twfppGYs0QNoe1M6yrXL52thX1Ka0A9t51qxZybHmLWN+KuYOVFtQN8X2UD/leMSxmGODPpfnOA7qGEr/Ny1PVb5gGWOMMaZ14RmsFGuwjDHGGGMqTFXOYDFUxCXIep6hFi5/zy3H5pQqw0Ea+uLUPqfz9bsMieRCnCwTl7TzWKemOU3NsI1OTXOqn0vANaxZtC0Nw6N6L9qQdtJQAENFuS16OPWfS2fB+/Tq1Ss55hYlw4cPL31m2+2+++7JsdqG5zTUGJG2e1HqEdpNfYT9gdeqj3OZPVGfKVourv7E8jO8y++qT9DX2O+0vYr6pNaPIbSiPqphP/o4+wfTXSh8rvoxy8B2zm0LxGcytKRhKJaXaFgtV96I1P4cT5lmIjdG8r4cu9RnGPbLhUPJokWLkmMNqXGsZeiOY9eQIUNKn9nPmG5Hxw32fbaz1p3jArfjyo2R9FOWMbf1WEvgGawUz2AZY4wxxlSYqpzBMsYYY0zrwjNYKZ7BMsYYY4ypMFU5g8U3VMbrNQ5NTQCXJO+8887JscasqXmgVkQ1EFwSvmDBguR4r732Kn2m5mf+/PnJMfUsWgfWnfonhZoH6mB0iTL1Wbl0CtRd8JhLn1VDwPtSQ6B1p44kp72jRoN11XvpNhUR5bqeYcOGJcfaztRDjBw5Mjl+5plnSp+pt+GybrU5dXdFKSr03mxn6qz0ObmtNAh9gqiNaUNqToheX5TSQW1epE3Tdmbd+BymG9HzrA99cfbs2dEQbA9NOcD+mts6h+kGqH/i2JXTXbE/aPoBloF2Un/itYRjl4639GnaIudPudQXRVpN9R+mmWBfoU/od4vGGL2W+iyOiVp3tiN1YrQpx1uFv990nPBWOdVHVb5gGWOMMaZ14RBhikOExhhjjDEVxjNYxhhjjGk2nsFKqcoXLGoreKyxceoWivKrqP6A8WzGvlUnQB0At8PR+Dd1I8yZQu2O5i9hmXr06JEcqw6DOgCWP6dtIVof6haKtu9Rm9L5+Vz9blFH0bZj3aiXUzup/iSiWKtDDYTC7WO07ZYuXZqcowZC8+b07du3wWdElPup5s6hfov5hTTXT5FN9bvcnoR2UT+mRiynrYtI+yj7A9FrmbeI/qM6N2p8WH5q4lQLQxtSm6M+w3xU9C89pp9SN6X3WrZsWXKOx9QDahmpD8r5OP0np3Hlfair4rinbcDvst21zGxXjok63j7//PPJOfZ9zWPHXFDsV8yDpe3F/su21PJzqx+2nerruFUXbcg8WarhpaaM/Uxtk9PrmpahKl+wjDHGGNO68AxWijVYxhhjjDEVpipnsBiiYkhKwxUMKXBaOrckmWEPTsfqzuWcfs2FMji1z6lnTidrmRmO4JJetQWn5Bm20dAkp8pp09y2Lgyn0MY6TU17c5pdzzPsypCV2o0pNRh60XuxrWh/ho6UwYMHN1hefpc+wLCNwr+66Hu5bWqKtprR8Ap9gOVX2zCcwmN9bu5cRHn9tN3pL2yP3FY5fI4ec/k7bcgwjvYXlpf9Q8cJhthYxv3337/0meEell/9NBfuiSiXB+h32R4MuWn5Gebjc7XfFckB6F96XNTOamP6P/u+9nf2M/b93r17lz7rmB1RPp6y3TW8u+OOOzb6Wob9dt111+RY616UKoL+pX7M0GkutRB/77QEnsFK8QyWMcYYY0yFqcoZLGOMMca0LjyDleIZLGOMMcaYClOVM1iMz1NLofoD6hRycfOIVCdALQL1BxobpxaKmg2N37MM1EvwOaoTKNIwqSaCugVu16DlyKW6iEh1DdQtMLbPMuoxNQO0heoPeF/qC1T7Re1HTt9Bu6hGI6J866IxY8aUPlMzQ19csmRJ6TP9h7oMLX/RNi7cekl1G7QL9TbalvQB+o/6AevKtlM70g70J7ZHTo/G9lFtEXU87L8so0KtDsuofZTpXfhcHXNy29BEpO3Mds1tv0J9E1N50E461lFXldOp0ieYqqAp2+rwXloO2pA+o9+l7oh9cu+99y59pgaUZdQ+yfKyDDyvfsv+QD2XnufvHf5+0H7HPkhN1vTp05PjD37wg6XPtDefo+Mix8iWwDNYKZ7BMsYYY4ypMFU5g2WMMcaY1kdrmmHa3HgGyxhjjDGmwlTlDBb1BMxrpFoFXksdBnPlaBydGgfGyjV+z/xIzGWleg/dIiWiPO7PMqn+iTqMZ555JjnW+uXyRkWk+gheS12D6lO4XQ91Jbn8YXwONSiqoaG2js/RulJ3we/qeT6T2gRuVaF/cVF3wZxZK1eurLd8EeVaL91Kp0ijRF2G2pF5f3LbHuV8OCLVybDvsExqF9qUx9TfaH1Yd5ZJNYr865ffVU0KNXCsD31cdVc8x/poOTj+sK0WLVpU+ky9HPVaamNqoairoo8rtAu1aVof1pU+onZkP2PdeazfLdomSG3Da2l/7aOsK22s/Y7bh/G71JdqGemX/fr1S47Vv+h7zKGV0yCyrdg++jtAt9yJKLe/2o1a35bAGqwUz2AZY4wxxlSYqpzBMsYYY0zrwjNYKVX5glW0rYtO63JalGGb3BQ9Q1I8Xr58eekzw2a5pbec2ud0MaeENcTGMuhy5YiIOXPmNPicRx99NDkeMWJE6TOnv3NhyqFDhybnGP6hzTWsxi0jcqkAmKaB0+y77bZb6TOXJ+fCfAxzMKRGG2v9GP5h2EZDECxTLv1AkV2I+jHbmWFMhTbk9isaymb4hHbTUAy3gGG/ot00ZQV9j31U+zvDJ7S/hkiYhoFl5HMU9klKALTvMyRF+9fU1JQ+c1m9hpQjUl9kW7GuuZQUDC8yDK4+zvGG382FjVkG2ljlD+xXbB89T/uzj2oZGaZnv9O+z/vS9xi21DBgUShb68rxM9fuLJNuYRZR3nba34vSTKjPcKs30/JU5QuWMcYYY1oXnsFKsQbLGGOMMabC+AXLGGOMMabCVGWIkHH/nFaES2m5fDantaCOijoA1UhQF8blsqpJoWaAZejVq1dyrDF53vfpp59OjvXeLC91MKpxYl2py9DvUotDqK1Q3QbPcTpX24eaJeoLVC9BvQq3OslpsNh2ufQW1NtQb6a+SY0P/VZ1V/QJlj/XPix/TtPEZeq0qdaPehRu9aM+Qd1ILn0Cy5/bsiYi9WMuo6fWTpetU9/EtqImRe1Ie1MTp/o/botC/1Gfpq5w4cKFybFq4qhtZBn23HPPBs8zJQjHgpz+jPVRvVlua7GI8nbWvkZfo/21TPRplkntyDGxT58+ybH6Iu9DXdhzzz2XHGs5aDPqzRT2nZy9i9LccNxQu9GmtJteyzK1BA4RpngGyxhjjDGmwlTlDJYxxhhjWheewUrxDJYxxhhjTIWpyhksxv0ZV1fNT5Fei7oM1RjwXE6/xecwrq7aFuqbcrmgItKtNqhxoF5FdTELFixIzo0ePTo5VlsUbWGjz2X5qMugpkb1RdQAMYeT5nxhbii2c07Hw3w9Wn7mKRoyZEhyTK2CaiKojaL+Q31mwIAByTnqb7TuvC/958knn2zwPH2Af8GpVmSPPfZIzjHHjrYt78P6aD+kD1Dzk+uHtDdtqvWjBouoJov2ZhnoTzm9EHWSei/WPbc9F+tKHZLel7n1CLfjUtvQhsyhpRqzrl27Juc4HuW2WKH/8LtaP9Y1lzuQZWL/0Loybxe/q75GrSN9hOXX+rH81GPq2Mu+w/6g7cP78vcM76X+xd8lvFaPOUa2BJ7BSvEMljHGGGNMhanKGSxjjDHGtC48g5VSlS9YDGdxWatO2XPbBIadGG7UEFZROFFDPJxa5pS2LpvWJd58ZkS5g+h0MsNBfK6GArjUnGEPhVPNXP6u9+WSfNqQ7bNkyZLSZ24hwWv1uQynMPSi9WEIh8eLFy9u8L4MnzA8qmEC2oUhK/URTskzlKTHbFddGh8Rsc8++yTHGiKkP2lIOSJi+PDhpc/sK1zqnws/MJyioRiG3ximYThIl9IX9We9lv7O0Iv2nVwIMKI8xKb9edCgQck5tp2GmuiXDPGozzP0S9+bO3du6XPR1iYcy7Q+9FOGxtRnmG6A31Wfpk+w73/gAx9IjjUNBcOJrJ+OK0XbP2n/ZnlzYyTHZaau4bH6McOuuXAj/ZT+o/di3+F9+XtI/YvjD8uoYyTPmZanKl+wjDHGGNO68AxWijVYxhhjjDEVxjNYxhhjjGk2nsFKqcoXLGpkGDdXrQW1INRkMTau32UsnKh2qmirFt0Cg9oc6hqoqVENCvUe/fv3T451exDaJacDKFrCm1vCTh0Jn6PaC24DRL2QLn1mR6GuSpe/U9/Ba1UDRx0YfYSaCLUNdW3U5Wk6COowqP2aNWtW6fPQoUOzZaLf6nOp66F+SHUyXFqe0y/S/tyCROtHPRP7KFM86HPo09RrqX9Rr8Vr1U9ZN2pQeF77c9EWJKp9YX/NbbPDvkG9luqJWD72s3nz5iXHus0X9WczZ85MjvU8t9WhJlR9sWhMZFuqbdivVJvJ57L/0k7a36mty+lqmeaGetL58+cnx5oCom/fvsk59kn9LvsvxyctB8cQbknFcURtw+9ybNP2oE1Nysknnxy/+MUvYsOGDdGxY8f4zne+E5/73Ofqvfbiiy+OSZMmxSuvvBK1tbXRpUuXuOSSS+Kyyy5r0jMdIjTGGGNMs9k4g7W5/zWV8847L6ZMmRKnnnpq3HPPPTFs2LCYMGFCPPLII/Ve//vf/z7222+/uPnmm+OBBx6IvfbaK/77v/877rrrriY9typnsIwxxhhjKsGkSZOipqYmbr311oiIGDduXGy33XZxwQUX1PuSxcTPRx55ZHTo0CF+9KMfxSmnnNLo5/oFyxhjjDHNZktqsJYvX56E1bt27VoWuo2oCzGvXbs2xo0bl/x8xIgRZaH1htiwYUNs2LChLERbRFW+YDEvCPUSmh+Gmg3G5/ld1QlQR0XjaeNRXzNw4MDkWHPNMHfJ0qVLk2NqsnJbZuR0VtQ4sPyaQ4iaDdZHtQgsH3U97EDaBmw7ajrU/szzw7qqvoDaD+oNVD/x1FNPNfjMiHINTW5bF9W9REQ89thjpc/URrE+2q68L8ltU0MfptZI25n5hZjbSn2e2hzqSFT7wmeqPq6+Mur2ROyj1OXl8vcwD5bWh7pI6qhYxpwOkRogrQ/1Z7mtmFgmtodqNenDtAP9S9uHfZL+o1pI2pA6MdX5UIdHHRLRvsTnULum42JTtjRju+a26qK/06bUWWmZqY3ieKptS61XTtepOfoiyutDVJOV234rIq8r3NqpqalJjg899NB48MEHy66bM2dORJT/zu7Ro0fMmDGjUc867rjj4r333osvf/nLTSpjVb5gGWOMMaZ1sSVnsGbMmJG86NY3e6XwZbu2trZRyVknTJgQ999/f3z7298u2+u1CL9gGWOMMaZV0bt378KXqoh/ruDmCtIXXnihbJabnHfeeXHDDTfEFVdcERdffHGTy+hVhMYYY4xpNtW4irBLly7RuXPnuO+++5Kfz5w5M0aMGNHg9yZMmBATJ06MSy65pMmhwY1U5QwWdVSM16tGiPtdMTZOHYPG9pl3hroGnT6kDoPxXy0jNQKcVtT8SBGpPop5W1h+LQffvql3Ut0Pp0KpCdK/BKjD4HPYHqrVyeUTikjtT80ANViqF6JeJbc3JPP8UF9Dm+b2DWMOHq07dWHUoKg2R/egiyjXnDAnkvoQdSO08YIFC0qfaUPaQuvDflbfFHp9nyPK24N115U5zOVG+6vNqUekXkj7O22W01HxuWw76sT0udTB0BbqexyP6E85DRa/Sy2kavzYf1lXvRfLwLqrzoq+Rc0Py5TT6dGm1Cgq1OXpc2n/nj17JsdqR5ZfNZMR5b8ftH+wT7J9tL9Qv8u65fac5O+Z3DhIG9L+qu/iWGX+yZlnnhkTJ06M8ePHx0knnRSXX355rF+/Pq6++uqIiBg7dmw8//zzpVmuCRMmxA033BD/+q//Gqeccko888wzEVE3hvB3dI6qfMEyxhhjTOuiWjO5X3/99bF69eq4/fbb45ZbbomOHTvGxIkT48ADD4yIuhdm/ePu9ttvj4iIKVOmxJQpU0o/HzRoUFkC4Bx+wTLGGGPMVs3kyZMbPMeXJs6abipV+YLFaV6Gg3QJMsNxnKZmGFDDLVxSzXCEhj1YJi7pVZgGgGXQ7TIi0il7hiKZ4kGn+zklzGlrDWftueeeyTlOS8+ePbve70WUT1MzNKOhSaaOYIhB24vhLNpJ/6Lg0nhOs+vUP0NQDB0xnKXlZziUdVf/KQpR5cKJtD/FmhunpCPK7cTl77qcnHbiMnstE/2UdW3oe/Vdy/NqC4bE6SP6FylDOLmtc9hW7Fc5uAT/6aefTo7VJxjiZNhby88wE/1Uw1vsv6wPQ0tqU46JfE4ubMZjvW9RGejHGhpjOJo+oSE2nuMWW2pTjl0Mk2l/ZjhUw/QRaTqaiFSekQuRR6SpeGgHhtt1DKJP0/7ss+oXRZIFHTdoF9PyVOULljHGGGNaF9UaImwpvIrQGGOMMabCeAbLGGOMMc3GM1gpVfmCxS07uExddQ7UrjBmTV2VLpOmBotLbXMpBbj1TG5bl2HDhiXH1G+pw1AfRD1RLkUFNUxaRi6DJqrHoR6CS8KpCdL2YnmpdVHdEm1KfYTqwqjlot5J24rLq3nM9lHdCfU1TFmRS8dBu6hOhj7dr1+/5FjrGpH6PH2ceg9tH9qbz9EyMSUCt1tRfyrSm7EvqZ6F9s/pfCg2pY11iTQ1M0wkyL6kx9Sf0Ra6/J1bnbCfaRqW5557LjnHdtetOTjesO7Un6mWh+MP66rjYJHWVDVxbFf6Gu2ktmD6BGqy1PeoS+KYqHo66rVYVx1HaDOOKbyXnqfWTtOfRKRjL3/PcNzQY/ow+xJtofXhOY75OZ82LU9VvmAZY4wxpnXhGawUa7CMMcYYYyqMZ7CMMcYYUxFa0wzT5qYqX7Co0WAuH9WkUPfCPCG9e/dOjlW3wdg4tTmqn2B+G+Yu0WtZfupr+BzVG1DzQ12JapFYBuon/vrXv5Y+H3LIIck5arI0Nwv1EAMHDkyOqT9QTQH1EdTfqEaC5aXWSPM9UXtAXZhqKZYvX56coy6MeWi0PZhg7oADDkiOVUdCzQMHFr2W2yVRKzJo0KDkWPUe1PHQv9ROzKNGvY3anPZnzjW1C/VOc+bMSY5z24EUbb+iuh7agf6juiXmA6O+hvXRPsycWSy/6hBpJ/YP9Tf6Wk5DxvKyrTjm6DG/y2O1G8dE6qhU80Nd5MqVK5Njjl1aX/ZfflfHBurP2JY65tOG1CVp+7BP5vRNEXntJrdEUT9mXTkWqx6NfZK5udjuWmaOtSy/auTYr0zLU5UvWMYYY4xpXViDlWINljHGGGNMhanKGSyGTzh9r1PcXILMaXVuH6DL2Ble5FJbhgYUhvJ0GpjLk5lmgsu89XpOh7NMGgoo2hZIQ3tcbl1TU5Mc6zYQJLeFTUQ6tc4y6a7yEenycqYQYN112TTDHFzqrMe0Ge+bC1synKVb1kSktsilS4hI/ScXmogoD73kQqkMp6gfM/zApf8afnjqqaeSc6y79jv2SbZHrkz0LYZx9Ln865ThaQ3FsLwMk7Hv09+UXBgtl2okIvUntmPuOQxfFW2poj7DVCoLFy5MjtXmvI9uAxSR2pz2ZziaW/So1IBjL8dBPc/tkoj2LYZk6YtaBpY3FyKPSNuLaUqeffbZ5FjDoZQSMDSs4wR9mL7G9BbaBhxjuB1aboxpCTyDleIZLGOMMcaYClOVM1jGGGOMaV14BivFM1hVwDe+8Y34zGc+s0WeNWrUqLjxxhvjkksuKQu9GmOMMaYyVOUMFjUD1MzoEmvqa7j8mrFxfalgLJzxedUqfOYzn4mTTjopdtppp1i8eHHceeedSfoF1WS99dZbMW7cuPjYxz4Wu+66a7Rp0yaWLl0aU6dOjSeffLLsOe+9915s2LAh3nrrrbK3cy51Vo2Bak723HPPuPHGG+ORRx6Jc845JyJS/cEbb7wRI0eOjDPOOCPuuOOOGDNmTHzqU5+KCy+8MN58881Er8JUC0OHDo2ampo47rjjYtCgQbHTTjvFpZdeGn/+858jItVVUZtGVGdCjQbbXZe/U7fDrUK0LYu2i6GmTO9Nf6GP5NInsF1Vc0IdCf2Wy7FVz0X/53NUk8L7sIzattRNUSulOipq69jO1A+pNpK6GNpf7UTdFFNuqC2oJaKPUGOp+hWWl1oXbR8us8+lKqD/cPm+1pWaGZaJWi9tS+rNuM2L9iWWl5pQHTOZPoFpYugjej3Hrty2ZUyBwLFAy0ybsj+o5rJIv8syaWoD+su+++6bHGtbUvtLH1fo74MHD06O2T5qU/oI66NaNvpES+AZrBTPYDWCQYMGxVlnnRVTpkyJCRMmxPTp0+OSSy4p+0WuvPDCC/GTn/wkJkyYEBdddFE8++yzcckll5QNbpVi3Lhx8dOf/jRGjx5d9oszok78fMUVV8QPfvCDuPPOO+OSSy6J119/Pb72ta+ViVPrY7vttotFixbFj370o81RfGOMMWarwi9YjWDkyJHxwAMPxO9+97tYunRp/PCHP4yXXnopjjzyyAa/8+ijj8Y//vGPWL58eaxcuTJ++tOfxltvvRVDhw4tfN7o0aNj8uTJcdhhhzWqfB06dIjDDz88pk6dGg899FAcf/zxyfl+/frFV7/61bjxxhvj3nvvjYi6v4wuu+yyWLt2bXzpS18q3Cj0ySefjLvuuiseffTRRpXJGGPM+4uNM1ib+19roSpDhNVE27Zto3v37vHEE08kP3/mmWca9bK08R5jx46NDh06lGV1JwcffHB87nOfi2uuuabRLzNHHHFELFmyJBYtWhT33ntvXHrppXHTTTeVzi9evDhOOeWUsu+98847cfnll0dE+bS7McYYYzadqnzB4i97bkugehDqdhivZ/hLdQ3U8fC4Q4cO0aFDh2jbtm2sWbMmie+//vrrscMOO5RmfjRuvjH304ABA+J//ud/Ytttt4233347brzxxli3bl1ZmbfZZpto3759nHTSSfGpT30qJk2aFC+88EIMHDiwTJehGpqNb/InnHBCPPzwwzFgwIBYvnx5bL/99nH88ccnOaioTaO2RZ9D++u2Jxvp3LlzydZad92yRsu4Ec2jQ91CLl9VUX4h/S41SszdQ72Hai/oL9Q15PRa1NuofoLakOHDhyfHs2bNSo5VV8JQNPN8qZ1yubhYZv7RwPC19jvqSNgn+VyFWiLquVQHw/vmtGqcdWV7MFeUloN+yTKpH9MH2B/Uv5jfifddvHhx6TP1QGwr6m20D7A9aGOVCVDvxP6gfkvf4vhDPaN+l9pN1k91bo8//nhyjnVXu7G87EtqC2qWmB+M+f9U48q6U2qhz6UuL3cty888gsyDpf2Zvyv4XR27qBdtCazBSqnKF6zWQlFDL126ND7zmc/EiBEjYvTo0XHGGWfEVVddVSbkjYgYO3ZsdOvWLSZOnFiYhE/p1atXDBkyJL71rW9FRN0vg7/85S/x4Q9/uCzJZ2M45JBD4uyzzy4df+UrXyl7cTDGGGNMHr9gFfD222/He++9V7ZqpFu3bvW+KCkbNmyIFStWRKdOnWLx4sXRv3//OOKII8pmKyLq/tIaOHBg7Lfffk16wTryyCOjXbt28ZOf/CT5+bvvvhu33XZb2SqyIv7+978n5XvppZfK/oo1xhhjTJ6qfMHitCinw7kkWeEUKkMMuR3HuQ3BxhDEyy+/HPvuu288/fTTpXMjRoyIv/3tb6Vwk06Hs3wbw05t27aNbbfdtmyZ7jbbbBMvvfRSTJ06NS677LLYsGFDTJ48ud7yanhrw4YNcdhhh8Wtt94azzzzTLKE+sorr4wPfvCDcf/999dbV7406bS02mz77bcvm8KOqAtfbAw76nc5fZ97OePS+FzIhKE7blWh4aAnn3yywWdGlPuXhj2Klu9r/Ri23GOPPZJj9Vv6ML/bkM9ElG/38corryTHGkoqWhKuIRSmWmDbabsyfMK2YmhG7TZy5MjkHMM2GqZhOJSzp/pchvQZBmcYR/2a25ew/PrHE8M/uVW3LD/bWfsvQ+QMaTIEqn8scUskpk/QMjLkn1vOz77+8MMPJ8ectdf+UuQT2h7sg/wDVu1Ev6Rd9LkMlbLvEC0jv0s0BMe6UhqhYVmWP5eOJiL1IfoIn6t9qRpCZw4RpngVYSOYPXt2HHHEEXHYYYdF796949/+7d+ie/fupZeXcePGxYUXXph856STToohQ4bEzjvvHL169YqPf/zjMXTo0PjHP/7R4HNWrVoV1157beyzzz7xiU98orBcY8aMic6dO8cf//jHWLp0aSxYsKD0b9q0adlVjk1l2223jZ49e5YG4O7du8fuu++eTVVhjDHGvF+pyhmsamPJkiUxc+bMOOmkk2LHHXeMpUuXxhVXXBHPP/98RNSFC5n0sGvXrnHWWWdFt27d4q233orly5fHDTfcELNmzSoT4yqrV6+Oa6+9Ni644IJ477334p577mnw2sMPPzyeffbZMnFpRMS0adPi3//932PgwIGxYMGCTau40Lt37/jsZz9bOj7ttNMiIuLPf/5z3H777c2+vzHGmNaNZ7BS/ILVSB544IF44IEHSsc6XXznnXfGtGnTkutvvvnm0udclt+IunCesmrVqrj44osjonx1jfLtb3+7wXNz5syJ4447LvvcprBw4cL4r//6r4goD71w2toYY4x5v1OVL1jUvfCNVWPY3N6ALzNceq76FepKeK+lS5eWPnOpLbU6uqyY29twSX5u2S5za1HvQQ2WQr2Whu8odqdmQHUC1C1QS8EZOH3B6t27d3KOs2eqZ+F9qZ9TP6AP0Ee0Lffaa6/kHO1ETYTqbZhugEvlVc/CdmYZ9VrqYKjr4Yu0+jG/S52M2nHEiBHJOS6rV+0a+wqPtT2YboBar1wfpZ2oIVP9UO4PiohUR0V9JTWU9C/1A2r4qAHS/sJxgX1JfZE2zNmNf5iwTOxnep5loC5JdVZcjEO7adtpGon67pvTuFIuwPpofXNpPSLSdApFKVo0esAUGvxjkOP2xihERHnb0ad1fOXWV/Rb/d1BzRs1WByv1N84prPtVOvFftYSeAYrpSpfsJrDFVdckXQyOrM6O3/R8mVGO/bGkNhGOHDmxM9FW9Ho9dpR27Rpk92Q+dVXX03qQ8dj/RT+0tb68Hu5+xBeS1vogM3ybqzLq6++WkqAaowxxrRGtroXrG7dupWtJqoE1ZiqgH91G2OMMS2FZ7BStroXLE6HV2oGiyGpLTGDVXQtHW1rmsEyxhhjWjNV+YLFl5fcyw1X0F166aXJ8YABA5Jj/YVPrRH1QxpH/9vf/pacoz5CQ3nUN1EXwBw2ej1j7sxvoy+M1LLMmDEjOdZcP9TtqPYgItV00P4HH3xwcvzss88mx6pz48sky68vkCwTtxHRtpszZ05yLbVGajduGUHdAsukGe+pjWJuHH0p5IsgZzlVb8MXf4Z+aTfVYVArqFsTRaT1oU3Zd9Snqa+hhkk1NdQyUltHm2r9+DLPumr92K+of1JdFbUttDH7mY4VbGcm91UtJLfvYTtr6hVeS5sOGzas9Jl6Jubm4nc1bxn/cMxtM0X/of5JNaG5Fc4R5dojjRYwnxOfo/5G/2df0nGaY2JDf5hFlPvLnnvumRzT93Tc4zm2h44F1NVSE6djKG1WpOlT/6LWkWMzt/1qaTyDleI8WMYYY4wxFaYqZ7CMMcYY07rwDFaKZ7CMMcYYYypMVc5gURtCzYnG3KkvoFZE84RE5LUJ1GWoviCnr+G9eB/umZY7T70K9ydTvRbryvtqXheWn9eqTakjoS6DwnXVrlGkT52b5qyh9oA5wFRXwpWhzCGkZaRmI7fHYUTEqFGjGixTTqRPfRO1dqqXoEaJK0D5V5naiT7A+qhtqMVhLiitO3U87Cv6XPow25WaFNWZ0N6LFi1KjtVO9DXmjFMdFe1Nm9KP1ceZ84iaINUTMU+R6tgiIg444IDSZy7yoAZI91ak/WlT5jBTjRD1QbpPakS5bRRqgLSuHBOpc+OOFepfPMe8TOoHbFf2Wb2WOiP6v9aHe3pSj1mUz7ChMkSkNi1a9KT9nVpA+h7bQ/saNcYcJwYNGlT6zH07WwLPYKV4BssYY4wxpsJU5QyWMcYYY1oXnsFKqcoXLBqQU+c69c8QSC6/E++d29okIg0HcQk40dAAy8Sl/pxe1vrxHKe4tYycKucSfV36zOlu1lVTPjDUwjLQplo/lp9T/7p0m2VgeELtWBRS0zJw2p9hP4ahNPTCsA2/m0s/wCl62iJ3X/q4tgdD5qy7nmdIh9/VsDKX1dNH1H9YV4Za2HYa1uF9mcZEQyYMn7DvaAiUaQwYFsuFS3ktQzFaH6Y0YehRv8vyMzSsPsFn0scZttS2fe6555JzbB+tO8OW9FMtI0PB9W0kr2jfob2ZRkbHAsobWH61EyUiOWhv9pXc9mi58T8iTavBcDp/P+jYzPtw3G5K/sVcyhO2nWl5qvIFyxhjjDGtC89gpViDZYwxxhhTYTyDZYwxxphm4xmslKp8wcotd48o12Uo1AFQp5GL7XPrCtUQUFdFzYwu3WZ5udSf2gTVOLH81HRQD6VQ26L3og6Az9H6UDPDZelMUaFQM5BLe8Ay0W6q/9BtW+oro9qFOgu2K/1H7UbdC9tONRAsA7UuWn5eSw0T7aTLr6mD4bU64NCmORvTDsuWLUuOdWsWlrdov0r1L+pG2HfUn4o0lZqSgm3D7Vboi6phog2pvVOf4LW5tqQWh3o/1aaxbix/Lj0K247b0mgfYNtQQ6Y+wpQIfA7bTn2T17I/K9RK5fSkbEdqlvSYv3w5JhL1N/aVnN5p+vTpyTmmqNDvsry0E3/faTuz7eh7ei37qGl5HCI0xhhjjKkwVTmDZYwxxpjWhUOEKZ7BMsYYY4ypMFU5g8U8RtQ1aLybeX94Lbch0Ldf6rOodVEdCePbzCGU266EW0ZQb6AxeGocqP/Qa5mfh9dqOYpyHqnOgX8hUENA1Da0IXUyqnmgHXJ5i9hWLL/qJ6inYdvRZ7TMRRom9S/6FjUbqp+gLqxoCwzV1NAubGctY06bFlHeHgr1T/Pnzy99ZvmpDaFeSMvMZ9L+qj1iLijqVdQPqMtj3+FztH2KcqWpBoiaQ5ZJ78v8Trm+w/LRxtRVaRnpl9RVqZaK51gfbXeWiXAc0fpRv8gy6hjDtmMZ1Wfol0T7N/s+8/DldGLsv0T7EvsZx2I9T20jy8SxTe1YpFPV3y3sky1Fa5ph2txUR4sYY4wxxmxFVOUMljHGGGNaF1ti9qo1zZBV5QsWQwpcxsrQUg5eq9PjRWEOnbrlcl9eq1O3nNJmqgVO/eu0PMNODA8tWrSo9Jl1o+Np/Tg1Thtr+TndXbS1A5eX585paIDT37Sb2oI2I2pjXsvysn7algwncvpey8/Qb25bC9qQvsfwRG77odxWS7Q3+47Wj/5Cn9AwGsvPtuKxpsZg6IuhPA3r0Cdy7V60fJ+20PqwT7J/ayhYw//1PVfbjuE39metD+1f1M5qJ7YHQ5xaZqZeYH3UTgxBMf0A20dD3RyrOOZo+JdpGhha1bZi+Rle1zKxX9HX6CN6L/o/bay2YfnZfzXkyTJxjOFztUxF8gwNW+a25jItQ1W+YBljjDGmdeEZrBRrsIwxxhhjKkyLzGC1pjdQY4wxprXREr9nPYOV0qa2BUq7bNmyspi7McYYYyrD0qVLk+2uNievvfZadOvWLbp27ZrdIqkS1NbWxmuvvRZr1qwpS+9RbbTIDFavXr1i6dKlsf3222/2xjDGGGPeL9TW1sbrr78evXr1apFnbw3PqBQt8oLVtm3bLfZmbYwxxryf4Oph0zJ4FaExxhhjmo1nsFK8itAYY4wxpsJ4BssYY4wxzcYzWCmewTLGGGOMqTB+wTKmAnzoQx+K888/v6WLkbBo0aJo06ZNPPXUU5t8j5deeil69OhR2qLpwQcfjDZt2mS3R6okjzzySHTu3Dl69OgRc+bMqdh9n3322ejTp0/ZFjPGmE2ntrZ2i/xrLfgFy5itlL59+8bKlStjzz333OR7fPOb34xjjz02+vfvX7mCRcRZZ50V22yzTUyePLnBa5577rn42Mc+FmeccUYcfPDBceSRR8ayZcsadf9vfOMbccABB0SnTp3K9g2NiNhrr73igx/8YFx77bWbWgVjjMniFyxjtlK22Wab2G233ZJNgpvCunXrYtKkSfGZz3ymouV68803Y8qUKXHRRRfFpEmT6r1m0aJFcdRRR8XZZ58d3/ve92Lq1KlxyCGHxEc+8pFkI+mGWL9+fXziE5+Ic845p8Frxo8fH9///vfLNuo1xmwansFK8QuWMZuB3/72t9GtW7e47bbb4q233oo99tgjzjrrrNL5hQsXRrdu3eJHP/pRg/e45pprYq+99orOnTtH375949xzz4033nijdP6MM86IvffeO95+++2IiHjnnXdizJgxcdppp0VEeYjwlVdeidNOOy26d+8eHTt2jCFDhsTNN9/c4PN/85vfRLt27WLs2LENXrNu3br42Mc+Fvvvv3+8/PLLjbLNz372s6ipqYlLL700Hn744VL4cSPPP/98fOQjH4lzzz03rrzyyoioe1m89dZb45BDDoljjjkmsUN9fOUrX4kvfOELsddeezV4zVFHHRUvvfRSPPTQQ40qtzHGNAW/YBlTYSZPnhyf/OQn47bbbotPf/rT0aFDh7jzzjvj1ltvjV/+8pfx7rvvxqc+9ak47LDD4rOf/WyD92nbtm1MnDgxnnvuubj11lvjj3/8Y1x88cWl8xMnToy1a9fGJZdcEhERX/rSl+LFF1+MG2+8sd77felLX4oZM2bEb37zm5g5c2Z8//vfj1122aXB5//pT3+Kfffdt8Hza9asiY985COxfv36+MMf/hA77bRTkWkiImLSpElx+umnR7du3eKYY44pe8nbqLe67LLLkp+3bds2brrppnj00UejS5cujXpWjm233TZGjhwZf/7zn5t9L2OMIU7TYEwFufHGG+O//uu/4le/+lUcdthhpZ+PGjUqvv71r8dnP/vZOOWUU2L+/Pnxy1/+MnsvFc0PGDAgvva1r8U555xTeoHq0qVL3HHHHXHooYfG9ttvH9/97nfjD3/4Q4NZnJcsWRL77LNP6aWpSFe1aNGiBrfbWL16dfzrv/5rDBo0KO66667Ydttts/fayNy5c+Nvf/tb3H333RERcfrpp8fnP//5uOKKK6Jt2y3/917v3r3LZtCMMZuG0zSkeAbLmArxi1/8Is4///x44IEHkperjVx44YUxbNiw+N73vhc333xzdvYoImLatGlx5JFHRu/evWP77bePT3/60/HSSy8lK9/Gjh0bX/ziF+NrX/taXHjhhXHIIYc0eL9zzjknJk+eHKNGjYqLL744/vrXv2afv27duujQoUO95z784Q/HwIEDY+rUqY1+uYqom7066qijSnU/5phjYu3atfF///d/jb6HcvbZZ0eXLl1K/5pKx44d480339ykZxtjTA6/YBlTIUaNGhXdu3ePm2++ud6/sp5//vmYPXt2bLPNNjF37tzsvRYvXhzHHHNM7LnnnvGLX/wiHn/88fif//mfiKjTWm3kvffei4cffrhR9/zoRz8aixcvjvPPPz9WrFgRRxxxRHzxi19s8PpddtklXnnllXrPfexjH4s///nPMWPGjOwzlXfffTduu+22uO+++6Jdu3bRrl276NSpU7z88ssNit2L+OpXvxpPPfVU6V9Tefnll6N79+6b9GxjTIpF7il+wTKmQgwaNCimTZsWv/rVr2LChAll588444zYc88947bbbouLL744+3Ly2GOPxYYNG+K73/1u7L///jF06NBYsWJF2XVXXXVVzJw5Mx566KH43e9+lxWtR0R07949/v3f/z3uuOOOuO666+KHP/xhg9fus88+DZbxW9/6Vvzbv/1bHHHEEY1+ybr//vvj9ddfjyeffDJ5KfrZz34Wv/zlLxu1OpD06NEjBg8eXPrXVJ577rnYZ599mvw9Y4wpwhosYyrI0KFDY9q0afGhD30o2rVrF9ddd11ERPzP//xPPPLII/HMM89E37594ze/+U2cdtpp8eijj9YbYhs0aFBs2LAhvve978Wxxx4bDz/8cNx0003JNU899VRcfvnl8fOf/zwOPPDAuP766+O8886LQw89NAYOHFh2z8svvzzGjBkTe+yxR7z99ttx7733xogRIxqsy1FHHRWXXnppvPLKK7HjjjuWnb/66qvj3XffjcMPPzwefPDBGD58eNY2kyZNio997GMxcuTI5Od77LFHnH/++XHHHXfEeeedl71HY1myZEm8/PLLsWTJknj33XdLs1uDBw8uhRIXLVoUy5cvjw9/+MMVeaYx73eswQK1xphmc+ihh9aed955peMZM2bU9ujRo/aCCy6onTlzZm3Hjh1rf/rTn5bOr1mzprZ///61F198cYP3vOaaa2p79uxZ27Fjx9qjjjqq9rbbbquNiNpXXnmldt26dbU1NTW1Z511VvKdE044ofaAAw6o3bBhQ+3ChQtrI6L2ySefrK2tra392te+VjtixIjajh071u600061xx13XO2CBQuy9dp///1rb7rpptLxtGnTSmXYyIQJE2p79uxZO3v27Abvs2rVqtp27drVTp06td7zEyZMqN1rr72yZWkK//Zv/1YbEWX/pk2bVrrmyiuvrD3qqKMq9kxj3q+sWbOmNiJqt91229rttttus/7bdtttayOids2aNS1d7ULa1Na2ptdBY8yW5P77748vfvGL8dxzz7XIKr/Nxdtvvx1DhgyJu+66Kw488MCWLo4xrZrXXnstunXrFu3bt482bdps1mfV1tbGO++8E2vWrImuXbtu1mc1F4cIjTENcswxx8TcuXNj+fLl0bdv35YuTsVYvHhxXHbZZX65MsZsNjyDZYypCFdeeWUp8zo5+OCD4ze/+c0WLpExZkuwcQarXbt2W2QGa8OGDa1iBssvWMaYivDyyy83uF1Ox44do3fv3lu4RMaYLYFfsOrHIUJjTEXYaaedGr1djjFm62NLzNe0pjmhrUe1aowxxhhTJXgGyxhjjDHNxjNYKZ7BMsYYY4ypMJ7BMsYYY0yz8QxWimewjDHGGGMqjGewjDHGGNNsPIOV4hksY4wxxmzVnHzyyaWtfDp16hQ33HBD9vrrr78+OnXqFG3atIn27dvHqaee2uRn+gXLGGOMMRWhtrZ2s/7bFM4777yYMmVKnHrqqXHPPffEsGHDYsKECfHII4/Ue/2f/vSnOP/882PYsGFxzz33xKmnnhp33XVXXHTRRU16rjO5G2OMMWaT2ZjJfUvSlEzuXbp0iX79+sX06dNLP9tuu+1i9OjR9b5k7bfffvHUU0/F22+/XfpZTU1NLF26NF5//fVGl9EzWMYYY4xpVSxfvjyWLVtW+vfaa6/Ve90bb7wRa9eujXHjxiU/HzFiRMycObPe78yaNStGjBiR/OzYY4+NN954I958881Gl9EvWMYYY4zZZLbddtvYbbfdttjz2rdvHzU1NdG3b9/Sv49//OP1XjtnzpyIiBg4cGDy8x49ejT4srRu3bro0aNH8rON3994v8bgVYTGGGOM2WQ6dOgQCxcujPXr12+R57311ltlzyoKF3IT6tra2uzG1Dz33nvvRURE27aNn5fyC5YxxhhjmkWHDh2iQ4cOW+RZjdVeRUQMHTo0IiLmz5+f/PyFF16Ijh071vudjh07xurVq5OfLVq0KCIiBg8e3OhnO0RojDHGmK2SLl26ROfOneO+++5Lfj5z5swyndVGhg8fXqbPuvfee6NLly7RqVOnRj/bL1jGGGOM2Wo588wzY/r06TF+/Pi49957Y/To0bF+/fq4+uqrIyJi7NixMWjQoNL1V111Vaxfvz7GjBkT9957b4wfPz5mzJgRZ599dpOe6zQNxhhjjNmqOfnkk+PnP/95vPvuu9GxY8f49re/HRMmTIiIurDfiy++GK+++mrp+uuvvz4uvfTSWLduXbRr1y4+8YlPxE9/+tMmPdMvWMYYY4wxFcYhQmOMMcaYCuMXLGOMMcaYCuMXLGOMMcaYCuMXLGOMMcaYCuMXLGOMMcaYCuMXLGOMMcaYCuMXLGOMMcaYCuMXLGOMMcaYCuMXLGOMMcaYCuMXLGOMMcaYCuMXLGOMMcaYCvP/Ab6UsAZOJHZLAAAAAElFTkSuQmCC", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "source": [ - "matched = aligned.template_match_disk(disk_r=5) # the disk_r should be equal to the size of the diffraction spots. \n", - "matched.plot()" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Peak Finding\n", - "We can then find the position of the peaks using the `hyperspy.Signal2D.find_peaks()` method. There is an interactive form of this method as well which makes defining the proper settings a little bit easier. " - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [ - { - "ename": "ImportError", - "evalue": "No toolkit registered. Install hyperspy_gui_ipywidgets or hyperspy_gui_traitsui GUI elements.", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[14], line 2\u001b[0m\n\u001b[1;32m 1\u001b[0m get_ipython()\u001b[38;5;241m.\u001b[39mrun_line_magic(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mmatplotlib\u001b[39m\u001b[38;5;124m'\u001b[39m, \u001b[38;5;124m'\u001b[39m\u001b[38;5;124mnotebook\u001b[39m\u001b[38;5;124m'\u001b[39m)\n\u001b[0;32m----> 2\u001b[0m \u001b[43mmatched\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfind_peaks\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/mambaforge/envs/pyxem-demos/lib/python3.11/site-packages/hyperspy/_signals/signal2d.py:1023\u001b[0m, in \u001b[0;36mSignal2D.find_peaks\u001b[0;34m(self, method, interactive, current_index, show_progressbar, parallel, max_workers, display, toolkit, **kwargs)\u001b[0m\n\u001b[1;32m 1020\u001b[0m peaks \u001b[38;5;241m=\u001b[39m BaseSignal(np\u001b[38;5;241m.\u001b[39mempty(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39maxes_manager\u001b[38;5;241m.\u001b[39mnavigation_shape),\n\u001b[1;32m 1021\u001b[0m axes\u001b[38;5;241m=\u001b[39maxes_dict)\n\u001b[1;32m 1022\u001b[0m pf2D \u001b[38;5;241m=\u001b[39m PeaksFinder2D(\u001b[38;5;28mself\u001b[39m, method\u001b[38;5;241m=\u001b[39mmethod, peaks\u001b[38;5;241m=\u001b[39mpeaks, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n\u001b[0;32m-> 1023\u001b[0m \u001b[43mpf2D\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgui\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdisplay\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdisplay\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtoolkit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoolkit\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1024\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m current_index:\n\u001b[1;32m 1025\u001b[0m peaks \u001b[38;5;241m=\u001b[39m method_func(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__call__\u001b[39m(), \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs)\n", - "File \u001b[0;32m~/mambaforge/envs/pyxem-demos/lib/python3.11/site-packages/hyperspy/ui_registry.py:162\u001b[0m, in \u001b[0;36mget_partial_gui..pg\u001b[0;34m(self, display, toolkit, **kwargs)\u001b[0m\n\u001b[1;32m 161\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mpg\u001b[39m(\u001b[38;5;28mself\u001b[39m, display\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, toolkit\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[0;32m--> 162\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mget_gui\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mtoolkey\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoolkey\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdisplay\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdisplay\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 163\u001b[0m \u001b[43m \u001b[49m\u001b[43mtoolkit\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mtoolkit\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/mambaforge/envs/pyxem-demos/lib/python3.11/site-packages/hyperspy/ui_registry.py:69\u001b[0m, in \u001b[0;36mget_gui\u001b[0;34m(self, toolkey, display, toolkit, **kwargs)\u001b[0m\n\u001b[1;32m 67\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mget_gui\u001b[39m(\u001b[38;5;28mself\u001b[39m, toolkey, display\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m, toolkit\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs):\n\u001b[1;32m 68\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m TOOLKIT_REGISTRY:\n\u001b[0;32m---> 69\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mImportError\u001b[39;00m(\n\u001b[1;32m 70\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mNo toolkit registered. Install hyperspy_gui_ipywidgets or \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 71\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mhyperspy_gui_traitsui GUI elements.\u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[1;32m 72\u001b[0m )\n\u001b[1;32m 73\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mhyperspy\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdefaults_parser\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m preferences\n\u001b[1;32m 74\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(toolkit, \u001b[38;5;28mstr\u001b[39m):\n", - "\u001b[0;31mImportError\u001b[0m: No toolkit registered. Install hyperspy_gui_ipywidgets or hyperspy_gui_traitsui GUI elements." - ] - } - ], - "source": [ - "%matplotlib notebook\n", - "matched.find_peaks()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "peaks = matched.find_peaks(threshold=1.0, distance=5, interactive=False)" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Converting Peaks to Diffraction Vectors\n", - "\n", - "We then need to take the peaks identified and transform them into diffraction Vectors. We can construct the signal using the following code. Note that the center of the diffraction pattern and the calibration need to be passed once again. We can take these from the diffraction signal." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "center = [a.offset/a.scale*-1 for a in matched.axes_manager.signal_axes] # should be the center of the pattern now...\n", - "\n", - "calibration = matched.axes_manager.signal_axes[0].scale\n", - "\n", - "vectors = pxm.signals.DiffractionVectors.from_peaks(peaks,center = center, calibration=calibration)\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Filter the Diffraction Vectors\n", - "\n", - "We want to only return the diffraction vectors which are within some distance of a basis set of diffraction vectors. This basis set can be just be a single set of diffraction spots but ideally more than 2 spots will be used. This allows for the least squares fitting to also return a residual. In many cases this is prefered as it allows outliers to be identified as points with high residuals. Note that in some cases, using too many spots can also be probalematic as low intensity spots are harder to fit. In those cases a weight parameter is also allowed to help refine the fitting. \n", - "\n", - "Defining the basis set of vectors can be done in multiple different ways. \n", - "\n", - "1. Define a basis from a known basis set of vectors. Using the known lattice parameter for the material it is possible to define the proper basis set for the material.\n", - "\n", - "2. Define the basis from an unstrained part of the material. \n", - "\n", - "\n", - "In most cases the secound way is easier and prefered over the first. It is less dependent on the calibration and things like elliptical distortion in the diffraction pattern will show up as strains in the first case and a very high quality of experiment is necessary.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "# Get the basis vectors from an unstrained part of the material. \n", - "basis = vectors.inav[1:2,1:2]\n", - "basis.filter_magnitude(min_magnitude =0.1, max_magnitude=1)# remove the zero_beam\n", - "basis_array = basis.data[0,0]" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "filtered_vectors = vectors.filter_basis(basis_array, distance =.2, inplace= False)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "from pyxem.generators.displacement_gradient_tensor_generator import get_DisplacementGradientMap" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "strain_map = get_DisplacementGradientMap(filtered_vectors, basis_array)" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "maps = strain_map.get_strain_maps()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [ - "import matplotlib.pyplot as plt\n", - "f= plt.figure(figsize=(7,7))\n", - "hs.plot.plot_images(maps,per_row=2,fig=f,\n", - " label=[\"e11\",\"e22\", \"e12\", \"theta\"],tight_layout=True)\n", - "plt.show()" - ] - } - ], - "metadata": { - "anaconda-cloud": {}, - "kernelspec": { - "display_name": "pyxem-demos", - "language": "python", - "name": "pyxem-demos" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3" - }, - "widgets": { - "state": { - "280e931f7b274209a009d92f04098e5c": { - "views": [ - { - "cell_index": 54 - } - ] - }, - "3d704cd8716e4cb1bf00a7c4e9fe1330": { - "views": [ - { - "cell_index": 34 - } - ] - }, - "477fdf6035284f3ca253bc694d701370": { - "views": [ - { - "cell_index": 24 - } - ] - }, - "48d9b9d421a14ddc9e73f084d5fc5e37": { - "views": [ - { - "cell_index": 30 - } - ] - }, - "635d08b3b596415ab27d7bed3b684f91": { - "views": [ - { - "cell_index": 48 - } - ] - }, - "64f45a95642f400ea7d3bed5fecff420": { - "views": [ - { - "cell_index": 52 - } - ] - }, - "7618040a46fc4203b76648a4d1383a11": { - "views": [ - { - "cell_index": 28 - } - ] - }, - "bb0e63a793d34b2bb255c5dca59a5aa3": { - "views": [ - { - "cell_index": 54 - } - ] - } - }, - "version": "1.2.0" - } - }, - "nbformat": 4, - "nbformat_minor": 4 -} diff --git a/05 Strain Mapping.ipynb b/05 Strain Mapping.ipynb new file mode 100644 index 0000000..1ce7156 --- /dev/null +++ b/05 Strain Mapping.ipynb @@ -0,0 +1,1482 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Strain Mapping \n", + "\n", + "This notebook goes through the steps to calculate the strain using pyxem. This data was taken from the paper:\n", + "\n", + "```\n", + "Microstructure and microchemistry study of irradiation-induced precipitates in proton irradiated ZrNb alloys\n", + "Yu, Zefeng; Zhang, Chenyu; Voyles, Paul M.; He, Lingfeng; Liu, Xiang; Nygren, Kelly; Couet, Adrien\n", + "10.18126/2nj3-gyd8 \n", + "```\n", + "\n", + "It shows a percipitate which arises from irradiation in the ZrNb sample. The dataset shows the strain for one of these precipitates. The results in this notebook are slightly different than those published as the paper only uses two diffraction spots to calculate strain. Here we define a `basis` set of diffraction spots from an unstrained region of the sample and then use that basis set of spots to refine the diffraction spots found in the rest of the dataset.\n", + "\n", + "Then a gradient tensor which maps each set of found points at (x,y) is calculated such that the tensor maps the points onto the basis.\n", + "\n", + "Transforming that gradient tensor we can plot the percent strain in the E11 E22 and E33 directions as well as a Theta displacement. \n", + "\n", + "In this sample you can see that there is mostly compressive stress on the percipite as well as shear stress. Hot spots on the edge of the theta map suggest the presence of dislocations as well. \n", + "
\"StrainMapping\"
" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This functionaility has been checked to run in pyxem-0.19.0 (May 2024). Bugs are always possible, do not trust the code blindly, and if you experience any issues please report them here: https://github.com/pyxem/pyxem-demos/issues" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Contents" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "1. Visualizing and Loading Data\n", + "2. Pattern Averaging the Data\n", + "3. Filtering with a Disk Template Matching\n", + "4. Peak Finding\n", + "5. Determining Strain\n", + "6. Visualizing Strain" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 1. Visualizing, Loading and Centering Data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Import pyxem and other required libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:silx.opencl.common:Unable to import pyOpenCl. Please install it from: https://pypi.org/project/pyopencl\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "0.19.dev0\n" + ] + } + ], + "source": [ + "import pyxem as pxm\n", + "import hyperspy.api as hs\n", + "print(pxm.__version__)" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Load the data. This is an example dataset downloaded from a Zenodo Repository and cached on your computer.\n", + "s = pxm.data.zrnb_precipitate(allow_download=True, lazy=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + "

< Axes manager, axes: (60, 40|256, 256) >

\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Navigation axis namesizeindexoffsetscaleunits
6000.50.9nm
4000.50.9nm
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Signal axis namesizeoffsetscaleunits
256-6.5641025641025640.05128205128205128nm^-1
256-6.5641025641025640.05128205128205128nm^-1
\n" + ], + "text/plain": [ + "\n", + " Name | size | index | offset | scale | units \n", + "================ | ====== | ====== | ======= | ======= | ====== \n", + " | 60 | 0 | 0.5 | 0.9 | nm \n", + " | 40 | 0 | 0.5 | 0.9 | nm \n", + "---------------- | ------ | ------ | ------- | ------- | ------ \n", + " | 256 | 0 | -6.6 | 0.051 | nm^-1 \n", + " | 256 | 0 | -6.6 | 0.051 | nm^-1 " + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "s.axes_manager" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Set the scale \n", + "s.calibration.scale= 0.051" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# set axis labels\n", + "s.axes_manager.signal_axes[0].name=\"kx\"\n", + "s.axes_manager.signal_axes[1].name=\"ky\"" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# Set the figure dpi so that things show up nicely side by side (This is different for every monitor. \n", + "import matplotlib.pyplot as plt\n", + "plt.rcParams['figure.dpi'] = 60" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Plot the dataset\n", + "\n", + "We can use the `%matplotlib ipympl` jupyter magic comand to make it interactive" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "57ec82e9761a46339879bd77b5a5cf05", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Ba…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "%matplotlib ipympl\n", + "s.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 2. Pattern Averaging the Data\n", + "\n", + "\n", + "Sometimes we see some varible intensity in the disks. We can actually correct some of this by just gaussian filtering the data in real space. \n", + "For strain mapping we can make this very local (sigma = 0.5,0.5,0.0,0.0) and we don't lose much spatial resolution (its equivlent to having a slightly larger probe size in real-space). Of course this also greatly increses your Signal to noise ratio which is more of what we are interested in :). \n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "from dask_image.ndfilters import gaussian_filter # For lazy signals\n", + "#from scipy.ndimage import gaussian_filter" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "s = pxm.data.zrnb_precipitate(allow_download=True, lazy=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# filter the dataset\n", + "filtered = s.filter(gaussian_filter, sigma=(1,1,0,0)) # in pixels " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Title:
SignalType: electron_diffraction
Array Chunk
Bytes 600.00 MiB 16.00 MiB
Shape (60, 40|256, 256) (8,8|256,256)
Count 487 Tasks 40 Chunks
Type float32 numpy.ndarray
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

Navigation Axes

Signal Axes

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " 60\n", + " 40\n", + " \n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " 256\n", + " 256\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "filtered" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 2.42 sms\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "d358f8c2adf445339666d5f989cf2bad", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Ba…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "c4b1b1b9e96245a7b208b954f08d4a3e", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Ba…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# plot the filtered dataset (Lets compare the two!)\n", + "%matplotlib ipympl\n", + "\n", + "filtered.plot(vmax=\"99th\")\n", + "s.plot(axes_manager=filtered.axes_manager, vmax=\"99th\")\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "tags": [] + }, + "source": [ + "# 3. Filtering with a Disk Template Matching\n", + "\n", + "\n", + "Then we can use template matching before finding the diffraction vectors in the dataset. I like to do this lazily and then adjust the parameters. The disk_r can be read from the size of the direct beam but it is also good to view the template result to make sure that things worked correctly. If your disk_r is too small you might end up with a valley at the center of the disk and if your radius is too large you end up with a platau at the center.\n", + "\n", + "This is shown below where the ideal radius is around ~11 pixels" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "51f0ad5038264c03ae165a18e9332b74", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA4QAAAEsCAYAAACbnn2RAAAAPHRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMHJjMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy+OBYQFAAAACXBIWXMAAAk6AAAJOgHwZJJKAAEAAElEQVR4nOz9eYzs6XXehz+1du1r78vd5t7h7IuGpEmaZEgIVBRSsawoUiQ4gSQmE8awIUdJ5CgGaEhJnMiAZCuOjYCJxVAOYCOGDNGRSFsxHSqyuIikyOHMcDh35u69d3VV117dtf7+6N/n9KmaS4kUORHZ8z1A497urv4u73qe8zznvKHJZDJRYIEFFlhggQUWWGCBBRZYYG84C/9ZP0BggQUWWGCBBRZYYIEFFlhgfzYWAMLAAgsssMACCyywwAILLLA3qAWAMLDAAgsssMACCyywwAIL7A1qASAMLLDAAgsssMACCyywwAJ7g1oACAMLLLDAAgsssMACCyywwN6gFgDCwAILLLDAAgsssMACCyywN6gFgDCwwAILLLDAAgsssMACC+wNagEgDCywwAILLLDAAgsssMACe4NaAAgDCyywwAILLLDAAgsssMDeoBYAwsACCyywwAILLLDAAgsssDeoBYAwsMACCyywwAILLLDAAgvsDWoBIAwssMACCyywwAILLLDAAnuDWgAIAwsssMACCyywwAILLLDA3qAWAMLAAgsssMACCyywwAILLLA3qAWAMLDAAgsssMACCyywwAIL7A1qASAMLLDAAgsssMACCyywwAJ7g1oACAMLLLDAAgsssMACCyywwN6gFgDCwAILLLDAAgsssMACCyywN6gFgDCwwAILLLDAAgsssMACC+wNagEgDCywwAILLLDAAgsssMACe4NaAAgDCyywwAILLLDAAgsssMDeoBYAwsACCyywwAILLLDAAgsssDeoBYAwsMACCyywwAILLLDAAgvsDWoBIAwssMACCyywwAILLLDAAnuDWgAIAwsssMACCyywwAILLLDA3qAWAMLAAgsssMACCyywwAILLLA3qAWAMLDAAgsssMACCyywwAIL7A1qASAMLLDAAgsssMACCyywwAJ7g1oACAMLLLDAAgsssMACCyywwN6gFgDCwAILLLDAAgsssMACCyywN6gFgDCwwAILLLDAAgsssMACC+wNagEgDCywwAILLLDAAgsssMACe4NaAAgDCyywwAILLLDAAgsssMDeoBYAwsACCyywwAILLLDAAgsssDeoBYAwsMACCyywwAILLLDAAgvsDWoBIAwssMACCyywwAILLLDAAnuDWgAIAwsssMACCyywwAILLLDA3qAWAMLAAgsssMACCyywwAILLLA3qAWAMLDAAgsssMACCyywwAIL7A1qASAMLLDAAgsssMACCyywwAJ7g1oACAMLLLDAAgsssMACCyywwN6gFgDCwM6FRSIRPfXUU3rsscf07/67/67q9fq39Pfvec979KUvfUmS9P73v/9b/vtv1i5duqTHH39cTz31lN785jf/iZ//v/6v/0u//Mu//Lo8S2CBfTfa98pc/uAHP6jFxUU99thjUz+v1Wp63/vep2vXrul973ufjo6O/tjr7Ozs6N//9//91+UZAwvsu8W+1+f1L/7iL2ptbU1PPfWUnnrqKX3yk5/8E6/1jne843V5xsACez0sAISBnQtLJpN67rnn9OKLL6pUKukf/IN/8Ke+1ic/+UkVCoXv3MPN2Kc//Wk999xztrn9cfYX/sJf0C/8wi+8bs8SWGDfbfa9Mpd/+qd/Wv/yX/7L1/z8l3/5l/X93//9evXVV/X93//9f2JAZ3V1Vb/5m7/5ujxjYIF9t9j3+ryWpJ/7uZ/Tc889p+eee07vf//7/8Rrffazn/1OP15ggb1uFgDCwM6dvf3tb9f29rYk6Qtf+ILe/va36+mnn9Y73vEOXb9+XZLU6/X0Ez/xE3r44Yf1Iz/yI+r1evb3ly5d0uHhoe7cuTMVJfyVX/kV/eIv/qIk6e/9vb+nRx55RE888YR+4id+4tt+5ve85z36a3/tr1kE9Qtf+IIk6WMf+5j+6l/9q5KkH/7hH9Y/+kf/SJL0kY98RH/pL/2lb/u+gQX23WzfzXP53e9+t0ql0mt+/s//+T/XT/3UT0mSfuqnfkof//jHJZ0yDP/Rf/Qf6e1vf7uuXbum/+1/+98kaerZ/u7f/bv64Ac/KEl64YUX9Nhjj6nb7X7TzxRYYN8L9r04r7+RfexjH9MP//AP6z3veY+uXbumX/qlX7LfZTIZSdJv/dZv6fu///s1mUy0u7urBx98UHt7e9/0PQIL7P8Li/5ZP0BggX0nbTQa6V//63+t//g//o8lSQ899JD+zb/5N4pGo/rUpz6lv/E3/ob+2T/7Z/pf/pf/RalUSl//+tf1/PPP6/u+7/u+pfv88i//sm7fvq25uTmTrnz605/Wz/3cz73ms6lUyiKFoVBIP/ADP6BQKKQPfehD+k//0//UPtftdvXcc8/p93//9/XBD35QL7744tR1/tf/9X/Vn//zf16XL1/Wr/7qr+rzn//8t/TMgQX2vWTf7XP5G9n+/r5WVlYkScvLy9rf37ffPf/88/r85z+vTqejp59+Wh/4wAem/vav/bW/pve85z36rd/6Lf2tv/W39JGPfESpVOpbep/AAvtutu/VeS1Jf//v/339o3/0j/TmN79Zv/qrv6pisSjpFNS++OKLSqVSestb3qIPfOADUykhP/IjP6J/9s/+mf7BP/gH+pf/8l/ql37pl7S8vPwtvU9ggb3eFgDCwM6F9Xo9PfXUU9re3tbDDz+s973vfZKkRqOhn/qpn9Krr76qUCikwWAgSfr93/99/ezP/qwk6YknntATTzzxLd3viSee0F/6S39Jf/Ev/kX9xb/4FyVJ733ve/Xcc8/9sX/3B3/wB1pbW9PBwYHe97736aGHHtK73/1uSdJP/uRPSjqNUDabzdfkSCwtLem//W//W733ve/Vb/3Wb31LUczAAvtese+VufzNWCgUUigUsu9/+Id/WMlkUslkUu9973v1hS98QU899ZT9PhwO62Mf+5ieeOIJfehDH9Kf//N//tt+hsAC+26w7/V5/Zf/8l/Whz/8YYVCIX34wx/Wf/lf/pf66Ec/Kkl63/vep3K5LEn69/69f09/8Ad/8JoaAf/z//w/67HHHtPb3vY22+sDC+y7yQLJaGDnwshPuHv3riaTieUnfPjDH9Z73/tevfjii/rt3/5tHR8ff9PXjEajGo/H9r3/20984hP6K3/lr+jLX/6y3vKWt2g4HOrTn/60JZz7L59Yvra2JklaXFzUj/zIj5g0VNKU43i/76VTGVm5XNbOzs43/R6BBfa9ZN8rc/kb2dLSknZ3dyVJu7u7WlxctN99M3P81VdfVSaTCeZ4YOfKzsO8jkQiCofDevbZZ7/lvXtra0vhcFj7+/tTzxxYYN8tFgDCwM6VpVIp/b2/9/f0q7/6qxoOh2o0GgbCPvaxj9nn3v3ud+sf/+N/LEl68cUX9fzzz7/mWktLSzo4OFC1WtXJyYl+53d+R5I0Ho+1ubmp9773vfrbf/tvq9FoqN1uW/Rx9gspSqfTUavVsv//3//3/z2V//B//p//p6RTFjGfzyufz089zxe+8AX9i3/xL/SVr3xFv/Irv6Lbt29/h1otsMC+++y7eS7/cfYX/sJf0G/8xm9Ikn7jN35DP/zDP2y/++f//J/r+PhY1WpVv/d7v6e3vOUtU3/baDT0sz/7s/r93/99VavVoNhMYOfOvlfnNUEe6TQn0O/d/+pf/SvVajX1ej19/OMffw2zPxwO9cEPflD/5J/8Ez388MP6O3/n73zzDRZYYP8fWQAIAzt39vTTT+uJJ57QP/kn/0R//a//df03/81/o6efflrD4dA+85f/8l9Wu93Www8/rL/5N/+mnnnmmddcJxaL6W/+zb+pt771rSbvlE5zIP7D//A/1OOPP66nn35aP/uzP/tNVTzb39/XO9/5Tj355JN661vfqg984AP6wR/8Qft9IpHQ008/rf/sP/vP9Ou//utTf3tycqJnn31WH/3oR7W6uqpf/dVf1Qc/+EFNJpM/ZSsFFth3v323zmXpVOL99re/XdevX9f6+rrN2V/4hV/Qv/pX/0rXrl3Tpz71qakqwU888YTe+9736m1ve5s+/OEPa3V1deqaP/dzP6e/8lf+ih588EH9+q//un7hF35BBwcH32qzBRbYd7V9L87rv/7X/7oef/xxPfHEE/r0pz+tv/t3/679zVvf+lb96I/+qJ544gn96I/+6Gvkov/D//A/6F3vepfe+c536u/8nb+jf/gP/6G+/vWvf6vNFlhgr6uFJoFHGVhgf+b2nve8R7/yK7/yTZ1NGFhggX3v2S/+4i8qk8nov/qv/qs/60cJLLDAvkP2sY99TF/60pf09//+3/+zfpTAAvu2LGAIAwsssMACCyywwAILLLDA3qAWMISBBRZYYIEFFlhggQUWWGBvUAsYwsACCyywwAILLLDAAgsssDeoBYAwsMACCyywwAILLLDAAgvsDWrBwfTnwP6L/+K/kCTNz8+r3+9rPB6rVqupUChoPB5rYWFBoVBItVpNFy5cULVaVb/fVzKZVCgU0mg00uHhoXK5nPr9vprNprrdrorFomKxmGKxmA4PD5XNZnV8fKzJZKJQKKR8Pq9IJCJJ2tzcVC6X0/b2tsbjscbjsaLRqBKJhObm5hQKhZTNZjU3N6fhcKher6fhcKi5uTl75ng8rn6/r3g8rslkomg0qmg0qslkok6nY88WCoUUiUSUSqWUy+VULpcVCoXsbJ+5uTnV63UlEgnFYjGdnJxoPB7r+PhYly9fVq/XUygU0te//nUre51MJlUsFpVMJjUcDtXtdhWNRtXtdjUcDtXpdOxA6VgsplarpW63q1QqpWKxqHA4rGazqWg0qna7rWg0qnQ6rVQqpZWVFTWbTSUSCQ2HQw2HQ7XbbS0uLlo78E6SrH/i8bhCoZASiYQdWZFIJCSdlqePRqPWj/F4XLlcTsPhUCcnJ5JOz2TqdDoajUaSpHq9rlQqpUwmo7m5OR0fH1vfDAYDRaNRHR8fKx6P6+TkRL1eT5KUTqdVLBYVjUaVTCbV7/ftWY+Pj60d4vG4UqmU0um00um0JpOJEomEEomEIpGI3TOTydhzdTodnZycqFqtKh6Pq91uT42PdDqtarWqy5cva39/X5FIRIPBQIlEQg888ICOjo7UarWsjPd/8p/8J2o2m3/inMnlcvqH//Affkfm3+tlH/zgBzUajTSZTBSJRJRMJhWJRKyyLH09Ho+nxni73dZoNFK/39dwOFQ4HFYoFFIsFtN4PFY4HNZwONRkMrGfMV8Hg4GdoTUYDDSZTBQOhxWPxxUOn8YPmcexWEyJRELRaFTxeFxzc3N2L56PZ41EIvYu3G88Hlt/D4dDHR8f2zucnJyoUCgol8vZWJpMJvYck8nEzhzjOYfDoaLRqGKxmObm5jQajewzw+Fw6t1TqZRCoZA6nY5isZjC4bBGo5H9Ozc3Z+uRdFoBOBQKKRwOa25uTpLsOSORiKLRqN0/Ho/bWhSNnm6xoVDIxnS/31e327V+ox9Go5Fdg7VrMBio2Wzq5OTE+pa+SqVSSqVSmpubs/kXj8cVjUan1sOTkxO7rzc+MxqN1O12Jcn6iHctl8s2hxOJhMLhsN2bNpJk/X5ycqLRaKTxeKxut6vBYKDBYGD7xsnJiVqtlp0fx7lukUhEjUZD4XDY2mUwGOgP/uAPJJ2vef3ss89a+zI+ms2m2u22jo+P1Wg0dHJyopOTE7XbbYXDYYXDYaVSKduP0+m0otGo5ubmlE6np+anJNtjjo+PdXx8rKOjI/t/v9+3/aZUKimRSCiTyWhhYUGZTEbJZFK5XM7mtB9b+Xze7sNcPT4+1mAwUKvVsufmZ8xt/s8YZ/6yRywsLNjYk2TPF4lEbB3ze6QkW5fm5uZs/fN7Ge2LPySdViXt9/uaTCYajUY258fjsa0DrF/M8+FwqFarZX5Kr9ezMY7RF7FYTJLsOfkcbXBwcKB2u62TkxPb42OxmAqFwtQ+zjqSTqetz9lHmeP4RqxzzDX6gfvyL18Y7ZvL5WwtKRQKisViU3sMayt+BN8Ph0NFIhFbVyORiI1r1lH6m3FSr9d1fHysT37yk5LO17w+DxYAwnNgpVJJ+XxemUxGoVBI3W7XHBg2CiZqr9cz5yOVSqndbqter6vX69mCl8lklEqlJEm1Wk2DwUCxWEx7e3u2EEWjUXPaotGoIpGI6vW6LRCDwUClUkmZTEaJRELj8Vj5fF6xWMwcMWwymajX65lDmUqlbOHC0QqHw2q1WopEIorFYkomk8pms8rn80omkwZgACXS6WLMpgdA9hvOZDLR+vq65ufnNRgMlEwmlc/ntbu7q3g8bs4ZDtpoNFKxWNRkMtFgMND6+rqi0ajy+byBwaWlJVWrVR0cHCiVStlCmUgklM/nzTljg+v3++ac1ut15XI5LS0tKZFI6IUXXlAmk1Gj0dBoNFK5XFYymdRoNFIikVC73VY8Hle5XFan05lyhvv9vhKJhHq9ngaDgTng9FcikTBHAmA5Ho+t7cbjsRKJhG2ulOyOx+PKZrPq9/vKZDIG0ufn5w3AhkIhJZPJKceRzTuTydjmRv80m00VCgX1+32Fw2GVSiXFYjHVajXNzc3ZBuQBTSQSUSaT0cHBgQaDgY2lZrNp5zn+cfYf/Af/wbc/8V5nwzHHCfDtC3hjLOFg4fzh6Euyz/N/HJ7JZKJ+v69+vz/VhtyTz/H3OBAEebwTxM8AR9IZCMNwTHCSGMeDwcAcqPF4PDVH/TNwf5xE1jUAEuuEdxq9M8Pz8RneRdJUW7HGAIAIVgHGaZu5uTkNBgMLqjDGcdROTk5e00+SLOAiydYX1iOcbdqW//vPD4dDxeNxa3P+5d7MGd6fvyM45p1e5iDtxPuORqOpw7VZVwhQ0R70NX1HO3BP+t+3B23O33uHnOv48Sedr3ktacppZv9j/gKqGOMAG99v/hp+f2cc0bZ8+SCFdLa2eMDA37PezM3N2fjie4LIjBE/XxmvXN/PM/4/Go0UjUYNLBCoYszMAj/mEtdgTSBgzN8TKOS9uQafY78BXDEfeQfal3b1a9hoNLI+IdDBfupBOG3M8/Ll5xLrKEEtHxzz7cl7MW9pf76nj/C1uAfrEn3L/blnPB63tX4WXPt+kjQFlnle/3PeRZLt+YxHPjeZTNTtdu1v6QfsvM3r73ULAOE5sHA4rGKxqFKppFQqpclkoq2tLXU6HcXjcS0uLppDvbCwoGg0aszKycmJKpWKyuWyMTIHBwdqNBqan59XqVRSOBw2p0Y6ZYzy+bxFs4iSLyws6N69e5KkZDJpoCMWiymfz2txcVG5XE6j0cjA23g8Vr/fV6/XU6FQ0GAwUCaTUa/XM0AzmUx0584dSacHurPIr62tqVQqSZJ6vZ6Wlpbs/YmsLi4uan5+XsvLy+r3+1pbW7MINRE6D55zuZze9KY3qdfr2buwWKdSKV25ckX1el03b97U6uqqgeLj42OVSiVtbGxMsRoLCwvW/rRjt9tVNptVOp3W3NycMa0LCwtaWFjQwcGBsbM4Ujdv3jTAVqlUlEwmjcVNp9OKRCLa2NiwiGGtVlO321U8Hle9Xlc0GtX8/Lwxmul02sAhUU/6cTAYKJvNSjplItlciejiqLCRp9NphUIhpdNpSaeOQS6Xs/HpN0fvBB4fH5sDy7PyXNlsVsvLyyqXy9rZ2dHh4aE5LwQDSqWS7ty5M8V8sMmeF6N9cQ5gviSp3+/bXKpUKsbWttttSTLAg1OIM+Qj/D6CTSRXks0xnBGCMLFYTKVSaQp8AEhSqZT9jY9ecz/GPiwFziGAFPVALBazsZFIJLS0tGQODo6aB5UAEQ8ucCwTiYQ5WKwlyWTSgg6tVkutVkuSjGng89IZYMMp9v2Cs0jQjbnEXA+Hw+p2uwqFQlOMCc9/fHysSCQy9TPWJhw35htOqwfkrMGsI7Q9gIu5kMlkpvqZ8cN8AizDYDK2cAS5L46mBxs4ijiGAEtJU449DiFzk3GVSqXsZzjDrEXecTxP89oDFoJ1BGQJbNI3Hnjf78uvqTj0kqYASzgcVr/ft7nGmKNNCRIw3iKRiKlbYA+Z3wQvGTcEcrnuYDDQycmJut2uRqORsVb8H1AF6PfqB56Xa7HnApw9GGZ9Yj7AgPNzSbZeEGT24yedTlt7s94QcMRYlzqdjhqNhs1fv98AwmgP1krPlvGek8lE6XTafkYf0I58hsA+7QIwz2azU+sxAUKUNvhR3l/zAWjaBb+LtvHAnz2Cscd64ec185RrMsdnASHAPZlM6vj42J6N9Yl+PC/z+jxYAAjPgREdHgwGarfbarVaunXrllZWViwa3Wq1tLCwoFKpZE4jspPxeKzNzU1VKhXF43Elk0m1Wi0VCgVjCFmkU6mU8vm8Ll68qFgspl6vp93dXR0cHKjVaqnZbJoTkclkbPGYm5szRz+VSqnVaimbzZq8pF6vq1wuGzPFNQ4ODuzeLJhHR0fGPJ6cnGh+ft5kVZFIxGQPLGY4ysg2T05OlE6nLdLOZlAqlTQ3N6ejoyMdHR1JkhYWFiTJZJE4sg899JD29/eVy+W0uLiobrer+fl5STIGFEYUUIMzj8OeTqe1t7dnzh2bH9KQUqmkTqdj0TdJBqQmk4kxpPRDs9nUxYsXdXR0pGKxqG63q3q9PiVrwwlDdgTbl0gk1Gg0JEmFQsHkm6urqyaBJTpcqVSUSCRUKBRsowQUnpycmNTOO+qMtcFgYFLmk5MTNZtN1Wo1NZtNjcdj1et1HR0d6erVq+Y87O/v69atW6rVakokErp48aIkaX9/3/rW23kqnAxbxddkMlEqlbKNvtvtqtPpqNvtmiMtnQEZmFqu46VlRI69I+aZLJxyLyGEqWSM4jQip/bABIeAtYl5xrMgT/WgA2cL58pLFXFAPLjJZDLWFhgOF4yT9NoxwXxg3MJWIonGSUFehzGHcT5pSxxA2lOSyc0lmXwPhxWGhGdjbnBP1h8P1mmjWeaHf2ERaC/vqHIvHHPPkHh2mPHDvT0DNOvoeTbGjxHuQ3t4YOeZWa7Ls8PCsGb4dr9fH36vmmdnvawOVtAzrZ5lmw2oeSA4C9Bx2Gkz76xzfd+eABMvdebLs4Skc/D8PniCEoTf+XHF/OAeMMKsQezX/r1ZryS9JvAgaYpBow36/b5d1zOenrX2DB7r4ayqgOAV8m7WLwLYmAdAADTfZ7QN64IPsvEsvr0AirSRf0+AG/3g1TwEbJlvrImsLTyzD5jRZgBBz+YyTj3r7PvW/94zi5615rlYy/G3/FpNewf23WEBIDwHRu4Fm8CXv/xl1Wo1zc/Pazweq1gs2sKUzWZVr9f15S9/We94xzuUTqd18+ZNPf/883a9eDyubrerra0tpVIpc2wAeTdu3NDW1pblHNZqNe3s7CibzRpYYAHtdDpKJBLmtJfLZZNwwtDt7u7q8PBQkiyiSOS7Xq+r2Wxqe3tbtVpNjUZDm5ub2t7e1gsvvKA/9+f+nF544QXdu3dPy8vLqlarymazeu6558wZLhaLOjg4UDKZ1NLSktrtth555BHduXPHHO1MJqPNzU1duHBB7XZbjUZDOzs72t7e1sHBgUajkTKZjK5du6ZIJKJer6e9vT1jHSeTiW7dumUM5Ve/+lVdu3ZNR0dH6na7euWVV1Sr1dRutxWLxVSpVPTYY4+pXq8rHA5rf39fk8lExWJRL7/88tTm22g0tLe3p4sXL+prX/uacrmcsQ7NZlO5XM5A+87Ojo6OjtTr9bS9va2dnR27Fgs0LKzfhBOJhF555RXFYjF1Oh212+2pe0SjUcstBcBvbW2p3W5rf3/fWBEkovR5LpczWSGbk889bTabdj+comQyqcPDQz366KO6fv26vva1r1lg4MKFC7px44axrltbWzo4OLCxizN0HsxLdbysju8Jpvh/fQ6aZw0ADbMbOIwcmzi5LoBxD9AkvQYEwUihBvCMpCRjOIgO42z5yDqgAycQZwVAh9MonUm4PKvkJY/Hx8cKhULGCHgHxF9POpM0zkryfDTcqxni8fjUvbmXZ8tpP9g+Pt9sNs1B5rNeJsvfcG0UDgA370wOh0Nj6zDvRPOF+Wt72SFBAPoFppB1mfEEizIYDKYca+nMKfT96JkhvvfBhn6/b/JdHFHGtpfZejtP85q1mD4lyDgrsZ6Vi/pgCiyRl20z32Fd/Jz17C7jAMDgxzwgzwMyAg2e+ffsL89Mn3EtL++clagyVtjrPZiQzsAl6x1fXiFB4IDgE8FkL332MlAvcZ6ViBOMot3wX/r9vv17vzw8+sZffxak+j4FrNJ/zA+eCQk/X1wDua4Hhdls1thTH1Rjnvr559uWe/HeyMEJwvjPeXmuf28CfX498QEin9oAqGc8+bl9nub1ebAAEJ4DOz4+VqvVUjweV7PZ1FNPPaXf/u3f1vz8vFZWVlSpVJTJZNRsNrW8vKy7d++q1+vpy1/+smKxmKrVqkWbiJqXy+Uph5EFstvtqtvtqtFoKJfLqVQqaTKZqFAoqF6va2lpSeFwWJVKxWQqRBdhHHq9nhYWFjQ3N2fMEFLAl19+WdIpcCT632g0puQzJL6Tz0ceXrValXTK6r3zne+05HwKnUSjUQNp5MbFYjE9/vjjun79um7cuKHhcKgrV66o0+koEonoxo0bikajunjxopLJpG7cuGGOMtKzQqGg69ev6/j4WMvLy5bA3ul0lEqllEwmNT8/r3A4rMuXL2tvb8/YXKSfoVBIrVZLh4eHeuWVV1QsFq3gCgv217/+dbVaLaXTaS0uLlq/AXS9I1Cr1RQKhVQul9VqtaYK+8zPz2tjY8MceBg9QHqn07ENJJvNWh9Wq1XbABuNhvr9vo0DH7GMRk9zB7e3t62Ygc8b2t7eNkYyk8no3r17yufzarfbWl5e1rVr11QqlazN3vKWt+jg4MDyJCeTiebn55VOp7WwsDC1gUnnJ+LIvPPOP5K6ZrOparVqARPYJxh+nAjvKMwyC+TUhEKhqeg0jgJAZTAYqFarTYEwHB8YQhhjilxwLxwEiiDhoNBHABIcWZwY5rWXuXnpmGekvGwUx4m84mQyadfs9Xr2DBRJ8hJZnoO29OwaxZZ4f0m2JubzeY3HY/s7ZGYUUABgSzInl3fwuU3SWfEd1hj+1jM9XuaOk55MJk3SR9EfHHafJwrI4/p8cW8vB0NKx9/A6vlcUfIoYX88+zgL3qUzNnB+fl6ZTMYcRvoYxUY4HLaiVth5mdcUzKHtkdMhYZTOnGvWZ9ras8G+2Ah7ox+jXl0gyfomGo1OPYNXCPR6PQveIhNmfgNGMOZgKBSaKvzCnJyVsPJzn5fnmWCYO4DDbA4byhbWJQAHAInxOjc3N8VCSjJGn+8BuPgkzP1Op2PtQkoN8xl5rzQtJb9fO6VSKWMIuS/zgzbz88Wva7QLfQn4m5+ft1QcpLxcJ51O6+TkxPZuQGyr1bKAEGPLz0kUSR7EeqDPnPN97X/Pekpb8zxeRu8DiF4278dRYN8dFgDCc2BUrcJBqdVqWlpaUrfbteqf4fBpsY579+4pl8spFosZ2wNQYIHLZrNTchMWqmazaQ5Sp9OxgiUPPfSQ4vG49vb2bAM6Pj5WOp1Wt9u13Bw2PpynQqFggIf3GAwGWlxc1Hh8WoGQnEGchMlkYj8fDodaX19XuVy2RXxpaUlHR0eaTCZaW1sz6ezXvvY1dTodA5OFQkH7+/sKh8MmEV1cXLSNBznc4uKiVe7C6ZpMJqpWq7aJF4tFDYdDbWxsaHl52dopn89rODytYlqr1fTKK6/o4YcfVrVatbyRnZ0dPfLII5qbm9Pu7q45pjhlOzs7WlpasgWezXxzc1PSmQO5vLysUqlkDi3FRSaTibF0OBaSrN3Jo9rb27O8R+SkR0dHttGlUilznmu1mtLptGq1mm1At27d0gMPPCDpFJD7TRTwDfOAw4p8OJVK2aaFI1CtVm0zS6fTarfblpxOzhTOBc8lna+cBCRAABty7qRTpgypqM/ZImILC+XzjHB6fPSWQIukKYfSOwCwXVwfgO/lkZ6d8kAQ54EIvv+/l7UhIT4+Pp5ylCSZbJo8wNmoNeDWO7q0Ec9GYSwkoBSR8jk2SBkZq/cDnrSbJAOUyNCj0ahVH0YK7ZkQHF9fLITrzUrc6APAM+sufekBrGcFUTsw372EjACOz7fCceaZ6B8vO6TfqAbomQfGDe3DfZDcMa89m+rZa5xaVCnc/345Y+dlXvtCLrCDrGXSGRiczRfzrKqXS9KWfn2Xzor8wMwx5mYZGs+oeYZbun9hJ/7OX5/f+zHk57z3JSRNjetwODyV1zYbSGB8IcmUZBWXJU0xhBRU8qoC/648B/PCs4+MYb5m8/CYyz7YNSvX9kCdNRCgzLPybgT6vKSTfvP343nZiwGFrLUErnhf9mTaErBPf3k2mjVndq3jd/7/XsnhmWQPGnl+398ebM6qF87TvD4PFgDCc2D1el2Li4vKZrO2wb7yyiu6cuWK5WXNzc0pk8no+PhYi4uL5mSHw6dJxYuLixZp9tIoz77gULHRw94hcYxETkuHX7lyxaSRLEaeZeSYB9hG6XQRQRbYbDaVTqdt4+IzfsGCCdna2rIiNOFwWNVq1YpenJycWFS1UqlYPloul1OxWJR0elwGUcbl5WVVKhW9+OKLajabisfjWl9fN4kkEfILFy7o9u3bGo1GeuGFF0xOOR6PTWq7ubmpjY0NY1du3bql5eVlbW9v6+TkRIlEQrlczkBwr9dTOp1Wr9czZrTVamk8HqvVamk4HGplZcUAPwU4kMJSPTYSOa32eu/ePU0mEwO3tOmsrIxqr9wDMNjpdKaiweSrNZtNc+JJZO/3+9rY2FCpVNJwONTCwoKxVuSKStLq6qpGo5GxqrFYzEB5NBpVqVSy3yEz5Hkodw4Qwaiw6u28RBxxJAig0Na9Xk9HR0fqdDr2c8xLEb0kz8uZcAC8HNU7hMx5ovGAT5zE+fl5Y3wp/hKNRo3pBrB4aRkBJF9BkQIasFDNZtOYBvJ1YJ2r1ao5L35e4wBypAnMUrfbNScKA1gDCLlvu922NYpACQDVHwvRbDYtyh2JRNRut9Vut9Xr9SzHt1qtWr4g+dQ4SLQFTpKPnuOQ4ajyM+6H00cbc7SId5y5B3PGMyrD4XAqGIccnPvw9x6cMH8ZEzjvrN2tVku5XM7YSi956/V61rcARZxlX72VuY/MzefF+eITPN95MJ/r5dvb5w56wOfzcvl39gvGC2fbO9oweJgvjuQdd8aYB4WzzroHDt68dPAbyQC9pNgXN5LOQDDPxpgjWDArU2dusL5hBCNQO/CsSMe5JtdLJBJTwQrfHz7f0edL+r7wFVg9MPT5lPS1B748K9JdL7vm73gO9gH62ct3WcP9HPR5nl5y6yXEvg188M8HpRhD7B++DXwQwPerD0ASpOA6vnCYt/Myr8+DBYDwHFg2m9WTTz6pWq2myWSie/fu6dq1ayqXyzo4ODCAUa1Wtbu7q7t376rRaNhRCDBmSBHYoGej+uQG9no9Ax6j0cjK3J+cnJjTn06n1Wq1TPY3GAxUqVQUiZxWMCM6X6vVTOZB9U0cFRx9GEmAaLvd1vr6ukWRM5nMVMJys9nU6uqqwuHTKn97e3t6/PHH1e/3tbe3p0gkot3dXSu2guOxublpUdbV1VX1+32l02kdHx/r4YcfVrlc1ssvv6yTkxNdvXrVAGKv11O1WlUoFLJz/t785jfrj/7oj/TAAw9obm5OFy5cUKfT0fLysg4PD3V4eGhMYjQa1fXr13V4eKhwOKx6vW6OHJVTAfPxeNwYOAyZ1R/+4R/acRRbW1uam5uzaqWwtcgus9msRVz39/d19+5dA42XLl2SJD344IO6efOmLl26ZGxstVrV4eGhVlZWDPAj7+x2u1ax7oEHHtDDDz9ssuTDw0MDpBcuXNDe3p49A2MOx+Xo6Ejlclnx+OkxFQD+K1eumBzRn9XonX7p/GwwyJYBMDjWFAtqtVo2R7xDmMlkphwTHAccK89OSdPVRmHZjo+Pp6rKIV+GEeM8yeFwaJJkig/BaCADDIVCU+CVa/EuAEUKIA0GA9XrdQtQrK2t2VmcgD6cKcYJjouXcXW7XW1sbNi4gt3E+c5kMqrVaqrVajYXmHcA01qtZk42bQNLwDPy3rCVtJsvTgO7g/LAO8A4Ud4p5+9hkDCCcP1+X9ls1hw0KhDiEGYyGQNrmUzG2hQgCdvuGVqfn4q0v91uW7CrUqmYY0vlW1gOnFnAhDSdq+krJXJcjXfoCfYwzr3cEDsv89o72968RBCA4ee1LyDkQSJ523xGOpPzeUkwwQ5AjQ8c+aABTDcpBazpgAL6G7CCOof1AVAGw9bpdAwQ+HUAwBOLxaySsC+KRX4ha5cHvIAvAtqAIuYn4AOmnzYgUMzzelmqz2MnWMS78UzspbQ3yioCHYxzCsQBoGkvgksEQACetIcfEwTdkZ1zba/28bJU1nP8IEAj9+aa/l+YUNRH4/HY9mnAJvuPD/L5Csg8N8E7AhpemQLIpF29nZd5fR4sAITnwPL5vBUS4RDxl19+WZcvXzbH586dO1PR/NlKgXyxebOgSDJHlEWFiBZAs16v24Kfy+V04cIFHR4emgNCfiByTxbIfD4v6UwSMjc3ZzlRFJUhfxCJaLPZ1NzcnJaWllQqlVSpVCxfMZPJ2AGvnG2HM8li5HMXHn74Ye3t7RngOTk5sep+i4uLOjo6MieRRRNnXDqN9GazWYt4dzodA8eVSsVy5bLZrOU7Hh8f6/LlyyblTSaTKpfLunv3rt1jNBpNJZFzL4A4UUxpWl7CZhKPx63ADsd3sCBHo6dnClLcp9Vq2aHEAPFEIqGdnR1tbW0pEjmt2koBHaSu9DfggH6FgU0mk3acSbVaVTqdtvL3pVJJ1WpVR0dH2tnZscORI5GI1tfXlUqltLq6qlAoZHmqMDhEMZeWlnT79m3bLLHzJkGZZe9wtAjA4Dz7yPWshMlL0LgemzWSplnZGqybLw5CfgsMHAAJh8Qf8i7J5hnMm89ZwzHAefQOonRWCAWQg8SRs1PJaSOQ4J1LQCHtR3vhjMXjcSvzDpjiM7NRekBkKpWyc1aZS+TtwKLBaGP3Y3x8LpiXUs32s2dufUSddvLFLugbLzFkjUdexrsQHPAMg5ePSWeHUUuyM2G9DNeDX5hGL2/1Tr0vOAQYXFhYsACkdMZi0NeeWcHO07zmHXGUZ5U4vg89ECSo4L/3QGQWoPvgj5/DSJQJfHgpoR9bACLk1vzfs1l+TSLIwxcsM+sUgV0KVjH/YZyZB4Af2kqalqD6NYznZj558AYA9jm4tLlfZ1A+efm4z+0j2OQZutmKnz6XkS+eTzrzmfz64Av9SJpaf/g71kFYz9mA3iyzN8vU+mvyLh7IcV9ANyCTue2fxc9Bf03WD390CPsRarNZlhQ7T/P6PFgACM+BzUoHOROPaHg2m9XCwoK+/OUvm7RpNkmdxYtFD0cC5wDHj8U9lUqZAwDYArABXGCkAEOZTMaOXJDOFgNYtkajYc6FjyqymBA1hOG6evWqksmk7t69a3mUME+DwUArKyuKRCJaXFxUv9/X/v6+AdgrV65YTmCtVtPh4eFUxJ0Dz8vlsnK5nOULRSIRra6uqlarKRo9LapxeHhoEpF8Pm9O0tvf/nZduHBBx8fHunTpkl555RV1Oh1duHBBm5ubFpXjzCZkLsi6otGoFZ4h4uulIPQDmx8H5iYSCR0dHandblv+Hw4sjgebOLmOe3t7unDhgv28Xq8bKGCzZhPAkWMM8HzD4VAXLlyw8yu59v7+vgGFnZ0di9iORiM7G5HqsNFoVLlcbiriiBOJg7u6umoOBZVwvZ2XiCPjHck0EVwfEGAD97mePq/Fb/K+mp+PLvsCIL5wggeEOE0EBHCYmJ+wgL4oASACpwDgB6AktwyG0F/TgzvmM2sTYNRLoGGLAYqsXUgucdYAWjACGIwmDg1MpG+/bDZr7+6PWeGz0pn8irkym2fEGPZA0LcZ66l0Jv/FmfQ52ABQQKHvR9qZ9Yq+wHnz96RNWFt4Zhxg5Lk8D/sBa78fq97pjsfjtm5S6IbAD0E7376Mo9nCFt6+3XndaDT0vve9Ty+99JI+//nP67HHHrPf/fZv/7b++//+v1csFtMzzzyj/+l/+p++rXv9SQaL5QMQOPceDHqpt//yjJk/Qw6me1YyCiiaBYqeCaJfveSXMeZl5P76fv7C/vl6BvyccUleOGOUcUlusA9QMS78u8BeE0Twc82DFekssMG84AtlkAe/SNqRgPP37MdIQ2dBIYHM+/3cgyrGNCAQIMuc4nsP3HgG2tPPOf8vX/hLfo+YBW2ekWS9gwH28lsv02Vuz4JI7sf9keN7AOmDB15KOjsXAvvusAAQngMjr6NYLCqbzerw8FDlcll37txRKBTSjRs3tLKyonK5bNUJ0+m0Od3hcNg270wmo6WlJUln2neig5zLg0Ss1WpZ9cBSqWSM0f7+vrF05XLZFiDy/fb39zU/P694PK5CoaCDgwPF43GLHvb7fQNWbDqNRsOKpCQSCbVaLX3605/W8vKyyaVeffVVra6uWvXJUCikZrOp5557Tuvr67p7964dh0DBE+msaEW9XrfD1Q8PD1UsFnV0dKRbt24ZUzYcDvXyyy/bQek4tkTDY7GYNjc37XzAK1euWMl5QPG9e/dMiooEkwXcV+fiPED6l77GAeRviGySRzUcDqfK7vvk+7m50wOoOe4Cme7KyopCoZAdjP2Wt7zFmGKAITmPsVjMcjbZUJD0bmxs6Atf+ILe9KY3aWdnRw8//LCSyaRyuZxSqZQKhYJyuZyuXr2qO3fuGEgEVOzu7qrVamlpaUnJZFLr6+u6c+eOSX0vXryoV155xVjPTCZjrK50vspYNxoN60cvJZTOqtzhYPjDo5E0EdTBgfQyJhxNxhOBHulMgky+GjlrOBTtdttUAZznGY1GpySuHqDMVuckx84zBl6q5Rk9SVOOU6FQ0MLCgqLRqB0HkUgkjEHO5/NTAC6dTtu5l8wrClXRpp7F44zWo6Mjk6B5WZaXsqEYgJ3BQfVOJEUg/PErmUxmCgxKZ2f80UZIVll/PevCv+122/rcsyFIb1utljl5rKtUTuQannHmnrMsMYAeZqfX66lcLhs7xXhcWFhQr9ez9dAHF1FSZDIZ60uCPzBWsEyAez+PvxPzOpVK6ROf+IR+/ud//jW/e/LJJ/WZz3xG0WhUP/mTP6kvfelLevOb3/xt3e8bWavVsrXXAxly3WjX2XxBz0SlUikLMJD2wd9KZ5JRD9DYT31KiA8G4fB3u13duXNH7XZbtVpN5XLZxjFSYdYC8sjJs/fBCHwGUgkAhLPgMBKJWAGzWCxmQWzpVP3EHKc2AMFmABdBFNYM2pQjjZC1s76xz/b7fdXrdVMyMfel6SNZkOXCxHIGMmOb/uFnjHPm+KyUmjEuaQoc+75gTHQ6HcXjcfN/mCfMLUkWQCfn9+DgwAJXrLUE3GFtDw8P1Wq1rGYDlsvlLF8/nU5P7ROzQNszswTEkS9ToA55NGsK6y12nvbr82ABIDwHRg4M58V1u11VKhUDh6lUSpVKRc1m0xZkNnsmM04kC7EkW0hLpZItimwm6PN9MjOVRVlgFhcXpxxT6XRTpgoWCyXRYhY6om5IsDqdjl1zbu70EHccyuPjYxWLRSWTSW1sbEiSFXTxUXcvdWGzSiaTOjo6UqFQ0Pb2tkqlkprNpjm7r7zyikXRnnnmGaVSKTsvMJfLmXyO69+6dcvYCqSoe3t7qtfrmp+f1/r6uj0PTnk8HlelUrG243B4NmCceRwppKmRSMTycNgMut2ugTU2B8BzLBazQh20AcARierFixd1584dyy+STotkVKtVY/hwfHlGFvdUKmV5TcPhUJubm2o2m9ra2tLt27dVKBSMsUUqyhmJd+/e1eHhoTY2NrSysqL9/X2trKyoWq2qWCxaTlyhUFAoFDJpNH3jZTjSmVP9vW7kWAL6ACf8S+TWF+LwsqJZCamPZktn5+F5YIizBxDh/jBujB8izMgDZ6PCqAqY47P5NDgUODi+gAMRel/Vl98ROEJiCFMHu097+PHe7/etsjJSJkAdjmI4HFa73TZnzzM3lLEnoHN0dGTyNM5inc0Lg/3y7Qe4oh988QYvGfWs53A4nKpKSmCItvbMh889pH298w6oo829o+adPfrfM4G0G+MARziZTBqDRJuybnvwB/gALMyOTe+kkxPqHUf/jH9ai8ViWlhYuO/vLly4YP/37MjrZbwz4372uAnmMg63zzn185nUCgChZ3rpu8lkYm2KwgaFCeNDOju0nM/xxR7nAyJ8xheKAtiwLjB+/bUYc17lMAvopDN1Af8nOO3XOMYn7Udb8Ty9Xs/GM9ehLflbACb35h19kMjPX4I8/vtZptbXYvD5luzZXNuvi5gHol5u6iW5+DV+zWXP519UFn7OzI5pL2mlPWg3r8qSZPOe71nLeWcCjqS5eJbbBzJpe2/nZb8+DxYAwnNgTF4feSqVSiqXy9rb27PCLdIp80VSP86F16HDBhLpDYVCNsFx1sgV8rkOlL/nLMBOp6NcLmdsT6fTMbaQYzDC4bBFsnzBGJ8PAwsHAECWEIlEtLa2ZlVVh8Oh6vW6VlZWbKNrtVq6fPmyBoOBFhYWDDzAiD700EPa3d1Vr9fTgw8+aPfzDiugym9mhUJBkqyohiQ98sgj+uIXv6jhcKhSqWRMDUdAnJycaH5+XtIpyOJaSN+I1pEnNSvdJceTtiGSinMGQ4cjDjMDywQbg/yQIzaIGGezWXsu+prfscl4Ke+sFIbjOXg2pD3h8GmBGYqRpNNpbW9vq9ls6tatW1Yo5vj4WGtraxYQGI1GKhaLisfjWlpaMqebsxcZz3Nzc1NJ6ucp4sj8KxaLxipIMoBCNNs7jbNf3un2clKfTwhD7lkLrwxg0weAM3ZhhvkZwFLSlBRJ0hQYZH3hXxxEAAOBCi+fY0wwfpFLA1R8oZJo9LRaMtcCgOGMEIiRTkEnOYmMvcFgoGw2+xrAC+jhuu12+zXOHM5POBx+jeM4W3DCO2Q8H84RIMszC8iyGN8eMPJ7D/ZmHXtkX94p9zI6ZH6+ijRSQ+5Jv7KuzOYi0qY8H2sk7cd4ZV3j+AAvm/TjBfv/al5/8Ytf1MHBgb7v+77vdbsHOecUJSMQI+k1OaU+X8472X4sUfyFHEPGgd/L2C9YJ/x1AVd+/NHPgHuf38vnx+OzYlOe3fV5wswhLxH16Qp+PWJP8czX7PzgeXkO1iTPnHFvxrEkY8Y8EObYLQAufhD3xR/ygR0P+maL/vgxzVrr85uRr9P2vvIr7Q6I53v6hHkO8PUSddZFpPj4HPhOkqbWbuaRH1O8vx8/rBP4TfQXc3YymVjANpVKaWVlxdoDpZUvLuZzZ7HvxLz+46Tgo9FIzz77rF599VU988wz+rVf+7Vv617n3QJAeA6sXC5rYWFBt2/fliTdvHlT2WzW8k6QO2xvb+vatWtWSAR5QDqdtqIf2WzWCrJEIhHl83nl83nNz8+bPIRokY9y+UIGyBEfeOAB7ezsWHEVrkkOGeyVP5cKpomNstvtWrR9Y2NDiURC9XrdZBFvfetbFY1Gtbu7q0uXLtmi83u/93t629veppWVFW1tbSmXy+nKlSuW/8NZeDh/0WjUFrRPfOITtvA+9NBDKhQKunPnjg4PD624CpHIXq+nlZUVpdNpPfXUUwqHw7py5YqGw9PzB2/cuGEL5o0bN2zRRqrhz+GSpJWVFWWzWSWTSS0vL1vfcUwDzAegj02C6oH1et0AMs5+LpczsE6F0v39fcsT9NIwvj86OjK2kWceDAaqVqtqNBrG2HKG4MHBgdLptG7fvq3l5WXlcjk988wzeuGFF6zQ0NHRkTHXi4uLunLlii5cuKBwOKzDw0MLOODA3Lx504oK3b17V7FYTDs7O1pbW9PCwoLq9bo5xd7OCyCUZIwgABhGz7PJyHU8wPCAnU0cJp3zH6Wz/GM2asAm0XiYBaSryLVwZjiTEgWBd6boF55FOjvMnZxkAg3SmZTK50l1Oh1ls1m1Wi0bG6PRyOSctVpNhUJBnU7H3gkwRZAMVgNAh7OTyWRMtkYgKplMmvMG+8XnYewJSlER2TN+SLfj8biKxaI5j/l83v4P84uDiyOG0zQej6ecVUk275Fqx+NxC/SRBuCdbvrdM7q+QIeX6LLOeqfe/16SyTu73a7K5bLm5+dNacI44rgaHEmcWZhY+hsnEYkr4wPgIMnUH96+mXm9ubmpH//xH5ck/diP/Zh+7Md+7Juea1tbW/rP//P/XL/1W7/1Tf/Nn8YAdZIskEI7zIJB5hJ7LICDfZuzcmEIGfdIQgnWEuCFFWOcMb89w0zb8ywAKPYDr7xhjA4GZ+fOAlDYm3x+MIFjwJkHxl69AJAiWCXJiovxHl5qTMVu6eycTK/e4W94JhQXzDX2ct4fOTwyWSTPzGXmOEw5Kh4Ct0hGpbNcRICRvxfg1efV07YESQDeh4eHBnTpb/qu0WiYPJd90QeHuSfv5tf7ubm5KfaVNZY1n3WENYvK8axlAOD19fUp0O7HE8zi65FD+MdJwX/nd35Hq6ur+uhHP6pnn31Wn/vc5/T2t7/927rfebYAEJ4DIyKHI7C1taUf+IEfsCME6vW6arWayWW8HIrFDKeHycziwaLIpAa8IDVlg8JZZAMol8u2yVOSvlKpGDgBjHlAiBxQOnPqut2uSqWSpNOFnkVxNBpZjkO9Xtfe3p5Go5FJXpGI3bp1S/1+Xzdv3lS/37fjF3Z3dy3vcX5+3ja9ZrOpy5cvq9lsKpVKqdVqGTM2GAy0uLio0WikSqVieZiNRkPb29uWT/Tqq69qd3dXi4uLdgj92tqa5WZRZIGFHcfZR87JQ2CT4ZxIroET5+W3sBpEBQGSMCBzc3Pa399XuVy2v/ESNPovkUhYkj85kmws1WpVzWZT7Xbb+jIej6tUKlm7snnhCEYiEX3+85+3iqHkdnFUhY9ch0Knx2Dcu3dP+/v7xlhtbW0pn89rNBrp7t27dhxHPB5XuVy2d/DR1e91A/zNMm/Sa6vv8TvPbuMMwfhS1CCVSlnRH+R7PvKOeWeUsUdfMX4AeF5aOBvFl6bPVJx9RulsDcNhwLnlGTKZjL03rBnv12g07AxPGD4cMCL1yKKRZ5JfBfBivPN8gKZ4PG5g0gNcAJrPx/TgDUfLy8n8eskaShEQz6oDtLg2z+2lf9LZMQW0JSCLd/HyX74YK76NAIEeGPiAn88TwkGEgQ2FQioUCuZAekm5l7nTNl7SODtm/TPw3Ng3O683Njb0T//pP/0TPzdrrVZLP/ETP6GPfOQjWlxc/Jb//lsxGDbGN8FUr9Tx0mofZGGsMZYAhYwpxi3jm7lyPxWBX1t8AMGvJwAu2p45yu997hvAa5YF9GOQd5Nkc8MHgNgD/P7EfOU6sGu0EYERL1H3UvTZgi2sE15uTX8Q6KJvaDOfxzmb1wlT6Ku189zSmVQ1HA6b4gAwDfsGA8cahL81K8GfZQZ5V19galaCzxialejzM1hRfubbmzXFs7XS6RrIdSRNjRN8y1l5sL8/9p3Yr/84KfhnP/tZfeADH5Ak/eAP/qA+85nPBIDwj7EAEJ4DW1hY0NzcnDFk6+vrunjxomq1mh3TAABjYnuAR8QZWUm73db+/r4550SFl5aWzEHxX0R/iDIVi0UVCgWTeBYKBUs4397eVjabnYqIwwL6azSbTQNGPO+tW7eMmVpZWbFjE+r1ugqFgkqlksbjsd0PhnNzc1OFQkHRaFS1Ws0WpP39/SmJ2t7enobD00qZ9XpdTz75pF544QVls1k9+OCDVowFYJXNZo2t8LlJOIBIJzgaw8sha7WaVdjc29uzgjw+KglrywbD94AongdmDzAMcCaa2el0rCgIDjQbOyxhPB43WS2Aj/xNNkxySk9OToxFHgwGKhQK6na7Vh3UnwO5urqqnZ0dbW5u6vHHHzfHEakn741UCtlvLpczhxLQx8YrySSMJM17Oy8Mod+E2aBx8r3z6D/v8/y8I+YZAPKP/ObN9fzfcW/vMMLuSJpysLy0CxaCZ5r910vZvORrNm8GdpygCc/BdcinOT4+tiNseAbuD+gh2OUdKUlTDATMgQd5zFfGWCgUmirWQp/49/7jioL4vEwYBg+AeV6/Vnu5H44jc9Y7v7QHLItn27zzxnrK39D+zHPvPHrAgGwZNrXT6VjQinnp+4BgIPsMfci9W62WVTD2eY/esZydD9+uvf/979dzzz2n69ev60Mf+pA+97nP6SMf+Yh+7dd+Tbdv39Zf/at/VZL0S7/0S/q3/q1/69u+3/2MvubL52ZJmnKoZ2V+PvfcFy2CvfYyY9ZYDzb5ex+4YbwABLziwgM5ruuLmrGneHDFZ+jL+61JAD7ekf4nX5q1wAeNkC8zjhkfPkg8K4lmHktn8kSKpUhnObPeJ2L8zUp2aS8ALPu8zxP2clIf0CIgRkDHyzAJstD2s2s6z8n6xM95dnwBDwaZy7zLbF/NziXGiFc7MCZ8OxIUmh3Ds8FErh+Px6eKJ/ngwuxnXw87OjpSLpeTdFqgqFarvW73Og8WAMJzYAcHB1pYWLD8uYWFBb3yyitWiSuRSGhlZUW1Ws2kEkTOWeBOTk4Uj8ft6Ibbt2+rWCyatOPWrVv60R/9UYVCIWMEWZhZKKLRqIrFoqRTGauPam5sbJgc9OjoaEpeBhMXiUR07949JRIJ5XI5HR0daWFhQY1GQ1euXNHOzo5WV1d18eJFqxZKfhls0dzc6VmG29vb6vV6BrY4HxCARDEIJBZsNOVy2c7Pq1QqqtVqarVaJg3jIHAq+21vb2tpaUmFQkGbm5vKZDLmrJG7l81mdXBwYIfdJxIJNZtNZbNZq27mz+oqFAoKh8MGGPP5vC5dumQFeZDe8A5sYuRvwsAhe4Nt3NvbU6fT0Wh0elSE37glWU5XNBo1QN5sNs2ZgzW+cOGCnSm4vr5ubEEsFtO1a9d07949XbhwQel02iR9pVJJb3rTm3Tr1i0dHh5qYWHBxsW9e/dMcsjRJP1+3yqbzs3N2XmGFBXyxXJmo4PnBRDCzLJB47jg9OBM4XgR3Z1lhXC8MO+YoCrwYMzni/EvAQ+CD1S1ZF50u107s847YDiXOFh8j6SQKDh5Vf6LOeEZ0lwup0ajoWw2q93dXXPEfG4Nf+vBCA4fZ2YSoPGO63g8toIxmUzG5JlI3Lg2n0OW56Vd8Xjc5OizhScAhLAJmUxGpVJJmUzG1lTyfHEgI5GIgVKCTxh9RkVRmD4f6ZfOzi70azZ9CmPBcRaSTILunVaAI22LbDafzxuDigwehUkkErGgGf3uK84CpLmGP7DcV73FvhPz+pOf/OTU9z/90z8tSfrwhz+sD3/4w9/29b8ZYyzQf4PBwHJDZ1kbgA395cEgKR6kE/h1YhagwcT53GKACACBoIZ0Nma8xBBWzUvA6VvmCEoSfzzKLLhnHcH3kE4ZWgKaPB/zB5WKL5giyXKYkZPP5tsScBmPxyarZ/5JmlqvaD8fYPSBMg8E+TzXZz5T7ZU91we3AKvMFdQ3ng2kLWgz3gNgRwDFFxXyQTlUFsi/uSfrPHs/MlX6rd1uv4bJl2Rj0q/VrAf5fN76aTgcviZXmLHC3/PuXi6LvZ5S8EKhYCRCo9EwtVlg97cAEJ4DYyGkSt5wONT8/LxqtZoODg6UzWZNYw6Lw2bg81jYjIi4sWAgbSSfB4fAF1XAGcJh7PV6NhkXFhaUTqdts6nX6xoOh3a+WCgU0uHhoS5evGhM12AwULFYVCgUsnLLLOCRSES7u7tKpVImj8zn86rX66pUKjo4ONCtW7e0vLxsi9hkMrGjKI6Pj+2oAjYccusymYy++tWv2kZI1TuKYJBHySbFIv3YY4+pWq2qVqvp3/63/21VKhVzJgGPVCilj+r1uuUw4bwib/NgfTKZaHd3V/v7+xoOT0t9JxIJLS0tmdPnk+GRB8KgAZg5KoS8EhZpHA0YOwBEvV63oz5wHADySF4ajYbu3bunpaUli27W63XLVQuHTw+R59041/GBBx4wKfPKyopOTk5ULBYtRxHgiYMBa3z58mVdv35dxWJRJycn5sBj50kySrTWJ+bjsBDpnZV6elmP/947NTgzRPr58kyE/1uCOn6sSTK5sr8+z81cJ8LsJaT3c658biDODA4iUnL+ljnMukUwKxKJmBOCU0fuHwUdmA+0H5JZIvB+rQNAAnAAxQAfP0cx79R6dg1GwvcD4JEjWTxLRtvgoN2PEeZ9JVlBKQoBYbMyUM+CEFyQzopOjMdjG2NeKurZo/n5eVMy+IJDBORgMjyr5FlWggj8H1bIs52sR9h5mteAD+YUe7Gk1wRvfHDHA0Z+5+ef/5o1zzDez2Z/7mWHnnW+n7FnMKf8c/sgE+sAfoIPovB/ggiMHfqcYCWBB5+LCFD0bJ9vP/ZFH1hCLeDHOIEu2trnc3pQO8vWzoJELwH2feOZQH/tWXXFbJthBOFm1+nx+Cz/FlDIXPJVhe8nJ2W9ZCyxlvr+JC+YYnr9ft/UAl5q3Ol0rLCRD0T6wnrUI/Dj8vWUgr/jHe/Qpz71Kb373e/W7/7u7+pnfuZnvuVrvJEsAITnwKjQRaXKUCikWq1mC3kqlVK9XlexWLQIlSRz4P2iQYI2LMLy8rLJsVgoWXhxEoi8wRjgcHDOXqfTUTqdNonTlStXLLqFw7i8vKyVlRVbzFiU4vG4HnroIQ0GA62trWkwGOjixYt2NEQkEjF5YS6X0+3bt/XEE09oPB7roYceso2gUqloNDrNO6QoCov4/v6+/Z973rt3T41GwyJdSFsPDw8lyTauBx54QK1WS9evX7eDstnwOM/s5OREKysrOjg4MCDmi8sgB0WC5jcZopkHBwfa3d21nAnYQWS8vj1xNql8xvf5fF7NZtMcX/qa/KxKpaJIJGLsrnfakcBubGxocXFRX/nKV3TlyhU72mRtbc0imaurq7bJU4WMKCTHm3D+YqfTsSJBjz76qL761a9qMpno8PDQzp1Cltbr9VSr1VQqlTQcnlaFXFxc1N7e3tR8OC8MoaT7btxEecn39E7D/ZwFL83CQfeRfJ+z5Z0Fbx4cImcjogw77J03n+/C52alSNKZc+zl6wAbQCuyTkCVl79zf3LyfBl4XyETZ4TiS51OxwAOzibroJdYSbLCN4Aqcn84/kWSzXkvyfP94HN0fJt6psEDXf7GS+34G+9I8jvvyPq24nf8vV/zAY9eZsb7SmfKD/7Wy8kIKvmgFQ4naxiBQR9w4NrD4dCAOu9zv1xUb+dlXjPeeT8POrwxb2elmLOMC3s6c3I2p4/v/ViaBZ6YD/DSF76KLb4Gz+2l4H4/98DUj13Gjme6Jdka4qWkBBZ4L4Iew+HQzvb1IMi/DwDWv+c3CnZ5YEOBldk11K+fs6oLr4TyQN+3D/f3v5t9lvs9J2s7/eDXEc9AzhaZ4xmZU4BDPw64tg9QoNTgHgSQYGv53WBwdhYr8xq22ytV/DPSd7Pj7jsxr7+RFPyHfuiH9PGPf1zvete79PTTTwf5g3+CBYDwHNja2ppJPG7evGngj0qMN2/e1PXr102eMx6PTa5AHggbSTQa1eLiora3t5VKpbS6uqrJZKJ2u62vfe1rWl1dtb+DHUPmBIPY7XatAMjy8rIVfUFSOhgM9NRTT+nOnTtWdY5KaQ888IDu3LmjK1euaHt7W0899ZQqlYoef/xxbW9va2dnRy+99JLJujKZjDEVt27d0mBwWvEyk8nohRdeUCqV0pvf/GarCAioyGQy2tzc1PLysiKRiA4PD83Z8ZXOXn31VT3yyCMmG+31enZ0x9LSkmKxmPb29rS4uKi7d+9qMBjo93//9w24HBwcqN1ua2FhQcvLywqHw6rVatrZ2VE+n7fNbDYCiZPFobmbm5sm40KXHw6Htb6+bucQstlKZwn/OGXdbleLi4sqFos6ODgwwH58fKxcLmcFc3DY2JxxCNk0yMF429veZs/JQeXlctmS6Q8PD9Xr9fTqq68a69Lr9VQsFq0N+/2+FaN58MEHJclYwXq9bo43EUgvIYbFuHXrlsl4abvz4jj6c52QddMPSB/ZgIlwS7qvszIej6ekOsh/aWsq7eFIEh3GmfC5QOTIIPMGkElnm7s/5xKZFtcDtHlpEc9PMCmfz1vVUBxSKvpRROLg4MAcSxyZ8fg0hxUWlag1klKqEZLTTH4MDh9BHSRn0lnADXDDnAKY93o9C1xQcdXn7EQiEZOFcx0c0Ha7besO86her1seb6fTsdL+HnCxVrBuw5QT6CHABcjEAH2+UjKggWvm83nLJ+LsTz/+YCBp+2azqfF4bOoRCnHRVrlczvqB9clLInmP2WecdabPy7z2UmbpLFd4ltli7gEiPEuNaoYUBJ+HzRxGgeIPj/fsEXOaeeCDQV52Kmkq19szWqw//rpIB6XToALHw0hn53OyrjNnCYTwfx/swFj3yIln7PocZoIWALTZnF7P0PGsBHJGo9HUma/8DMBFX/l82UwmY4ElAJYPZvg+9gEO+teDWtZMPyfxDSQZ80jg3edfo2BiX2cP8IWaIAv4njWR9Rymn/5jP/DBmkgkonQ6beOLInmodSi0x30IvrEW43Ng36l5/Y2k4NFoVB/72Me+7eu/USwAhOfAKDk+Go3UbDZ1cHBguVmUBiYXDsDjZT4sIETH+D0TGqdOkkkFfNTRR4lZmCaT0zNqLl68qM3NTYVCIavsGY/HregJTmk2m7Uqn5cuXZJ0Cg46nY4uXrxoDlEoFLJD4YfDoS5evKiDgwPbTKTTxfby5csGGnZ2dqxkei6X0/Lysra2tlQul61UOofHv/TSSxatDIVCunPnjlUj5agGScYskksHWxWJnJ6Vh8MHiNzf37cNt9lsqtfrWY4hzpB3TtlckKFSAh6QQIXEZrNp4N5Hk9nMksmkGo2GORThcFiVSkWXLl2yaqJUBC2XyyZJicViKpfLds4czsDS0pIymYyxyOFw2Prj6OhIa2trBiB3dnZsfMCGLi8vWzsAdl5++WVjehcWFtRut03eWqvVtLi4qI2NDRUKBVWrVTuMnI1pNtp8XqRl3qmIRCImz+P8Qc/2sAl76TB/K50BB/LNYBX8PP5GkXF+jiPB7ySZxJnfkWc7K0HyZx0C0BhTVLpljUFizu+r1ao5djBeMCM4NDgwkqaKrfAsgEpycH0uEvMPyaMvGEE/+Kg8TjTVmQFqyEw9g8s64uVqAMJIJGJKh16vZyCw1WpZbrF34r3j7o33Y975oj/cE4moz3vkGf3PfA4kfcN64kv2dzqdqTVgPB6r1WoZiKagTDgcttQCQChrPs43jBL/erZr9j3Pi/Fu92PzPTs9+3MfhAAgMO58tcrBYGDHTTB+ZtUC7BeeRfRBB8a8Dy4Q4IA58uyhL7IkyRhgAjuzzCK5jZ5th0EiMIQfIsmAhWdGvZTWBxs8kz5bydQzdOx1HqDOzlcP3lhnUF/hQ3lw7YNz3MMDH9+XPgDn57lnd70KgP7y8lKCyp499s8sTQdZ6H98FF85NRKJWOAQlQdpQz7YjK/ItVEb4XN4JpFn8+uit/M0r7/XLQCE58C63a6y2axCoZDq9bp6vZ5u3rxphUvIG+x2u1b0xMt6+H+/31c4HFahUNDc3JyKxaJKpZJF23BEce69/MxLllhEpFMZIgnRyKpGo5EWFxeVz+f1hS98wQq9zM/Pq1KpqFgsqtPp6NFHHzWnsN1u6+rVq1PXarfb2tvbM4eQDYMcFyp8stivr69rfn5exWJR4/FprkwikdDy8rIODg4Uj8d15coVi9SnUildunRJ+/v7xkocHx8rnU6brPHw8NAWbkBiKBSyw9ORSHJQq3dUkX3WarUpFg4nl42TDahUKlk0zzMMnLfk5W9shJPJREtLS2o2m2o0GspkMlpZWVG5XLbN/+joSA888IA9YzQatah+pVKxJHnemyIw7XZbFy9e1Hg8Vi6X06VLl6xfLly4oGw2q6OjI/V6PR0dHZm8NJvNanl5Wffu3dPR0ZGazabW19etcmm73dbdu3ctV4Tzp8gtJecqHA4ba4SdJybBS5lwmBOJhFXf9M7j/TZVn3PGZsxYhdUC8HkweD9nxjupzCdkzjhGrD8AMknmDFJ8gCBAJpOxQAPOpC9GA+sx2xY4onwml8sZCPH5QTDbKCJwIHG0+NfnAc4W18EJBnhzHy8jZ+30jCDrqAecOJOAZO6FpBzQ7M/9ZF2dBe3emcTx8vI+mAYvX/P97Bkggne8L5WjUY34swVx+GH7JE05wF6mRoVlUhdoP4KGkowZxlmnEAksx2yu0XmZ154N9LLK+0npfFCG/vL5WLNSSsAcwR8CiZ7t91+MKQ8GPdvngSF7O//O5sBJsr72MkSfLsK847MAGtYHxhhzlPEAGPXBIC9z9tJP1iT2Xn/EC+BQ0tS66tnDWabUAysv6wYQM5+ZxwBdn5rj5xt/Q5Cb72l3X7/BB91Zv1h/fYCKa/igMG3HM/AvQHJubs7OEPTthwoAYOnzOVkvuQ9zmXYk190/gx/Hs+P8PM3r82ABIDwHhkOWTqdVKpV07do1Yw3IxRqNRsZ0UZQkn89brk2r1ZJ0WsWvXC5rMjktxsDPQ6GQms2mNjc3DQz5ilZEnK9cuaJMJqN6vW65XnNzc1pcXLSIE5Ktw8NDHRwcKJ/Pm+MWj8d1cHCgS5cumWMBM/e1r33NDsLmuImDgwP1+3099NBDeuCBB9Tv93Xp0iWrSNrv97W2tqa5uTk1Gg197WtfkySrjOg3Q/KVFhYWFI1GVSgU7JiMWq2mtbU1yzOoVCq2qI5GI+3v71uUEGcUJmZ/f1/Hx8fKZDLa2NgwttIXesHJRBbKYk7hFYq5+M1mMjktNuMZCiL4PocrEolodXXVci1feeUVY//a7bZSqZT29/clSVevXtXh4aHJ1eh/QGGhUNDOzo71IVIcNqvNzU1tbW1pa2tLFy9e1L1798yZxHHZ39/XwcGBms2mFhcX9dhjj+nk5ES7u7u6d++eHTx/cHCgw8NDffWrX1WtVlOn09Ha2pq1RyKR0MLCgra2tqbmw7ezwTQaDb3vfe/TSy+9pM9//vN67LHH7Hej0UjPPvusXn31VT3zzDP6tV/7tT/1fb4Z82fXeSkmTjQbO84EwMY/Lw6GdFZZknFBsMXnI81GmxnTOJaMTXLfcrmcstmsMUZU3Gu320qn01pcXDQlAM4fea88E84NjiRy6Lm5OWPFAUo4p5HIaYVa5i6yYSTN5P3hODebTXsn6SxnyQNb2s87jx6owr4SgEAqhpPDOuqlkJ5l4RrecQP0eEduNBrZugoAuF/eGJ8nOOOlbfQx78Lf53I5e0cMMMxn19bW7FxHioPhVLdarSkwChjEecRZJieTz3HMzng8tqJRVGQEwEsyh9qfj4qdF8fRyxoZOwRnZ51owJB0VgmWsdXr9SwXlr0EOeZweHpYOTI9qtD6IiweiPA7vvdn2nmWGVkl4Id9yRedisfjVhDOF5BBMcMcoFJvOp2eOlLBB1pIB0H95M8p9ioF9mUCREi4KXJCLj1sJ9f0e6R/R+YzjCXznqCaD/x0u10LpvpKuQBez+wSACXoTP/4YmGoGEaj0dR7emYS5tXLWlnf/Drp1R0YYJngIrLXeDxuuZm0M4Ft/xzSGavHWGm1Wrp79675GKxNs4onnzuLnZd5fR4sAITnwJB4rq6uKpPJ6NatW2q32xbBOjo6UjgcVrPZNOeAjRunUJJFf3C2kTSyWLHwe0fRRxulU7kXQPPSpUs6PDxUtVrVlStXLE+v2+1qZ2fHJH/8nw1sf39f6+vrJsfodrt66KGHdHR0pKOjI3U6HZVKJaXTae3t7dmiTGSL/KCvfOUrJnnisHTptBJgMpnUpz/9aV27dk0HBwc6ODjQM888o+3tbb3lLW9ROBw20Fmr1bS7uztVBICSzF72xMaH087micRnNBoZECMnkX4ASLKQUomPjRLHCtkVuZf0AxH1brdrhTPI8cDBoH8vXLig1dVVK05Tr9eVz+dtk+AdcrmcWq2W5ufnVSgUlM1mNRyeVofd3t5WPB7XrVu3lEgkdPPmTX3961+3zYA8y/F4rFQqpWKxaBVJ6/W63va2t5ljUigU1Gq1dHh4qEuXLimbzWo8HqtUKqlarRqDPDc3p4WFBTWbTW1sbGhnZ8fyELHZze9btVQqpU984hP6+Z//+df87nd+53e0urqqj370o3r22Wf1uc997nVNUp8FJIw35ia5lZJMynV8fGxjHieE6Lp0BhRwGrmGlyrNyphwDH1OEcwAYJV1hUg2zCBFpgj2+CMYODbEO4z+nZAmARR5B1QGOHvMCZ7P5/gQ8KL9AKbcdxb4eUaBn3tZPHPJV8n0UjOf/8Rz0P5E4WHlcPg9G8Nz+p97oMA7emeVNgFw4+ji7PFM4XBYmUzG1nvmKg4tIIx2Alwg8YRBRH7O81Lkhz72/UbfoFLhOoxp3pN1B6fWO5E803mRlsHEeHbES/n8+MfZZ3z7MUTQD1k0Mmb+DsmxB3eeefJz3d9rlpGG9fGVOHkPKn9LssJIHAHFvMaPYF4AHn0gFpDmCxq1Wi3bZ8m99UWJpOlKn8gemcM+r9LPcS8ZZd0iMMVnPBCkf5DlekbUzxk/373Mlr45OTkxMEjAlXfyVUK9KoBACwEzAoGAci/NpF/4OwIO/l3xFQkgkPfLuzebzakcaO/zeLaSa2PebwmHw1MFqLxkdjZoeZ7m9XmwABCeA4vH4xblLhaLVk2SvKzDw0MrqJDL5YxdIvIsnZ07BMhAwoNzQtQI5pHqhES1KJoAUON6qVRKb3rTm2wzQ151fHystbU1dTodLS4uand3V3fv3lWtVtPc3JwODw/VaDSmks0pYsE5e9Fo1PLhLl26NLUQDwYDO+6AYi8nJyd67LHH7IiEH/qhH1I6nVa1WtX3fd/3KRaLGdOAI4UengIeLJBUXmVxg6Edj8eq1+v27pKMZZNkBW/YXDgjZ1aWg6SVKPys/MNvNEjMYBXYQHHGqOZJNdFEIqEvfvGLunr1qra3tzUajSy3b3t7W6FQSJlMxqqsUhBGOj1fMpPJ6Mknn9TOzo7W19e1t7dnrBCJ/IVCwVjRZrOpmzdvKp/PKxwO29lkMAmwpY8++qgBYcAq79tqtTQcDnX16lVls1kr6iPJgD727UQcY7HXnmuIffazn9UHPvABSdIP/uAP6jOf+czrCgh9HgzzhiAKUV0vgeR7Lxfy0iVpegPG0bwfOJn98jItnskfjM24517IlUej04IHBEb8wczk7OE8AvQAtlyHNYmCVUS40+n0lHOLrBkHEEfLO0XMMS8z9TmDSFppf/8uPDvOPOsNeVqwkTiVOMG8l2f+fYTdy+Nwony+IH/rWQDvsPJ+BI64Dn+DRJF74DhLsqBgoVCwIz8KhYKNM/KrAAWwfRSP8WyjZ0V8gSvaHTkfewFA0LOzOLusod7OC5MwKxn1hUd8nxIIoK3oS+ksAECqhB8fft55sOEBoZdcMsb82uEBIUod/pVkxZeks1xVgIUvmsNcYRyxjnkG21fFxC8heMB4BeAy7rmWT5+YzYfjew8I+ZcgLs8AIJwtOuODSLwLBhjneZjnBF991VQYWILegHUvC5/tI9+frDcETjwonZWTsrYwH+kbQHIymTT2lNoN9AnvTX9zDdpgMplYjj/jhDZqtVqmQmGsIMflubxCBTsv8/o8WAAIz4EBAldWVjQej7WysqJkMmlnuoXDp2fDARIAGTBpPkqI7HA0GlluHjmDsFr9fl/1et2KIgCWotGo7t27pwcffFB37961c2tarZaBsOFwqEuXLmlvb08XLlzQW9/6VmMA7t69a5Uqyd9j0+Mg1Lm5Ob300ksGGtrttrLZrO7cuaPLly8be7e2tqaDgwMdHx/bsQjINKSzM9TW1tasEuZDDz2khYUFO8CdYjiAXWStyOSQ9CGFZEPgjDw2ZIDf9vb2VO5QKHR6/iILJ1FQZEJURsWR9o4+96LSF7ITNhCYEpxuNpBHH31UoVBICwsLmkwmevTRR03+U6lU9PDDD6vT6ejy5ct6/vnnNZlMjCnN5XJ68MEHlc/ntbW1pevXr9vRHk8++aRu3bqlcrlskd75+XljEqiyikTo7t275tjDHiwvL1uxGCSki4uLWlxcNEB5eHiolZUVuy5nJXr7ZjaYP81Bt0dHRwZS8/m8arXaNztF/1TGBu6dL9ie4XBoTCAyL8xLRKUz9tBLdXBwZvPfmP9Es71EETCCnJCCFjik+XzeioVQXAYgcXJyes4kgRzprJpusVg0lgrnB0DT75+e+YfjVSwWjYnwEXDaCNBM0KtWq1kgRToDgDCsqVTKAkyMR5xeL93DycH58blO4/FZ0SWkzTAGyWRS/X7f2H/pNAebNvHyMxgFDwhhZHAePdvjc7FSqZRJ4ygIQ9CAwAyMPdJOKkEzXpDA4zgj2YX1YV4ht+dzR0dHViSMVAPez7O1nU5HR0dHBhzG47EVq8DZ5T3vZ+fFcSTIQbCV95oNXMyCQJ8v6kEAgTXYH67lZbteGjrLRvk8NvwBnon9JJlM2lgFDACCCJpSn4A1HcaX/ccHJAj0svdzNNFsyoQPCnjgCMtPvj2sF/UPKIgEAGTNACDSRj5ow5gE+LF+8RkfiAEM8Y7+KBra3Z+viD9A+gjVUn2/zNZl8HJ/6aygH0ATJtaPGQIx/gxb1uNEImHrgF8jWOeRn4fDp/m+SFSR/5+cnKjT6ajRaEwxoKxT7MP4YKx/tBl7js/557kD++6wABCeA2ODJWLO4i2dTrZqtaqTkxOLDC0tLalarVo0u1arTckdicT5imM4ZizSOEcAQZwNDqDPZrO2qQ0GAx0eHlrOWbfbVTwet2qcLECrq6uqVqsqFArKZDLGEvmjD3Z3d815XFtbswUsFoupUqmo3W6rUqlodXVVh4eHWl1dVTh8Wijn5OTEchkplkBeDeDq5s2bduB9rVYzdgyAxvsOh0PbRDKZjDEObNYsfjjQMF8ATHItH3nkEcuzIxeHzR7GkneXZNXYuA85CL7IgCR7nm63q3q9btUaH374YdvsQqGQHUOxurpqbTQ3N6etrS1rN3JQr1y5YpHp9fV1ra+v29jCEeCdG42GyUBxlolI3r17V/l8fiovkSIayFAZX7VaTd1uV7u7u0qlUjo6OjIGGQfF2zcrQfnTHHRbKBSM0W00GlNS1dfDvKyRqDZgCgcIhhhHiTYhao7D6ZlAQIdnBnFwYPy9ZNRH77kuARA2esZju922g91x+uh7ZEpczzs1/Awnj2dkjvnrSJqKptMmHgj7v/PqhMlkYs/B9Yia84w4jIA/P574Ge0MWMKZ4v442TAOPtovnRXfoN19m3CNWcd4lsnBGBe+PVh7pTM5FwwcuZ48C846z4Q8mwAUASu+p98ZK0hCkYPCKAPwuAfjDVBCgBLpmx+zfO/b/bxIyxjjnnmifWZzvrxM1Msk/c8B0LMSW88MzrJ/Xg0wKxFlnjOumI/0CY6+dHb0iHRWPZRAE5+H6Ts+Prb0FXIZGaf4GpKmAqA8l3Q251kXeCa/TnrFAfsOrCXBIN/eXgZPEIe93UsjWTc9IPdsK9J1+hNA5ee+l/B6Ru9+0tT7jXc+R/G88XhsgS32CJhA3hnfhDbK5/NTfcZ6wlrNvb3kmzWU8YQPEo1GTR3Cc/v+4vreH4KJ9e90Xub1ebAAEJ4Dw6GBkePgb4AWkzeRSGh+ft6c/uFwaMUWcIR8BT0WXRxFX2SEaBAARjqTKNy7d0/FYlGtVktHR0daWlqyYgvS6blVgK5MJmOLTDqd1u3btw0QSdKdO3eUSCT05JNPqlqtmuOVSCS0uLhokodr167p+PhYe3t7lj/JYeatVktzc3O6cuWK0um05ufnrfplKBSyyqIUjpHOCvWQtE+k3C+4JK4D+gDItIVn8WgjNsmXX35Z0mnOJc4gkthw+DR/EQkqm76v5sfmgxMAwwAAIMkdhy6bzdph8Ovr63r11Ve1vLxsVQ4rlYolh5Pvube3p+PjY33/93+/IpGIVlZW1O/3NT8/r93dXTUaDcXjcQMkSM6IHvb7fa2vr5szTyVFIpONRsOeF2eZwMBwONStW7f05JNPKplMqlKpqNvtGvPbaDQsClypVKbmw+sVcXzHO96hT33qU3r3u9+t3/3d39XP/MzPvC73wWYBnHR2jhftiXMDQ+hzfGcT+L28EOcPJ4A5P8sa4PR451U6k1P6+U9/NptNDYdDK17FOuIL4vB8PoeZd+CdmUveWUIqzfzyjnKn01E8fnaMTqPRsGg2DhTzD6cNuT3MJY4Q98MBpA/4P5/zjrk/uJk+wLn1jqS/Dn3ifyedOfeAS88QekDon5WxQYCQI4eq1aoBce5JXhfrGF+SpkAxazEBLa8wSaVS9uwcLTEcDk2ajmQeNhlwQEVJHHIvQ/b5SzyPH7/nwfy8lc6YcsYYDjLgDfNzj3F3v3mCecbPB3hmAz6z+WpegsxzDYdnRw/4oBR9CMD18k3ARqPRsDHsz/+kn1mz2EN4d8Yb0kXABmMYQOjzB++XQwgoZIyxbjAfPGPlzyzl8zwP//esLQEPwBP95Jlv5vAsCzgr2aW//Zrr78uawDOzdtCG+G9UV41EIioUCsaQstb5wBXz0oN5+pW+QNbLfZD/+rHH/b1U1gcUeH5AobfzMq/PgwWA8BwYicBe9pBKpewA9rm5OS0tLVlhlePjYz388MPa2dnR4eGhSTFYTGGEWKh9URSiuRSEIKdvc3NTiURCf/RHf6RsNquXXnpJjz76qOLxuEWZMpmMFhYWlMlkdOfOHUmyoyYuX74sSSqVSsYkRaNRPf7443aoei6XUywW0/Xr1/Xkk0+qUqlYfuTu7q4dwdBut1UqlXT79m2rSHrr1i3F43EtLy/rgQceUCwWMxnrnTt3bNEsFova39+3jZiFjkqoodDpOYjkSxYKBeVyOdsgms2mSS38cQ0wG9Vq1Q5yXl5eVrFYNBaXaqN+IysUCgaiIpGIHaURjUbNOWMBRjrncx0nk9My7ysrK3r44Ye1vLxs5xYihe10Orp69ar29vaUTCZ19+5dO+phbm5Ot2/ftk2KKqzFYtGcSaqykrcyGo20t7dnbcnRIGw+x8fHVjkWOTKbXq/X0/LyspXCxrG/cuWKhsPTg86vXbumxcVFFQoF3bx503IJed9vd4N5//vfr+eee07Xr1/Xhz70IX3uc5/TRz7yEf3QD/2QPv7xj+td73qXnn766dc1f1CSRcJhs3gv8qzIc2XME3nH4faMEePHX1s6O1yaCD4qAPoFJ4W1RZJWV1clnVX68zkwkqYOiuaesFIAOUCal1hR0Y68Ui8tjUQiNre8VI7qwTAWSFgTiYQajYY9C44MbcHcpPAK3/tqhNJZ1UHpLN9vOByaPJujZZh/BwcHxoBxPhzzhPWTa3tnk3fke4AW90IqyjV9ThMOKGwlh8kTQMK5xUEfjUaq1Wra2NhQIpGYkrZScAuHDlBH4CcSiVhhLOYt7c17+oqhFIhiXUCC5uWzVKH1eUxeYssYOC+Oo5c3Mz7ISWdcMSb8/30AgUAO+zZjBVDiGUIUPQR8YO+Z58xfL8ckQODlvEhHfZCKvHXUL9ybM+larZZVByXgSD8DDAD+9LsHKICpweCsWrcPlnjwJMnmt993fd4gc5/rs7YxZ7m3dBbQkM6OjvDG3sq49MGM4XA4lavImsX89ayol/R6wO6DPp7Z5Gd+blLwDb+BPvQsqaSpdYT0FM455j0JlnkpM/6lbw+OLvIssm9nrwyCKeX6vg3Py7w+DxYAwnNgviQ8OVocfN7tdlUoFJRMJnV4eKjt7W2tr68rnU7r6tWrtujCABLlBggRGSRKjIOZyWRUKpW0sLCger2ujY0NZTIZYxB7vZ4ajYYWFxet2Eg+n9fBwcGUhNOXiF9aWtL169dtsS4UCrawtFotO6MQqd5oNFKj0VClUtFwONS1a9dsQcdpvnr1qra2ttTv99VutzU/P2+fQdaaz+fVaDQM9FFohQgqOY1sVkQv8/m8lbnmnD/PuhANR/4562jeuHFDDzzwgJaWltRoNOwICpgy3hGnGycRaSgMbzQaVb1e1+LiopXoz2QyunTpkuXvPfLIIzo8PDQmk2fHWaRSIMB7d3dXhUJBR0dHJiO+ffu2MpmM+v2+7t27N8UEcDQHz9RsNo15SafTdrwIQKBSqejo6Ejj8Wk1UZwG+mRhYUF379618T0YDLSysqLhcKjbt28rFovZ31EICPt2JSif/OQnp77/6Z/+aUmnzsbHPvaxb+va34p59gZACLOGk4ZsB0eDtsKpAah72bF0Bgg9cASM4TgC8GjPyWRiDgdjmw0dsIeDheMHaGHc4+TwXDBbjGcvYfXPx9/48vT8H2eDaD3OLtV2ebZZ9gC5KLnAc3NzdmYaz8QaIMnmvs+z8jI7ZPl8Hsmol+fRZryDZztgE7z8CscRZsE/B3M3EolYUMo71LAdrGWpVGoqJ8xH8pPJpAEVZLyeRaZdvGQVMEgfxGIxpVIpk5DDQobDYVvDGS/+nflbX/GVdvF2XqRltDv9SPv4wAxBAUmvGRMwM7SfZ9b51wMpD0A8W+jHJYCK52IOMF+ksyMDfEqD70+uR/9xLIYPaHimXjpjO9kfyYdlfgwGAwsqw1hxD8anB4jS2fmG7Lf3A0nIqmkHz7ayLlDMijWK63vFgGf06BvWDs/ssW7Myr9ngz/+5wR7vHRVkgEs9l/8NL+m0HZcc25ubupoHo4hwS8iwIZv49vTg23WHT8OeeZZcO6VHX8c6Dsv8/o8WAAIz4ERAaSSJMcF8HNYIxZISo8fHBxoPB5bThbVAKlk5RkaIt7IMFdXV20xOzg4sMR2gOTly5eVyWRULpc1Gp2e08emTwXKo6Mj3b592xLTSV72eT8UYmm32xbFikQi2trasijg0dGRRQPr9brG47GOjo7Ubrd1cHCgUCikarWqdrutQqFgQPLq1atWTCUUOj0biXMN0fsTtfQMTTgcNpaQaCPOUrfbtYIzRBDZAHF4uMbx8bEqlcqUVGt3d9ckolQvBIRj5O94ZyAajRrIKpfLVsim1WopFArp7t27qtfreuCBB7Szs6PNzU1du3bNnNm7d+9qf39fxWJRqVRKuVxOOzs7dhbl/v6+Ll68qBdeeMH6I5VKKZ/PW4Ec8jb7/b7y+byGw6GWlpa0tbVlkfBEIqELFy7YmZmc80i0MxQK6fLly8YqAC5gUglOSGfSQm/nKeKIM4azMisdxVH3cmEcSj6HY+9z6KQzJ5MxRCEDH6H2DhbSaMAoQBQmAOdHOitiA4vNM2SzWQtm4HT4ogo4xa1WyyLvJycn2tnZMQeOPFPawM8R79whqfYyWf/sOIaejYcpw2FkTfCOlge0sI6+LD+giEJT3kn3OYM4mZ4V9A4UzhzvxlpLO/A+vANOcyqVsgIwHizTFownWGTyzn2bsIb7IjqweuSK93o91et1tVotra2t2bzkDEnPgBBkILiIAwwwom15d/YeP7fP07z2AVfWMPoBBp02og08cJiVfDOmGJ+MOw9AfFDBA0LAh3SWi+qBFGuwz3HkubzM2SsFfK4ohegIrPjiV9LZ4fB+js3uddyXNYP1n8CvD9LwL4VsaGcAJ74G9+CZvAQU1gt/ZZbR5P18wIa1zpsf0x4wMZ95N/rS/+vnAWvp7FyRTo/Qok0YA7NA06fq8DmqxKNAwD9hDfPybdqKNcwftYEcfPad+D396UEygNH3b2DfHRYAwnNgRGTv3r2rK1euWEXQRqNhMsqTkxNVq1WVy2UrrjIajYzxmZ+f18HBgSTpoYceknTqTMIEtdtt7e/va2FhQYPBQD/+4z+u4XCol156SZlMRmtra+r1esZA1et1VatVqxS5vr6uUCikSqWiWq1mz8gZdpVKRf1+X1tbW1paWtLi4qKBnHw+r4WFBa2srOjo6MgimP7w1FAopP/3//1/7VmRd5HnAnCDhRuPx3rppZdMGvnUU0/plVde0Wg00o0bN0wGtbCwoHQ6rWw2axUOC4WCHZ5+cnKira0tY7pgPzmklcNy+/2+VdgrFAp2VMKNGzcs0ftNb3qTJBm49zkdOGGxWEyNRsOig5KMITw8PFQ4fFrBlAPcb9++reXlZTtPMRQKaX5+XhsbG+r1elpYWFA4HNb8/Lxu3bql/f1923yfe+45LSwsWNSwUqno8ccft2I39Xrd5EHValULCwsGHqlieHh4qFAoZJVJKWCzubmpWCymw8NDy51EwutBZTqdtpxHosW+WhrSV2/nZYPJ5/MWDSY6K8kkRjBvSJ1hxIj44lhSoAFWwQMVmDWcNiRZ5JDgPDEOYGYBbAB1z9L6aDQAiTHtJaMwfkTvYdgbjYYFq5C5kxNLLqI0XdACSRvsvM+547m5J+sHzo9npwBUBKa8jAt53cnJiRXGwpkEoM3Pz6vRaEiSarWataOXXOHY4RzxPSB8Ns8IVg/HDBBJXhAgrlgsqt/v2xoMMAP012o1c/Bwzgh6IfvjPfhqNBomHWWej0Yjy+M9Pj62M1pZF3w7MU4pVIbjydjgIGufAyadHTbu7bzMa9rfg6pMJmPOM3PHs18+kOMZNklT+4QHFLByzHEAG8FVACjAicCCnxuMHQARZxnzLASiPGNHcBi/A0DkzY9nwIdn6z2DB8BjfUKqzd/6lANyWXke3ovz9pLJpFXCZq5FIhFLy2AtRBVEG7FueEAnnSke8C18H3jgNjuXZ0E66iuuxzzw0l3agXlK4Jc11bOo9AmKEeoEcA+ex/c7CgnANHsO10dxwNrHWsv7+6ClB7SeWeR6s2MhsO8OCwDhOTCiLJzVFoudnqXW6XTsTEIiyUzWg4MD9Xo9O0Mul8spn89rMpnYge/r6+uKx+NaXFzU/v6+FhcXzbk8OTlRuVzWxsaGRYLIXdnY2NDW1pa2t7ftyILhcGil+iuViuX+kOsYi8VULpd1cHCgbDarTqejarVqRy94mYV0mos3GAxULBaVSCTs6AKOw+DA9Xa7rcuXLysSiejmzZvqdDoaDoe6cOGC9vb2tLe3p9FoZIVJkI2SCM/C7tnVUqmkUChk8kacVYDh/v6+SbXY3NgwqLKayWQUDoe1sLAwdcg9EjMixkQdOfAVSah3bskf4vw8SkmHQiFduHBBKysr2t/fV7lcnpKnLi8va2dnR7lcbqqYDZvqycmJ9vf3NRgMdPHiRcViMSsLHgqFdPPmTZVKJQ2HQzuPcHt7W5JsM9rb25N0WjKbHNDbt28rmUyq2+1qf39f2WxWJycnVtWVza/RaFgk9vDwUOVy2RgIZKzeGWAunBcJipc74bR7llo6y7vxzgjOhWcSvAQNw3H00V1J5ghSCTaVSqlcLtvviVgDwGCdvKQc6SDP7dkgwBmMEcC12WyacoA8W+Y+1/IsnWfOYR15f+YHeVg+wk/bMn+8FA5GgRxgWDiAJc9yvzGHpJZiGJLM4fMOPfk5MLasyT5njmdl7cChwhkcj8cql8uWrxONRq0IlZeDStL+/v4Uo0F/8x7+/uT0SZqSqff7fe3v71upfPoKx5s1gXsyf33hEv5l7fPPDjsL2IUFmm3j82DeASY9grELMIfFYXwA3Oj7WYZwlhHyDKEvJuOLyPj5zPwBCPJ/8gTZexmPgBovT/SSavLT/Fz1rC+gjZ95aSTrj28rZM6zUkwMkIOCACAKIGEdy2azJq/mWWGtJZlSgEAVuayeaZ9lrplbXkrKMwLevRSU/89Kd5mXrEPMD/oElRcMHYWwmMd+LgPWOJaKVA7uzbiivVkPPSvJ72lH3pvP+nxh+nT2X/7v1Smzc+G8zOvzYAEgPAcGIERCxmQGGBAtjMVOj2bY2NhQNBrVysqKNjc3LcpGRK1arVpEEamnlyLcvn1bCwsL6vf72t3d1YULF+w4iHa7rW63a2yeJANuAJSlpSVtbm6q1+tZRcLxeKxnnnnGnBoi9UQkQ6GQ9vf3lUqlrAJmqVTS/Py8VS+7d++ems2mrl69agxhLpezapiwEDxjp9Oxgjhra2vGtKXTaWPgfMSUaDaFEnBkYrHTs7g44qHdbiuRSKhcLmt+ft4OXt/a2jIHlqIpAKvLly/r4OBA1WpV/X5fh4eHdpYTchQimJKsuMPW1pZVIF1fX1ehUDDW4uLFi5bLkcvlLGqby+UsIECkr9Pp6NKlS+bAHx0dmXyOAjpEi9fX17W7u6toNKrFxUWThOZyOa2vr2syOT0uYn9/3yS6yWRSR0dHikajWl9fV7lctnZAfru5ualqtap0Oq16vW5MDUwv47tcLtvRJN558PPhPNjsxgpQAcDwhQyKvgZgSXqNE+PZBRwDnHUflIjH4yqXy3ZGH7LzUChkOXlch0ATzj5OJMCEgjF8HrCEI4azRdEFwIaXvXrJFI6qr4zpcxS9E+YlZzjBPnrt29k7Q34MzbYfXz5nxjM38Xjcco4BtfQDP2M9lc6kVR6w0T8+yk4kn75FGUH7M1dwYgGF+XzeVBGACIJ6VGWFYY3FYsbYj0YjywHr9XqqVCpTRX2888sY4v/D4dCCb6gbcEa9I+nzZLneN3IQz8u85j38uuXljAQUPAODAZh9gJRx4uWfs4DQnz3oZYT4ChRYoi9YTwAkXg7pAzGkcXhGkp97qTOOvwcds/JUnz96P3aYuc4Y8cwj89HnzXmAiaIkn89PqWv6/b4Fk2kHDyxZ6wDpvmiPB9/+eXxOn39WD9oBhLOycNYI2sCrNHzOr1+jfFDJ5y3TH0jyvfqDNZX9H4bfB7B5dtY1P99ZJ1mPeG4ApH9f/Eo/fu83HwL7s7cAEJ4DI4/m0qVLNqFZfCVZwY/JZGKST6KSjz/+uHK5nLE7S0tLSiQSWltb09bWlh577DHNz8/rpZde0mAw0PLyssbjsZUv5igLDiFvt9u2AFPJqlwuWy4BzgXPc/HiRZ2cnGhtbU2RSESVSkWPPPKIKpWKdnd3zVHa3t62A+EBJvV6XRcuXND29rb6/b6BqZs3bxqbd3h4aKwmm2W/39edO3csj4YiNScnJ8rlcrp+/brJRMvlslVqRZ5F5VLOVrxz544ODg4MZN26dUvj8Vjtdlv/zr/z71iBC6RzMA6JREK9Xk+PP/641tbWjF1FVokklk0vk8loZ2fHJGjIYB5++GHdvn1bpVJJxWJR8/Pzisfj2t7e1uXLl3V0dKT19XVtb2+rWCwa6Go2m2q326pWq1peXraqtEhYG42GLl26JEl6+OGHjeWUpEceeUTb29tWPbJareorX/mKvRvyleeff16lUsmY06OjI21sbKhcLpt8ttVqaXd3V71ez76nmuzGxoZFdwEByWRSpVJpaoP0dl42GMA/bc6cZhwCkmHPiOpz1ALBCv4WcELhBI5nAWhIUrlctmDMysrKVPv6PGTyR8ixQ2aFDJwxcHBwYHnNXl5FnhsKhZOTEztbEhaadQwnAgcV432l+xc88Ll15AXj1Ph8Q9rDjxvveOO8+nwl71TPMi0wpgsLC2o0GiapRdrpo+aoC3yVQc/mIuemqizswPHxsR0hlEwmp6qjItWk3wmy5XI5a0eKeVUqFbVaLVWrVRWLRVNnID3f2toy+Tr9R7DRsxceiEiyQAByOM8EIGdGKpnNZpXJZGyO+yCFt/Myr2kL3lXSVO4m/TQcDm1+S2dz2AdHGL/IN6XpQmSMKwK8OOuwQgAO5IJ+LeBa5NHBDgMsYYjJl/UAgj6XzvIECWYR0PKSbVQOfl1jriHthF33jB3stb8vfomXX2azWeXzeQtwEZCBceOzyWRSg8HAxiXrnz9zk75gjfAsoc+Vm92X/GcBg7Dwfv2CKQ+HT6uGzwaXUBh4dpHzcWnvdrttARnmEvPJg3G+92AcsAcbTVtxX9hsACif8fnQ+C7s2T6fcBYUnpd5fR4sAITnwEajkebn5yXJNoHxeGzSxFqtpmg0qqOjI2Osbt++bUVcbt68qZdfflmbm5sG2sbjsYrFov7wD/9QjzzyiMmIarWaarWa2u221tbWDDQQ+YLZOj4+1srKiuWDIX/pdrtWoCWdTqtarWp1ddWODlhYWNDa2pp2d3dt81pcXLSNYXt7W/Pz87p69aqBPY5i6Ha7Wl1dtc2EMwqRrEkyoDIYDKacq729PQ2HQyvfzKbIRkEElDbmfZA5zia8A3gnk4kxnYBJgBDPUywW7XmTyaROTk705JNP6mtf+5o9L5skbBqb48bGhsbjsfL5vDGrvCtV/gBZnU5HpVJJFy9etHxR8j6lUxluKpVSu9224jOTyemRGIDd9fV1LS0taTweq1KpWGERSVZFlvtRRXR7e3vqTKytrS1jMw4PD22jJfcqFotZX5LjiBMDACCPcFZqd54kKMiwZoMZHoz4kvMAdgBjLpez4AWbsQdCOGNUm4V99fJm5hIKBJ6HSLR0KgfGeUBtwFxBbtbtdi0I0Gq1DBQQRPJ5LZLsep4V5R1wuAh+Ed1mDcJh9OwZ44Tf3y/Px7Ow3LNQKNi6RVTeO2M8q3R2RA2fSSQSUw4f9/AsJs+JFNVL5WAFvNPO0TfD4dAAMfeEecDx5x6eccQJzeVyarfbxhACyj3Dd3h4OCXbls4UE6xHMA2encJZ9/JCfzQJrMKsysJ/nn+x8zSvZ+WW0rQKgH6nXeg3xrekKXbaB1qkM+DI77mfn1MAD/YT8uzIpcXRz+Vytnb7tdYHAGAy+Rvmh5dO+txdxj3rD/3u554HGOwPqEEYo/7/2CwAYr30NqsI4N70Df96No539NLW2X3nfswva49nB/045lrMBQ8IWZupAAxzKclk8fQBkn3momdn/X7hwZ4fa7Ng3UvVJZkfBcBjbM0eDyOdBSQYE+xN3P+8zuvzYAEgPAdWLpctv4+IOA7JcDi0qndIJIkMwwA89NBDNtEp7d9sNhUOh+1g493dXZMUkphNZVDpNE8lEolocXFRsVhM8/PzevHFF1WtVnXp0iXV63WLZO/t7VmO49WrV7W0tKRcLqerV6/q5s2b2t3dVTKZVCaT0dLSki5evKg//MM/1I0bNzQajVQul3V4eKjxeKyXX35ZX//6102uVq/XLVeNxQjJB5tDPp9XJBKxqF8ymdTu7q7Jlti0yFsgOo8ElM8BZpBiEuUrFot2CHcqlbIDs9lsAXQspIeHh7p06ZIV/snn89rZ2ZkqPuOdb5jLZDKp0WhkkldyMjudjsrlslZXVw3005c7OzvW5rBNPAvv/cQTT1jBGV+6HklouVy2KCpON9HHg4MD7ezsKBQK6dVXXzVpDJsH7COFYHwhk0qlolwup2KxaPmk7Xbb2A8cJM6pzOVytkl5Oy8RR86sI6DhJTg+z4Py6IA8ghk4YDh1SKBYG/gMjCAgkrbmi7lAZTqcFoIV5LIQ7CGaPB6PTZ7lc5h5Vo6mwdnCkSSaLGlqPkpnjuWsc8k7exaP+/pINuPNVyWUpquucl+YUJwm/zlfvEM6c3R8Xg5znWf27AvPw71wrAHU5NTBgsPgoGZgvQEUNptNY5OI4PNcjJNQKGR5WL76K+CONbFerxtQR+oZDoenKrD6L/pGOguIAQp9Dlc0elowxTuBSNY8c+DzoLydl3nt8wExP/78XuGZa/Z16QwkMV9YF2g7z1p7NouxBDu9uLhoYw0miqAC+bhemgrj6yWPsI/YbM6sZ8Q9O+WByCwYZO55AxDSRtLZPPW5igAn/B2C5LNyUtoJoDsrOfV94p+H/3tpJObzgmclo15p4PtDkgVyvQIkFotZakQoFLKADc9BwNevYa1Wy8DjLDPoAw6zoNwHZXy/eHmwB54wlj6H3wckvIye/xP8Oq/79XmwABCeA1tZWVEul7NzppAmxmIx7e3tqd/vq1KpaHl52TaSBx98UKurqwqHT6tiAvYuXryof/2v/7U2NjY0HJ4WC9na2rLDiKmsWSqVjFk6Pj42SRhSI+SM5XJZx8fHVlmyUCjo4sWLVp3u+PhYOzs7Wlpa0le+8hVJ0vLysslEE4mEvvSlL0mSvu/7vs9y/HZ2duxeMIjSmcSLwixE4MiPmq3K5aPpnU7Hjjg4PDy0fBpYFwrWIMccDAZ6+eWXFYvFtLm5KUnGGF69elVvetObVKvVrOoeGzOO8vHxsQEzFvJisShJBlL5LAUaKpWKVldXValUVK/Xtb6+btdCDpPJZHTt2jVrvxdffFFra2t68MEHdefOHTWbTfX7fW1sbCgUCplEk/HyxS9+Uc1m046aGAwGVhwIx4DcUuQpFy5csKNOOCcQMAEQwTn3ZzwhLeYg8jt37ujVV181mWk0elqgxDNbsKNsbN8oUvu9bmy2SJtxXGDLcexxSCaTiSqVikaj05L+vV5P8/PzSqfTVggEYDk3N2d5egQ9fB5JOp22Kqc4iTCNzB/+njXFHwnB+aOsC7C/kiyX1LNpOJaYl7ISMSf44NkELz+jDYhm847RaNScVuY7VQV923rHFPYfpwrn2AeYeE4cHPL2WE9w5ieTiZaXl21tajQaVjGYdYZn8NJd6bRwRC6XU7lcnjoSZDgc2nqOJI7UgVAoNFX11edp++IVvr2bzab1C/MYZ5DcMsAgQBfHUTpjpehLAB3gh3biGXwQyh/9wWdmJXfnaV6z1vFOHjQwBhj3HGEEwJHODgVnTDLGSdUAfEiyPgJUEAAi+LOysmKBS2Se5JtxTrA/roD+9GOIvY2Ai2ehAKCw+V4mSr8TMCC4gTKBd2VeSTLWiXf0YMOrKAg2ESCjKBb7F8B5MBioXq+r0WjYvKRNPePpgxP4EJ4xRUbLmuRBNJJbH+hgfaBNWIMJms/m9hFMo419AA15cKPR0HA4tErAns1Fps9+7NNgmN/cxzOHnl3m50iFAYr0Ee/D+ACIIhn1Od/YeZrX58ECQHgODFlPtVpVJBLR0dGRyUQHg4Hl5rDwwzz0ej1jnFZXV3X79m0Vi0UtLS2pXq9b1A8p03B4WrKa6BD5fEjbvETg6OhIk8lEm5ubxg6wYNVqNVusI5HI1HEVALxXX31VKysrdg5hJBJRoVBQr9czIEkeDE6R17bjvOAoEmmPRCK2oNJu/pyk0Whkzhr5j7NSRXIC+Tnn+gF4CoWCOXtLS0sG2Hx0j/MK2cwoGtPr9exoi16vp42NDWMUJ5OJLl26pFjs9OgJJJ44nJSc9/lPMMRscsfHx1pYWNDly5dVr9ftsPhUKqXnn3/eDqDm2QqFgu7cuaNwOKxms2kSOqrB+nwXHH9/3EEymdT8/PxUtNEzVZQTj8ViqtfrikajJvWl/zKZjAaDgbFJgMH7RRul83PQLc4VDvasXNHnihHcwIbDoZ2lifPN72lX5qWXe1HlkL6Hhet0OlN5PZ7NQp7OvaSz6qeARgIuRJh9oSreCfN97Muue0AIYMBxmXU0GBf+TD7PJnunykfycXqRzrM24HR5xswzPN6IisO08FnvHAIakVLiFGcyGZOIxuNxlUolK4jhC0u1221jeVizmIM4fp5J5Zl9UQhy9pD1esDI9zik3jn1/YMjzt/iJM7KIgEQONF8jnby/eBzl2bb9TwY7eLfG/MgkXnq5aTIsT3LLZ2Nc99PzAlyNaWzKpqJRELFYtEqgwMIYJYZnwQbJFkQRdJUv/p38nJM5iwA0BctYW57cOgVIARlZue6dFbl0svmaU/uzfhjjYRR556MMdZJqqL6ip++L7zc1kspaSu/9rKn04YEs/z6498lmUyaciaVSk0VSwuFzorMMOdZd7k37cM8B5DOjiUCqLQ5beEZWy/j5RlpU/qdYJgkazM+zzj1DKsPLs2Od9orsO8OCwDhOTAWNYqFcBh6rVbT3t6elR2XpAcffFBbW1sKhUJaWlpSOBy2oymWl5eVSqWUTCZ14cIFvfzyyyZB4ow4Fh8qc0nS/Py87t69a5O/2Wwqk8koEolYwQAOTJ+bm9PCwoKq1aoajYZu3bqltbU17ezsKJvNajQaaWdnR6PRyPIIOQMQIHh8fKxer2eLLA4JDquvmOaBnCQDwuQgcGYh0VWKv0gymZSX5gBaOFsQ8EclRc4uQmcP80F5a1/1dW7u9EzEUqmkRqNhRz5wqDuFflZWVsyxppjN3Nycer2eSqWSFfHAcYzFYvr6179urAztRmL90dGRGo2G5ufnFYvFlEwm1Wg0VC6XLffRS1W2t7d17do1K4zBs/gNhcICRFhhO2GaGDc4Lb46ZKfTmWJod3Z2lMlk7PgSnGAvjYLRYcxh5yniOBwOzQnEqZhleSSZk408CCDOEQ70MfkesGgcm0I7AuoIpjCOZ50DHEfGtJcj+uMhksmkSZ4B9pJs3uEgEaTxQRt/NhYOEeOG6/Ms/NyzLfyeConItLyCgHE0C+BwAL2jGAqdFZa4nyPvASLrEJF5KjbC4MPAIT2HzSwUClMO4qxUmuAAedOMfZ6Pd5LOqlYSyPNRftqo3+8b+4pjSfvyjrCmfr4zvnAAPfjj/j4XkOfx0kXa3T8z7X6/+fudmNeNRkPve9/79NJLL+nzn/+8HnvsMfvdaDTSs88+q1dffVXPPPOMfu3Xfu3butcfZ/QFexBGO/KetAcAjzHDusCcoE2Z46QHEJSJx+OWe0oQjiCgHxP8i6LAy6c9c+7BEn3o+8bn5jEOPeBgjHmW2c93n/frASHj3LNsHvDMjjkvH6cYC6CWNYvfeVaQ4PBskIJ54fuG+6Dc4Dk8Q+j3Pq/sAMRTaZt3Z73A7+C9CBwTPEPWS9oKTDH7Kc/m5d20P2sK/yfw5hlcwP9sn/J8rC3Me58PKp2pBrx89BsFQAL77rAAEJ4Do0R/rVbT4eGhXn31VZNM7OzsKBqNmpTw1q1b6nQ66nQ6Wl9fN+CF1Ghzc9MkY8ga6vW6JJnUBAdTksmvksmkNjc3lc1m1e12tbCwoC9+8Ytqt9vmgFK8oNvt6uDgQMPhUOVyWY1GQ0888YSGw6F2dnYknS5kV65cUTqd1r1793Tr1i3LLTs8PFQ0GrVzCsl9gB3je6RYmUxG6XTa8p4ikYjJbvb395VMJlWpVCy/5Utf+pJWV1d14cIFk6g2Gg1zwnDukNyUy2W9853vVKFQUCKR0N7enoFWzvTDvKQ2Eolofn5eoVBI6+vrCoVCun37tjl8i4uLikQiWl1d1dHRkTqdjnZ3dxUOh5XL5aygDKxJsVjUrVu3JEmPPvqoHR599+5dtdttLSwsWJXPUqlksrjDw0Ntb29rNDo9HmJlZUV37txRIpHQzZs3Tea2vLysO3fuqFQqqVQqaXV11Q6MhzWVTgsDFQoFayM2IpxbALGkqVyEUqmk9fV11Wo1K30P2+w3JNgx76B7Oy8bDMAbRg1Hg7HlS4ojbwSI44ixGXMMBE4aFUbJMSRHBYeCHD+koEh+cEKoGkwwCsYJQMoh9AAKzp5jbIdCIR0dHVlEnjWC5/PysVnHkSg57IMHP14yirwJI9d1MDg93oJjTXzOEc63dCpt9bIxmMxZ6S5j0Ee6cSp5H0lWETSbzdo5iwTZ/LmlOE/+LEPpzClDrovzz+eTyaSt2RwET6ALB5a2pg3Irep0OlMsA/fxziFpALFYTKlUairvD+eXOclzw9BQ+TYcDlswAKl4r9ezfpbOHMlZ+3bndSqV0ic+8Qn9/M///Gt+9zu/8ztaXV3VRz/6UT377LP63Oc+p7e//e3f1v2+kTGmvlExmNmcPZ/bhhyScT+ZTKzfaVscdNQfPn+XecpYA2zAPI7HY9u3YLp8+/kCbUhFpbOjD3gXHyxkL6b+AOOJvDlki/gXAA6v3mGOcX2fN+eZTb8XcMYpBc44u9YfaUPglaOoyJ9lXswyXbP9xTVYPz1I8uCHYAiBUOaSdLoHoqIBGAMUeVb6yAdQeB+CXSiRfB4j89UXtEMBBAj0FeNRJvDl25s9F5VHr9czcIvv4INEXs0iaUpN5u287NfnwQJAeA6MQ8g5C6/T6Zgss9/va2Vlxc4BjEQidmA9C24mk5laBIjgX758WZVKxYAcbNhgMDAGiah6oVBQKpXS8vKyKpWK0um0Hn/8cd29e9cqmO3v76vdbmtxcVHZbFZbW1smy4SdWlpasqI3pVJJd+/eVbVa1XA4VLFYNKlkIpFQp9OxPDgimDiSsHwwDLyjz18bjUZW7bNarZrUEaeMCB25UT5HAgZFOt2EkHT5iqr+MOvBYGB5OrCCPp+LHKFLly5pZWVFjz76qP7oj/5IvV7PWMfBYKCNjQ3La4R9lc7K5JNET74nTnMikbCcsEajYeOBnINaraYrV66o2+2qUqkYwzo/P69Go6FsNqvBYKC9vT299NJLthngqODMS1KhUDCGY1YmhFMB+IY1PT4+VrPZnGJwb9++bde/cOHCVIU1ghCzziNR2PNg9DmRcZ+bASBEcojzEwqFbEwDqHEiyPfxTBNjkHlNvyLlZfwSIZ+bm7MiSUTR6QPGPSx4t9udKhJD0AnHkRwVfo/T+I0i17OFZDwDQZ4jz4JTwpwHIHpWg7EFEKYoC064r34qnRWT8P3AOuJlZjhItDHPQhBNOnWux+PT/GC/vvA+MCA4kPF43IAATnmn07E+o3Jrp9PR8fGxWq2WsXI4uNFo1EAuATFAAe2D0wuL4lla1lYv5QWYAwbpJ9qCucj7ATRpL9qbZ8I5nAXY34l5HYvFtLCwcN/fffazn9UHPvABSdIP/uAP6jOf+czrBgjZNzxr5P/v5X5eckeQQZKNK9ZU3z7M9Ww2a9WAPfNKEILP0gcUEQKoSzIQwFgnKCWdHXnB/sZ89gwc+zLz3cuO/TjylXQJcHrmmPXBB1E8e+g/79vNF77hWsx11gHe17/nrGTZy769fNIz8r4o0ix49MymdHYUhnR2ripr7P0CIsjC2RtZYzwDh4rGs/sActrYFwvzUl3PznoVgAeEtLVfxwCsfq3zsmFfPIfxd1736/NgASA8B9bv9630f7fb1d7enoFB6ewQ806no62tLc3Pz1s1SgBHOp1WrVYzsNVut/X1r3/dgM/u7q4KhYJFtildTrRxOBwqn8/rzp07Ojk5sYqf7XZbxWLRjiCIx+Pa2tqSdFpd8+DgQHfu3NE73vEOK3POwheLxXTx4kV71rm5OSuVDjsIewH4QPKaTCbV6/UsWublNPzML67pdNqYjsuXL6vVapnu3ctHfBSc6BxSDaRZVMYkOh4KnebpHB4e6vDw0BiY4XBoZ0AiG8vlcup0Otre3pZ0lrPI7+r1umq1mt7xjncYa4kzzKYunW76+/v7unfvnoGEcrmsl156yYDfcDjUyy+/bBvoV77yFWNTuR8St4WFBWNfX3rpJW1vb5sUCEBB+1IqGweevmEzJlcSRzsWi00dB4KUaTKZWJEfNmQcAkAhzIq38xJx9NJc3hEnGucNybPPayNCTWBDOt2Qa7WayZ74HeeUzebl4Ag2Go2p4yeIRnvHBZk6hY+8M8jc8E6pB27MMc/2eYfFAySYBC9D9IEsWBUvBZ3NXyJqDSDxoDsSidgawBjzjjDMCL+nT7xT5gEl0j4vifXMeL/ft0IhsKk44kTi+Z4+yeVyFtSDKSRo5R1Z1jUcQb9OAf74HV/IhQGPPufKM7WwCgBCACDPAwPG+AUE+P4G/Hk2xhfBoC+9vZ7z+ujoyPKh8/m8arXa63YvH2TBeUZyO5vD6Rkh5iTXYN4Q5KGtaX9/jA+KAD7nQQt91mw21ev1LJBDH3ppK/nFvgIu9+U5kZ76ec888DmOHoiwZ8MSeoDnmXEPCLkv44n1CwDqwbQPRvk8wJOTE2Op/XynD2ZBF3ulXzuYc54ZY7xLZ/mWMICS7CgJmDUfNAXM0f9e0cS7oBrxz8HYQDbLdXxbM4f5nrnt5eAeoHswDuj1axJspu8nAj8esNNGrHPezst+fR4sAITnwHCOkRVWKhVFo6dnaC0tLSkWi+ng4EC1Ws0KdlQqFTusORI5Pd+OiDGgYG9vT8vLy5JOwVutVjNG7+7du+p0Osrlctrd3dXu7q6Wl5e1sLCgXq+ner2uyWSi+fl57e7uanFxUfV63YokHB8fa2NjQ5VKRTs7O4pEIiZFrNfrGo9PDzJPJBI6Ojqyw+xrtZpGo5Ed2CqdLa4sYGxI/N4fL1EoFAzgkSshyRbnSqWicPi08ioyExzoV199Vaurq+asschRSZE8OgBhq9Wy+9frdasMSvW2o6MjHR4e6plnnjFZy5UrVxQKhVSv183Bymaz+tSnPqUHH3xQKysrikQiunfvniKRiOU8jsdjPf300yqVSjo+PtZnPvMZq+BZLBat4uOVK1dMSre+vq5UKmXgbnFx0e5HDh/nDCL5w2lEFlitVg3MsdkARrLZrF0jmUwaK0i0E0cbxx0QT7QUwL23t6disWgbBw48G/qsnZcNhmAHEXVJJqFl3sDKIddhLPBZHJxGo2GMEvmFyIaks/wl5pVn0aicC4CHGZDOzt6TZHIlLz8DKBCJxrGRzgIBXMfnteCAMC68bNE7J4xFQJfPZ8JpxgHFuQF4IQfnfX1+zng8NtkrDrG/Bk4iwBEHkjxgAlo4QZ1OxxxXHCVyfQBrOGrIuwCvHgC3Wi1NJhOrjOiZ2MFgYFJerse7+EPih8OhBde80856SQ4p0jIcdsYLFSp9LhqKCBzr2Wfxx03AMAyHp0WoCBYCupGWARCxb2Zeb25u6sd//MclST/2Yz+mH/uxH/um5hrBTuk015DjPV4P6/V6U4ypd+BnQQwBoH6/r3a7bWMHIMTcGI1G9i9Bm36/r3q9bkEa/3fMT8AQVYgBGNJrj2JhHYLR8iwU15E0xYRJmgKEnv0neJtIJDQ/P2+BRMYh+y7PB2ieTCa2NgKsAVD+eRlHMOi0u1dJDAYD25MBVbNgz4N05iTqDF/NF7klTDvrl1+PvKwWP4T1hWA71ybwgyyTonzMY9Q0s5J11hrPEHr5PW3Pz718lPnOPAc8j0ajqcJlsKr4Pci+PZBnzPjAgc+Rxc7Lfn0eLACE58AoQoJscX9/X/l8XplMRhcvXrTqo0TXu92url27pkgkop2dHVsUObg8HD6rKEnkbX193SQJ0plEkWjy6uqqAb56vW4VSC9fvqy7d+/awgV42NjYsA0Y8JpIJHRwcGDFTti8VlZWdHBwMFUgwyd4x+OnZZSLxaKSyeRUlJDnjEZPq1cuLS2p1WqZbKnb7Vo+jJfQUWDG52vB1IVCIZNm+byXTqej4XA4ldNJflCr1TImBrZuPD6t1AoLCpCiQiwAbWFhQcvLy1pcXFSj0bDckEgkooODAyvac/PmTXtXHDKOvUB2WiqV1O/3NT8/r5OTEx0cHCgajapUKtn5geQd4XBvbGyo3+/r4ODAwFwul1Oz2bScNcAbmwgbDDJjJIOMPxgOnGBJdo5dp9MxEAqrglMgycYnG6XflM+TBMU7IB5YwOz7/BE2fxw2mFbyyWCRAGSAE/JQcJ5gvslHoj88o8f/6/W6BZVgw5CchsNhO2+SMeWvg3PkJWXeacXJ4518pNsXPsChxJECVOBU8/dcky+fB+jzWrxMjHf1Ej/+5fp8zkfuCSL5QlZI9Pl72DVUDIlEwuTfninAMZPO8nhmmUOuy9wDHBD9JzdyMpkok8lYWwH8CCj4nDZfCMQXpPCl6nGA/fFDjDfPLE0mE2MpCRDgYNNeqANoH9/u0jc/rzc2NvRP/+k//eYn2f/f3vGOd+hTn/qU3v3ud+t3f/d39TM/8zPf8jW+WWOuAGK8FJm5cT9wyNimHwD89K1nByVNzQkAFDnB3W5X4/HYFAbI0AlQSNPn1tGPgBkUBjwn/cXf0pe8L6yQB4eMbSprUg+AgAHgludAwk2KAvN2Fnzy7LQfgJrn8/JcfAAv/fYVl/064ZUNXo4qyZREVFZm7aavRqOR7Yn0OW2D6skXtAGAEXz2bKU3/CTyOdkP+Kxnm708n3XQB8x8MI5/Ca7Trr7v/TrDOPPyXfra51HOzuPztF+fBwsA4TmxYrE4VU4agDMYDJTNZrWwsKDd3V07+By5werqqqrVqkKhkPL5vG7cuKH19XVbxF955RXF46fn+MBs1Wo1xWIx3bt3T/l8Xqurq+p2u2q1Wmo2myqVStrY2NCXv/xl1et1tVot3blzR91uV41GQ4VCwZzJe/fuqdvtKpfLaXt7W+VyWRsbG4pEIlpfX7dCDKPRSIuLi7p3755FoHGkkGLwzkgrBoOBisWiFcVpNpt64IEHbAPwzg5SKaJcw+HQosaAD59oPpmcHpEBkJVkko3Dw0OTzLLJEuGEOeCAe7/5Umzi5OTECsSMRqdVW+v1ura2tgyo5vN5LS4uKhaLGTtK0RieFwYAVhTpyb1793R0dKQ3v/nNKhQKeuWVV7Szs6NUKqVSqWQ5hIeHh+r1evrDP/xDXb161X5eLBZVqVTMGSfaTDQylUrZ5g7bQTTUy2yREI/H46njD5D+InVmU8chYQNhDJ/XiCNOh6+w2u121W63jR1izKfTacsdnD1SAgDEvCG6zM89CJJk1Sd9HhPyZ5zH0WhkwN5LBHGYAPk4PjicODze0fLBGxyPWZA4y4wQ6aZQAkwajvFs/g//+ut4BpXPe2fKn6/mi0T4PB36CIfNS/wI8DBPkIYBwlmnYS19OXfkrZPJZOr/tPXc3JydDwfw40gML8liLeCLd8Vh4+ge2F3f3jiwHhB6ZspLy2Fo6/W6OfAE0nCK+T/BAtrWjyvUAn9ahvBPsve///167rnndP36dX3oQx/S5z73OX3kIx/RD/3QD+njH/+43vWud+npp59+3fIHpTM2HrbYO8qMIZ8nzJwFELLXwT55eSHrIf3M+PKVtQlmjsdn+aUALfpEkt0P0OAll/zePzeBP2m6uAtgwc9zL0MmGDILCH1BEuk04MFz8v6Aa2k6d8/PU9rT/16SASbAos/N81JR//2s1NwHmCRNsY/cg3nNZzwop784G3gymVhgefYeXA95LtebBVzcizFBIHowGLxG4unloD5f29eT8JJPglQEdjzjytrBOunXcP+MHsD7dgnsz94CQHgODInnwsKC4vG4Ll26pK9//euW4zcej/Xiiy9aEZgnn3xSrVbLcpGy2axu3LihnZ0dxeNxixpyDh7ypG63q0wmo4ODA8spq1QqU9E62KPNzU2dnJzo3r17Bgzi8bguXryo8XisV199VZJMtkhhmp2dHZORtdtt2zAmk4ny+bwBFum0gEo2m7VIdbFYVC6XM3DJRlSr1cyxuXfvnrUZEgmkGsimkLBIZ9HXg4MDLS8v22JHm5DLiMPN4oZch40U2eTm5qbG47Hu3LljRV+ee+45jUYjA908fywW00svvaRHHnlEzWZT1WpV165d0+HhoSaTiRqNhh566CEDq/fu3VO1WtVkcnou4RNPPKGDgwNVKhWL6i0uLuratWuq1+s6ODiwaotXr17V0dGREomELl26ZMcFpNNpG1vJZFJHR0dKpVJ617vepZdfftkAh2dxFhYWlM/nbSxeunRJjUZDCwsLBuqee+45hUIhOwdzPB5b8aBEIqFarWbgOBqNqlKpWB4s0dRarWZRVAzH+TyYD0DgtFM4ajgcanFx0QAAZ4oBkprNpjEGACbmVSwWU6vVUr1eV7FYNHUBjg9MEsfA0L7kGTHXOYJF0msAGOAB52U4HE4FEAAvfJ5o9WxOC/MH54L3QxFAniuBG5xg6czh4z7escXZo6gRASFAIADFg0nWAs8iSDJpJH/jo944tIAhScbYMbYJihwdHVlOEUdQUOE4FosZ2xoOh604jK8mSs4mASDAFtIzL3ejzSk0hERVOpMB47jzjD7gQ9Amn89reXnZ3mFnZ8cKV7GPSJpiR6g0DUvt87i4Jz/HvlPz+pOf/OTU9z/90z9tY+NjH/vYt339b8aQ9MHoMq7oH47fIaff5+95iTQG08/eBJCg4ijVKpkPPocWJtcHOQhkMF49e+SPhGB8eXDGHPD5o6hDBoOBHYgeiZxWxczlcspms1pcXLTaBgBcAh/IsP2RMKQW8L4AP89QAYApssS7eHbdpy8A0r0yY1a+i0qDdvMqJMY34J2+IbjGWgzo9HUeAOWsPQRYWc9Qfvjqvj4XF+UE12C/YP4zfpj3+Cy0CQErgjy+/6Wzo40I5vhAns/X9GvIrCLDM9b+uudlvz4PFgDCc2Cj0Wkhk1KpZA41ci2knw8++KDJzCj8QhEQ6ZTd2t/fVyaTUTKZVL1et8qhgLW9vT3Nz89rMBhoeXlZvV5PCwsLun37tjKZjJWdx7EaDAZaWFgwB2hhYUHpdFrVatVA5JUrV7S3t2cLfLFY1MLCgo6PjzU/P2+ArlwuTzl6OHU+/wIZChFVnCnypKLRqJWXzmQypvWXZPIQFlOKChwcHCiXy03lz7Ex+KgqANvLwWD6cNBwoFiAcbaQk8RiMS0uLppEM5/Pm2x3bW1NS0tLGo/HJgO9cuWKFhcXLaqOUypJuVzOjm6oVqvm1JO3KUlLS0vqdrsqlUra3NzUQw89pGKxqIODAx0cHKhYLKrf71v+4NLSkuWJSDIAW6/XbTNgU6JdW62W7t69a5FBCgRlMhlrb0reJxIJy53kKBBJBiJgEDnDElaCQjrS+ZKg4JR4ZiaXy5ljhtwJlob8urm5ORWLRWWzWZMb5XI5LS8vq9FoqNFomOOEXI3oMZIj79TgbHa7Xcv3Yp7Mgj6YR+9k+vEwy0L4/vpG+SU4xLPsQjqdtnxXHFN/zdlx4MHlZDKxnGmk9H5dATB6mRXrDSAZZxRpuQe4rAMUl0Km6x1VquSyDhweHpqzziHUKBUYAzjxyNCR4aKiQAlAPjNt5/OtiPwDDrkmDAqOIE6gdMY+8OUdPhhDL72VNAXkGb/+7zxoBkh753HWcTwv89rLQpEwevaJ/qVPaDcqP0tnVWAZp7C/gDd/H8YF9wS0zTJikqb6i/kC4PMOPtf3jBRMGH3rFQ78HP/As3ysZ75IEWsK8nfWJ4KBvlItn519Lj8fvQrAA1rGHm3Fc/tgEiDazxUP2rxf4mXRXI+x7c8XZI3lHhzzIZ0VGOKLZ/UMvp9bnqH1Rrt42TBrDe/jGcPZPFOvNOBdaONZSbNnvP21/Jz1zDP2nZjX//V//V/rs5/9rC5duqSPfvSj1g69Xk8//uM/btXL//E//sdaWlr6tu513i0AhOfAcDYkmXSIgghf+cpXLA/s3r17KhQK5kyk02k7FJ3E4larZTk4nNGFPKvZbBpzdHBwoHq9rlwuZ1XMtre39dBDD6nValnODNHQbrer+fl5dTodbW5u6ubNm8pkMvp//p//xyqVZjIZHR4eKpfLqVwuK5PJWIVLIlOHh4dTjqM/ywem0FfwQtvfarWsIMzOzo5WV1claYrZIiIIuAIQh8NhLS4uWmQRGch4PFapVLJ35VpLS0vK5/PqdDqWL0gOVSgU0uLioi288/PzVvin0+loZWXFoogcKA8ICoVCmp+f1927d7W4uKj9/X0rijEcnlaC5YxGnp18RorYkFxfLBZ1584d5XI5YyC2t7fNEdnf39f+/r6Wl5fNASbauLCwYJsQ0X7GIJv38fGxAQzP0FIcoVAo6Pj4WKVSyc5W9JFTX8WQhPpqtapyuWzAkY131s5LxNE7D+TaENHmqA7yzshtJXfQgyKfNwP4g1Ui70s6KwoDS4VDClNDkSU2cBwvL5OUzirPeUdzloWQNOX4+b8HGPhcQiLkfHF4e7lctrNScXa8U0M7ci+i6ozFbrdr+VSwH94x86yJZwyQMDOeeWbvqFEddzQaWRt76Wc8HjcJNeCLtga0+/UTRUen09He3p4ForyUlHdjPfJAl2CNb2NfoXQymRjT46sbSrK5OTuucKq9JJ7/ewfQy059H3lnm35gHfHyPp75PBj9gQNNAMXnVfoxydrJma4e6PMvTDTrL6wc5oMb7Cnc00sZPWD3oNCzxR4U8K8HhFybdYbnCIdPc19h42mH2Rw1/27+OXxOsQdGHgjOrk08oy/OxLN4MMNY82CdOemZTx8EJjAyGzCiXwmuwXyj0gFUwkx6BpI1n7XSt/8sYGPv87mNSIhZAzygZY9GnQCo9oDQz1FfDIY1noAP9/MSWi/f9cypNw/U/c/+tPbVr35V29vb+jf/5t/ob/2tv6Xf/M3f1E/+5E9Kkv7Fv/gXeuyxx/Q//o//o/6P/+P/0K//+q/rb/yNv/GnvtcbwQJAeA6MSU2xFUm6evWqtra2TB5YKpU0GAy0tLSk0WikbDardDptgC6TyWh5edmKhwCoCoWCyfquXLliUrVarabj42Otra0pnU5rd3fX8hUrlYqdPdjpdJTNZlUqlTQej3VwcKBIJKJisShJVt2UQ+X7/b62t7d1dHRkCyFSw+XlZXOgWNjIn2IRLBaLSqVSev75582phW1jo93f3zfgyYbkCzmEQiEtLCxYbsv8/LxVDiyVSgYMYfUymYwB53K5bHLJcDisq1evmuO3srKiUqmkcrms69evS5K987Vr13RwcKDx+LRYR7fb1dbWlhVogIHMZDLKZDJ69NFHdXh4aIV4YGgLhYK2trZ069YtXb582fInkRsuLCxYERqAYTQateM+AK8rKyuq1+uqVqsmIaVi6b1790y2s7a2pmQyaXmljEc2I/qq3W6r1WrZ5gJL6OUnOIPSWcSZ/CSYDfIhTk5Oplhjb+fFceS9kTH73KG5uTlVq1VjmACLOA60FQzYaHRa5IRAEFF6+sjLqyRZNNjnB+JYMEcABwBO3xewFtKZY8e44F/ekc97R5e/wxn0zh9z1UfRcYT98/kctFmWESZqMDitwEoAwzvpPBvX8aCWnCz/LgBpHKpMJmMOMAoD5kIikbBjARjrsAq8J0woz03bsf743ByebdaxZk7Ntq0kA10eGBJ84J3JX2SMeGfZMyAAENZbz3J4OTDjFdYf5tOPBy+h9HZe5jXMmaQp1pife+ebQ8N9LirKCP95xqvPz+VrtpLw/cCgD2QwvxiDHiCw73I9Pw482+TBKADIA0LWfb9XeLbPAyyu6fPR/NcsiJtlthmjHrz5HEGvWvA5g7QT/cP3HkB75jSXy9l8Y/0Mh8PmD/iAFM/mJak8G30xu0Z6cMwXPycQxH7rx5WfyxT9QlnimWPuy9+jJMA8mzfLoHoVCG3DGPDtMasi4Lp/WvvsZz+rH/iBH5B0en7o//6//+8GCK9evarf+73fk3QazCQNKLBvbAEgPAcWjUa1sbGharVqLByL7ubmpi5evKiDgwPb9C9fvqzj42M98MADlkOEc3L9+nUrXLG6umoUOxIHSSZ/HA6HunHjhhKJhF599VWToy4vLyscDutrX/uaFhcX1W63tbm5acxjLpfT2tqanVPonZZCoWDVKWEjW62W5RGkUilLtsf5oMrdeDyeKtXP4vXWt77VGDsOgZ9MJparwXlubFpE89PptC5evGhHJ9y+fVuxWExXrlzR2tqaqtWqReqHw6HS6bQ6nY7q9bodrfHVr37Vcr12d3fNeSWHkOp+r7zyiuVDwYRSpXR5eVlzc3O6ceOG5ubm9Pjjj2thYUGLi4uKx+NaWVnRlStXrK12dnZ048YN3b17V81mU3/uz/05bW5umjQVpnIwGGhzc1PRaNSYos985jO2EbC5wARXq1UDGOVyWY1GY8qB9VKbZrOp0WikarWqeDyu/f19O06E/IXJZGI5aQB9HBhyRtjMGHvXr19XoVDQhQsX1Ov1LD8DO0/SMvqEiD/SKuTOFJYBMHpmhSAL7MJgMFCpVLK8Tdr95OTEiiBRkZLCR7OMkY+o4yjgOJIThTPhzwuUNOWEcn4keUWwDwCm2QqXFMkhV9qXdudsRQI2AFtJU44sYBnnhGJMPKOXgGG8/2AwsDninSDGGuM/mUyqWCwaOCaf2QMAL332BapwLHEe/ZpG27VaLd24ceM1crPxeGyHSHvpHf96YOzlbZLsWaQzx31vb0/ZbNYYY/qVOTiZTKYUJTinvV7PclxZn2ELcWaRhsNke7DA9X3xEN8X52VeA/hQowCgpdN+Qe49Ho8tAEiOF2typVKZynWDXWZc8K8HiYxbXwXzG81ff9QLxZD4v5chz8oLKUpCMMnnuXrJ+Wg00v7+vgFMGHEKYXF9ziRmr58FkYxf1hMf6OJzAFvWmdncVHyG2eJQPm+QIx94R+a4P2qB/vTBG1h+1upisWiBaebJrGSX5wJkI6tFHcH65yuce2k7FcKZ+7QRgS9AIW1JEBhFjw/w+ecBfJN6xBd9Q16wD76x1nKN2fXo253XR0dHWllZkfTa80OvXbuml156SY8++qgmk4m+8IUv/Knv80axABCeA1teXtbJyYlKpZItxru7u5ajwiShmif5g4CgbDar+fl5hUIhy2PJ5/NWtn5paUnpdFrXr1/X+vq6LUS9Xk+Hh4daXFzUycmJXn75ZZ2cnOj5559XLpfTK6+8ogsXLigWi1nxGYq4zBYD2d3d1dzcnJ270263tbe3Z5K4o6MjK3xCNAwHsNVqmYSTHDcOeOcIi3K5rGKxqGazqY2NjSlpDpunpCktPrr7fr+vQqFg3z/wwAN2riN5G/V63YAbke9sNqs3velNlkw/GAy0vb2tvb09Xb16Vclk0pizcrmsnZ0d1Wo1A729Xk+Li4u2aK6vryufz6tSqdgZkKPRyCq5hkIhHR0d2TPjVHKMQyqVUiqV0uLionZ3d62CKxs7G+P+/r7m5uZM1ol0lc0zn8+r0Whoa2tL4XBY1WpVg8HA8og4diQWi9l7wLxwziWVyShU4/PRQqHTiqs4BwQ3YML6/b6dVwVw9XZemAQ2VoCKz8GJRCI2v718CKcRBwfnwZ+3yfgG6FDOnc96Z/J+uSIYDD2OA44h39OXvAvRcUCUJHPykLJxTS/J8qyel2xS0RIw6Rks6bXjYJY943ucbBxjmMJZmZiXdA6Hw6nz2ACfw+HQ1kc+z1lfPqeJdWYyOc3NRN2Rz+eNMQQYzUbqvczTS8g8W+Hfk+AYzwpA844bzhpsMNckL5q5jPPWbDZtjOEsnpycWKEMgjxeWuurYM7mEfL9bCELb+dlXntWjnHImY4wsl5myfE7Xq5H8IbxjqPtxz4KAT9v/BzxDPwsE8i89sEZwInvN8/K+b5jbkhnbCFji1xA5M+JRMKOuPFsIJ8H6PrjIzwo9ODQH7/AXAVYe2Di8/OkM3k41/aAEN+A9YznBCh7xZKXqnMd/+4EQ2AkeVaM8eCZ2tk1lbWKee7XAB/48n2FtBsDGFIgh/nJmGFee8aV3wO6PYBmb/D959le2uAbyUj/JPtG54v+ceeH/sZv/Ibe+c536hd/8Rf1m7/5m/rv/rv/Tn/7b//tP/Feb2QLAOE5MA7uPjk50ebmporFouXDJBIJyxNEJlCpVLS6uqpw+LRQSKfTseMcOMOQvMDbt28rGo2qXC5PydLIgYlGo7p9+7YVFtnf37eNqd/vWy6jdOYgeUcBp4cNBoB1fHxsxVzG47Gdm5dOp1WpVKZ09jhvLHqDwcDYNhi2XC6nnZ0dvelNbzJncm9vzzZjFjAWJ54hHA5rf3/fnkGSSW2Pj4+1vb2tBx54QPv7+1ObhU+KX11d1dHRkV588UXt7u7qySefNMCIcxYOhw00x2IxlUolRSIRLS4uqtls6tKlS1axlcV3e3tb8/PzGg6Hqlarunv3riSpWq2qWq3qypUrun37tsLhsLFzlUplKorGxsHCOhqNtLCwYJtJLBazg9Cl001xf39fDz30kBqNhiVs4+xls1ljfUOh0FReoiTLOZRk4Bnn0h9tQCGOeDyuarWqZDKppaUlra+vW39GIhHt7u5OzYX7Sc2+Vw2HDbbNMy1Elvk9+SlExPkb2pix6Td+otuSDJhIZxJJnoG+ZcP34I+KgTBSPj+Mn0syZ8XnG/qAi5csekCIebkb16RyYDwet6p6nnnz73G//CLWFu+44pjjmKEk8Ewt9+dwdt4PBpf1DefetyXt3O/3rUorrJyXai4sLBgzgcPOIeO0mZe1fqNcLNYW2o93I6iGkwZAjEajarVaNveZt/yfdiNwR9+wBuC4M8bob4JC9wsseHaGQBE/9585L/Ma5tYzcrlc7jXHSRCUISh6fHw8lefuj/z5/7H3Zz+yZleZP/5ERkRmxjxmRuR45nN8qkxVNW0j7PpaAtEg/gEbwYVv/Q9YAvVVS82gliVfIVmFBKjVooVo36C+aFuIFhLqgu4Gu3DZNZ355BzznJmRMfwuQp8VK946BjdF/7oIzpZSOUe87373Xns963nWWoCV4NpmPgkqcjYH5de+kqj/7H/Hz3k9/0xYU56dZxC48EEVwMhgMFAikbBefJIW1qyvlulzE71k0StT/N5nbrAzXKcHKh7QwMZ7X4J7Yi97JnVlZcUKdw0GA5sbnpWkhSAYLHhQahkcQTDo7alPcfHP3MtIgyCSZ88+C4VC1vMXGakHq9gWFBvcD8xgsK8jexm1B8Eh3t8zgBRDYvyk+/rH9Rf94he/qG9+85v66le/qu9+97t68803F14bn61YLJoK7uX48eMlIFyCQSERqP7Dw0Plcjnt7+/r+fPnVvggGo3q0aNH2tzcNOlftVpVr9czDTzsTzQa1dnZmTqdjkWoV1ZW9O677+qLX/yitZeIRCK6fv26jo6O9OTJkwXjT1EYnBAcWaQP3ukiAgrrcXFxYYcEh1I6nbZoupdLSLK8NO8UpVIpA8Awoc1m0wqScMCSl0aZ9JWVWX+uQqFg0c379+/ro48+0s7OjgGRcDhsbRW45vfff1+vv/66xuPxQkXPs7Mzra6uKp/PW9XV27dvm9ytWq2aI/bKK69Yw/jT01Orulqr1azSazgcVrlc1vb2trUIePLkiUKhkH7qp35KkUhEW1tb9jucZ0C1l5YgqaOkdSQSsWb2FxcXKhQKC2xsNDrrQZlKpVQqlfT+++/r4uLCiplQ9dMDEkAfP0dOR9SS/CsOVqK6FCPigB2NRspkMvrc5z6n58+fKxwO6/T0dGE/LIu0DDaP/FryAiWZY5LP5xfKiTMAJKw1AICkhebi9AUNgsFgXo1ndbyczDuxvgiBj2h7ZmM8nhVYwakYj8fG0sMuEZTgtXykH/UANgaGFIcUO+BzHvk7D2y5J99nj70gacGxpVAVkrlweFbFE0YvGo3aOoUhRO7rQRh2hfuhijLPYmVlRdls1vYmAaXV1VVrwYJzB2DDWcR5Z10QAODvPBOC4yvJ1pSfI4IzqArYTygOfCAPlQVgzpfwRxqMTXjR/PNcyV9lfRD88GNZ9jWBHC8FJFUAuTCAjufBvAAICO6guPCtU6Q5EOG5+rYGfs1QiI016Pc14AI1hl+nAAzex+eRsoc4Vz1DDMCTZoFL30ZhOJxVtMZmEYxBZdLpdKxoUTAPkuthz1OACbCCjB35OYP/I1hFANvn73kG17fEAcD6Pc9axq54dYFXIjEnPA+u0beW4PsX9Qfkdz7IJcmeAe8RDJzzXJDAoiDDtlMgj7/1QSxSa7yE15/pzAXv7WWwnB+oevz4JPv6jTfeUKlU0pe+9CXt7+/r61//ur72ta/prbfe0q/92q/pV37lV/Ttb39b4/FYv//7v/+Pfp9/KeMlIFyCEYvFFIlElMlkrH3D/fv3lUgk9OTJE21ublqPOZyl09NT7e/vazSa9clpt9t2SFNdEoeRzX94eKj79+8rFApZO4TRaKRnz54tSLZ4LR+BIxrFIUQUzMseyNfBwHqpCPkqgEJe3yfYIxfBcFJVi0j+xcWFWq2WsZTdbteqb1HVDUeakc1mLf/q3r17ajQaikQi1iAesJVIJHT9+nWTbNIonn6ISEKHw6FyudyCjGNra8tYyHK5LEkWsRuPZwWArq6utL29bcnxOBBUdD05ObGeiOSFxeNxiwgi9/ISJVqMMDc4ZF4iFIvFrDw/gJAKrABJn6vCIcD7cDimUinLCV1ZWbGiNhyqSNOQqwHgyXcgb47CQpKUy+Ush4mxTEyCjwoD5phTABFzCGDxc+5z4CSZU87z7fV6ttY9i4RTBcjyzCDA1OexBAGhNJeIBvNQeC2fd+dBCpFl8kNhnnAizs/P7f9xSLguLxvzEkVUA9454zUkWWBkOp3aXmBOuCfvSCJLRyLNfvYAxsvwvEQPRtAXiyGQIs0bW+MUY/+wbeTkeYCOHfTBM29f/fzznnwPA+JlwrAOPliGtDy4LjxgwRHHtnEe+Hn3/+OvybMxPieZsUz72jNgfvAcPZvnzzcAB3PIXgUscHZ5Wy7NAagHOaxNzmTPCvK13+/8rW9V5Zl+aVFZQBCCgI2XgHMP7HfOeR+M4e8IFnnm2QcWPPPvAwx875kxX+gmqOLhbPTSXM/GYYtodwPY8kDbM7vYLXKwmSdYNH9O8kzYe6wPzwwCTP3PvarJ/97/jvfye575IOje6/UsyD4YDBYkq9iCFz0Hr+zivhl+rWEz8BH+qc/rb3zjGwvfv/XWW5JmOYXf+c53PtFr/0sbLwHhEgy/6bPZrK5du2ZgIZfLKRwOq1AoGFv45MkT0+3v7OyY80RV0EgkomKxqPX1dSuIsra2ZgViptOpEomEsVgYzMlkorOzMzs8kESFw2GrakpkC6ODhADHJpjU3e/31e/3zZBwAGBo2+22Ad1ut2u5CUQ+ATMYN/LdRqORSVYoUtPr9dRut5VMJq0CJ1HT0Whkpe2fPXuma9euaWtrS6FQyAD1o0ePdOPGDVUqFRUKBSvOk81mDaxFo1E9efJEmUxGvV5PzWZT0eisqqdvxp7NZlUsFk2Ky+FDsYerqyutra2p2WwqEokon8/rZ3/2Z3V1dWWgKRKJWIGbs7Mzra+vq1QqWW4ZDqQ0731ERBFA4Z8TwKxer+vy8lJ37txRrVZTuVxWo9FYcADH47ExvMztycmJFd6BEaSyLXOM44yDCsCdTCbGDJ2fn6tSqaharZqUz49PesB8WvoasR+8fAz2FjbGSzhhz1nbyPwGg4HlkeIMcKjDxPqocjAXCWfJg8EgIPT7msF14ejgwHkw5iXjFJ8gYAMziiPMB1FrL+HEBiIzw9HEYfM5R/yMvGNJZkui0Vn7FyoDp9NpSTMHhwAFtozAUzKZXNg7Hlz6PCfYDR88wQEnB9dH3bGDsEEErbwKAscNx55n45lZ5sbnTHlmVZIFfGB6uGZkY16mynyhBsHR9cEDPoJ5UsGcL+/883rSnLn0Y1kAIdJCn9eFDWReAPNeVsjz8Y44cshwOGwtp3zeLn/DZ4JELwKAQWmoZ8cIiBDM5bmyl32Ahvfg+fugCOe8pIU9SiBImheqgpnyqQTBvF7WG68flBnzXgAxwCnvx/zBSvsiZb44E/NLz1eeG79nb3mmG3WDt53n5+cL7HgQEAaVFX+fFJT5Apz64Cx/g2300lXYSWwWKrBoNKput2v70+dZeskoDKHPIfTrwUuYPdNIICK4j5dlXy/DeAkIl2BgIGGskFdeXV0tAL7NzU3t7u7q8PDQZHkUhNnY2NDp6akxQKFQyFpPIH+ixQEGZG9vTwcHB1pfXze5oiSL8CN9SCaTymazFoXyMq319XUzCD6KSVGUTqejZrOpk5MTA4jJZFKnp6cLmn7yI6VFFgVDLsmYMkkG8EKhWRUwqmBKskqsONYY/3q9rmQyqZ2dHcsr6PV6luOWy+WsvQeSU3IvX331VX3/+9/XcDjUxsaGSqWSwuGwOp2ONa/f3d21nnypVEqHh4cWjUyn09rf3zcDPh6Plc/nrWrb9va2VRLd2dlRu91WtVrV4eGhMbzcN3PknXtfaASJoXdQeI1QKKR8Pq+Liwv98Ic/tLnZ29uzdZbJZJRKpRSPx7W9va1cLmeANBQK6fT01JhJDmIcX5xuWBokhalUSjdu3NDl5aVJnrPZrL0WgwPpHzs+TX2NPFPjCzrE43FzNMifQ8ZHTgiRdJz1wWBgvSwnk4mBWip3wrqSC+dLrIfD8x6A2BbfcgW5oi+yIs0lwz7SPBqNLIcOQObfk2unjQnr1ku1pEW20UfKPdPoX8+rDWDhCObQVxM5aC6Xs9fNZDIm5SZIFY/HVSqVFhQOiUTCqueS+xeJRMyGEmjDccOZ6nQ6FviASffSyeFwqE6nYxX9CPx5EMhz53vyOgm2eXDP/me+2Xc48UjnAeE4y15CDFMAQIG1xE5Is33L3HtGiP8Jggnk/QTyWD+MT7qvP43Dyyhx2AlgSrMA1MOHD83Rh6UJsjIEHjwIl+bVTD04IHjLWiHgiVTVS0ZZD/S05QOwxvnIXkNqzHpivfM1e5nrIljV6/UsSEJwFtBJkIiAiC9YRGG6F8lIkSoDmnxQArUJgY9sNmtzCLhDBYPdwb5whmFbW63WQt4hQR5vh3gfgukAfs8IehmoB34+yMO1EIjyATgPFEejeYN4f1Z4VpX9OZnMWoHxc5RD8XjcbBbP6vLycqEyO/Pvc4WxAx5Q+nzV4FjGff3PebwEhEswEomEMpmMYrGYFSPpdrva2tpaKGtcKBT07Nkz65ezs7Ojw8NDZTIZpdNpY6suLi704MEDpVIpHRwcWIuIq6sr1Wo1JRIJM5itVkt7e3sqlUp6+PChOX5En2iKTtI88jaft8Bh6J08HDher1qt2kFBaXPyiXq9ns2Bj+jh1GHYwuGwSbF8ie52u22RMYAuhnRzc1Pdblfj8Vj7+/vWjqPRaGgymSibzaparVoOB7lQyWRSJycnSqfT6vV6arVaOj4+tnu+urpSoVDQysqK8vm8EomEcrmcvf/Z2ZmSyaSm06ldw3Q6VaVS0e3bt63ADGA7l8tpZ2dnQRqK4w67mkwm7eDD+fKOpTQvMsNh6h08DjmKHOAgIj2tVCrWa3FlZUXb29u6ceOGxuOx5R+dnZ1pZ2fHngkHPQcIwQee+8nJiSaTifL5vFqtllqtljKZjPWzBAz58Ukijp+mvkaABi+79A4EbOna2pra7baVDcfJJECDDaCiH7KyfD5vskefj0KVTd6Pn+Eo+iCCZ6aCgNBLSSUZuMUxA4QAODxL5cuj42zyN9J8PRJ55jqJfntpWTB3bTweW44UDFc8Hrf7BRxnMhljoGG2pXleIfYNho9ntbq6akCL3F1/3/5nkkyKDcCEbeFZ4mgR/edvmDs/z5498NIsL4njPn2ulHfaCKDhSPrX8BJAHE/v0HnpLCCF5+XZLu7J22r+Hgktz4GxLEwCz5W9Qh459hVb3+12TWYPIASIeAbRB9b8uQsgkRbljz4g63NPPUPo19X6+rqBQfLPvRSY4dkfznTWomcOuR9Jtk9hOaW5pBYgwv590b4OSsG9GoC1yvV4G+pVC34OsUEEhzgn/TV7qTrDAx9voz0byLP3/8P98gx8INv/PAgQuS5ewwcJ2J8EEtlrHpDx9wRxAOcEzNnH3COAkCCPn2cP6vjaM7c8T4LMwbEs+3oZxktAuASD5u+AkWq1qlQqZU5FJBLRwcGBEomEhsOh8vm8stmstra2dHBwYEnF29vbGgwG2tnZMcB079491ev1BcedtgLSrBreO++8Y33+cEb9QQIzSGI6wGR1dVWZTMYMmCSTVCAb45BMp9NqNBoGSLrdruW38D9IvnB8fF4CsgsPRJi7TqdjlQQBQUhviOgfHx+bnOz09FSlUknHx8c6OjpSvV63AjKvvPKKRqOR0um09V7kkMnn88Yorq+vWzVP8gefPn2qa9eu6ezsTL1eT0+fPlU2mzXH6ejoyCJy1WpVzWbT5GDHx8fGeDIXqVRKN2/e1OnpqR0i/mDGqeDQoCQ4OSeSjCVEjnRxcWGgOhSatSlZWVlRoVAwoAAwj0ajyuVyymQyGo/HajabFv0fDAaq1WoKhWatMnzuxXA4q2Bbq9UUDofVarX0/PlzvfHGG+r1evYsiBRTdprxkxwwP66M9aetrxHMPIDNy544yJFPSrJ9C/hjv8L8M79+fwG6PJPjHRmeJfvDF1XwPyN6zvD/wzXCBHg5mc9rZC3iABPQ4T09C+JlVy9iCFkf/Awn0ue3MB/8nnnGeYFFhO0bDocWQINRYc7IiSTg5K8TB4/X9XlB3Ds9FqvVqoEyACzOl3c4vRws+Hp8zfPzDhvz5mW0OPDsYQ8W/fszCLb5we898Pdf49R72SmMDM+D98YB9mNZHEcYJD54Vh78s4fZ36xdae6sY79ZB6h6OBM4u7ysPAgAg589I+WZw0QiYYCQawAUAIYAn4ASn8fsmTFpUf0QBISsb2wc9x4Ehy/KEw7uFV6T/eQDV7BpXu7uZZicl34Ne6kkbDq20wdxvK3hzCY/3ttVzw56WSgM/4uAoAeEsLXMmb9uD/y9BBsfgYGdpIiczyFkbaKs8GAwKBX1wNCnHRA4ikTm7Y/8WJZ9vQzjJSBcgoFho7BEq9VSs9nU9evXtbo6K9v/6quvWuP44XCoz372s2q320okEmo2m3r77bf1/vvvKxqNqlQqWQ+6733ve+YUU43w4uJCe3t71ruQfDhfVIRIbyKRUDKZNDaCimWAxM3NTWMdJpOJarWaGV4OCYAHQOfi4kIbGxvWkPvBgwf2nhSeobGvBziTySyPB+fp9PTU2BFYt0qlouFwqP39fe3s7Gh1ddUat56dnWk4HOr09NQM8507d/TOO+/YPSAJlaTt7W2Fw2FjbSORiJ4+faqbN28ao1koFNTpdOwz7SP29/dNoktlrkwmo2KxqE6nozt37mg8HqtWq5kTW6vVDOQ/ePBgISqPrLZQKJgMyMt3kbpwcHPwI4+BFSRCSPT+6urKWGfkrMhEo9Go2u22Li8v1Wg0dOvWLcvfevfdd7W7u2tMwGQyK0a0srJihyrAOZvNSpoVRXnjjTfs8EdO7A+3n1SC8uPKWH+a+hox97AJHMaRSMSkO77qKD0taQdCme3hcKharWaSp+FwaFHv6XRqf49Tx2HvC6ogMwsyhdgcGsd7Z8YXofC5QtPp1AIuMHPSvFiLJGtr4AMYSNykeU8rn0/Hs2eNkruKs8aaJThFYSbWHc4gIBzZZiQSsYAXINHPES1QYNNRAfT7fXPWvByLfDECcQSt6Kc6Ho/V7XbtWVMIS5pXPfRyb1haHEeeiQ8eeMkczjyMkrRYVZZcb+yZZwODRS+YN+8Q8to+0OfnDEceUOmvDRlicA8vk7TMs2oAftb7ZDKxZ395ealqtbqwBwhSSjJGyc8z7OBoNDKbDavo9yT72Kt1/B5HwssZnU6n7bzlugnkUAWUfU1wAcDqAaz/Xw98AUo+N5XAMGeYB2NIRtnXgBVfeIZ79CALOyrNgSsBMWSyksw/iUQiarfbCz0fPUBEfu7XPX/HXDOYK+bBXxuKBb9/vSR/fX3dekPjR9GWS5q3hej1epYGg60nOO5BvA9WMYftdtuqj3IvnknlWQBwfSCN15tMJmbjg+kD7H2CwjyDZdnXyzBeAsIlGMiakDYOBgPdu3dP4/FYjUZD/X5f9XpdhUJBa2tr2tra0u3bt42lWVubtWYAdEynU8sxGgwGKpfLVk0zk8koHJ5VudzZ2dGTJ0/MIBQKBevHh7PkE9S9PAh5IE3QOZCQo3IA+gg6Do4vmgDzhpNE6XofrePQ9JXGaMa9u7truW4YvUKhoL29PUWjUWNStra2tLu7az356ENYLpdVKpXUarW0s7Nj70OO4cnJia6uZlVKU6mUyuWyzU+n0zEW7MGDB4pEZlU0O52OsSeJREIHBwcqlUoaj2dJ71TWRPqbTCYt2s7f3Lp1S91uVycnJ8bMAgiYTw4UKtQFJTB8H4/H1ev1LJIaDoct+gl7c3R0pFarpXK5bHObz+eNmQKsU7wIEOoZlOl0qmQyaWCQ68QZl2TPTJJJi4P9hT5JxPHT1NcIJ5z9ws9g23Amp9NZ0n+lUpEkY3J9Dhf7iYNekq0XDnlpzgZ5Z58Pz0gFAQFOjXc0cYhCoZC63a4BoxcVS/C2gnxomD5YOO9IS3OH2MtFWZOeFfR5br5YBq+Jow17BfBeWVmx9hI4WETemTPYmKDkmr2Lk4rygHnAQfPtc7h+wBMg30fqvT3kOTC87NMzCx50efYEUBZkGHnOXjrMvfFzac5weDDpHU7PKuKEe6mvZyuR7bJefHCRsSxMAqwawTdJCyAZ++9bNEjzIIiX5fI9jjvgkPxi7L4H88FiIzx7zliAI4GTZDJpaQE8ewC/LyRDYJJArGfseXY+B5j1AoDz0m9shc8L9Ll6XgXg/8bLWP15BQhjL7CfsTX0WOb+OLOwtTCV2GPsrwdWzKXPgURdw5wgow0ytn7ufYEffKOgbBdfiTnjdSTZWSnJWpiw3wHbfs+ytlhz2BUvY/UMf1CW6/MSg3uWNemDdt7P4Gcvx6djvASESzCIWH300Ucql8vGECK5Go1GlitIztCzZ8/0+uuv6/Dw0KLok8lEz58/t15Z165d08bGhjUsJdpPZP3hw4d6/vy5/Q2SRR/N9E7K2tqsxw5ORbfbtf6IMGvXrl3T6uqqOUIYJG9EMZgwWT5Znb9BoohB9BIGcoLy+bwKhYLu3r2rtbU15fN5ra2t6dmzZ1ZeejyeFXEg8RqH+oMPPtDGxob15YnFYjo8PFQ0GtV7771nh8La2pqBpc9+9rPmHBKZY95XVmaFZIjsNpvNhXYgSGvr9brlNjDPGFj6JiJtJReFQ+5FUj8kIsiBAXvIXL2Eht9z4I5GI2ONiRBHIhE1m03lcjkdHR3ZsyafA4eHeyf6SQ4MhzDFeTY3Ny2yGgqFrBH9jRs3Fpwfhncy/zHj09TXyOesAOaI9CNB8iwxVUTp3SVpYX15NodDPBwOW96pd/BY9x4AekbOAwdel6AOrC4OpHcgcEiCBQcI6HgZGnsFh4r1JS06EThfnmHgdXyeUSQSMZlVLBazXn/IFj1Qk7TACmxtbdn94vTA1PpqosiiyNvlb1FWeMeMQeAKp4l9wJ7i2XDf2EKGd/S9nQSQcx3MP+sI589LzrC5Xlbrc508K+md4aADz3z43Elez987TBipDFwvgJ3xSff1p2lwTvE8+JmXchNw8ICcfeIZFS8zZLAPADx+779oT/vgga8oCvhIpVKW5sF6wXb7Z4nSgz3F10hkfeAvuGY4W/0z9mdkEIwAoL0U3Ae7wuF5VdBIJLLAzHMdzD+2VZqz5/46eC4Aa/YeBb34Hz+nni2U5n1jvWyTsxib/qLgGGAQZVXww8vCuX5ycKfT6ULBNYK+3Dv3yf7G7jCfzD2Mb1Aa6s9rHwRi7nzqCdfGc/XPeFn29TKMl4BwCUZQ2kHhDeRH3/ve99Tr9fTo0SNrQZDL5fRf/+t/VbVa1dHRkV5//XWlUiltbW2pXq9rbW1Nz58/1/7+vpVafvr0qXK5nFKplPUeRMLY6/UshxBnxOfK4ChioHx0r9vtqt/v6+joyNi5WCymg4MDA7WeWYjFYgsywtFopI2NDesZyNfvvfeeNWYfj8f2t51OR+l0Wp/97Gd1cXGher2ue/fuaTQaaWtrS0dHR9YkPZvNmuyx1+tpc3NTklSr1XRxcaFGo2EO4fn5uVqtlu7evavbt2+bEa1Wq6pUKqpUKgb8yF1cW1vTkydPTFZLq4ZarWY5eP1+X81mU8lkUnfu3NF//+//Xdvb21pfX1en09Hjx4+VyWRUq9UWDg4ijkQ+U6mUMpmMOe7MJ04bEdjz83Nls1krKoED7SOI0qxADMEB8lY5PI6PjzUajUyOR6CAAxBnp9lsSpo5RNVqVbdv31a1WrU+hysrK3rllVf0+PFjq7x6enqqu3fvKhQKaW9vT4eHhwv74ZNKUD4tfY28nHA4HC7II2H3iGS3221dXc0aK3sg75swS3OWx+ctSTJAvrq6agwFzzMYkPFgjuvkWimO9JnPfMaqbnJtOHh+4AwQ5OD1ut2ums2mMdC8B04IgJG15RlTn09EcR2ff0MhJqLq5ET73CtYOkmmHFhfX7c2FCgycrmcWq2WzSU9Bvv9vhVBwqGkijEOuA+88D6SFvqB+gi8l7HhvHsmwct4kZbB8Ejz4jW+miMDO+HZFJxWnHX6q15dXZlEnLkJBoy8zNSv51AoZG19sOkEhZjzUGhWDTpYgGJZpGVBiSxBMiTVsOM4yx6o87wJtBGI8ayud9ZhrAim8P+ePeZrn5sGEOTM8L2DuQfeh/dmPyIRZ7A+pDlD6EGeV/DwWdLH9jJrFlmxZw0BhJIMBPoKoZ49RcHjmTN+7quC0qLKKy08+PZqJ96X+eD8xcfxdpxn4YPbyFWxTz4fn71cLBYtn5O9DeC6vLxUMpm0wG4sFjN/zOcbEnxh73rQyvWxT33ggN9hB3yVYQC9D5jBGDPv7GtfGdXvh5fj0zFeAsIlGJTev3Hjhmq1mk5PTxUOhy1ShKN17949VSoVXV5eWl4aEojj42O99957KhQKkmZs0+XlpbrdrunLw+GwFQBpNBpKp9M6Pj7W7u6uOp3OQsNlH6nzTII0K9yxsrKykHcAq0H/MSKLwf/H+SO/BcNPNJTWGa+88ooymYw5oq1WS/F43KpTbm1tmWyk2Wxazo8kpdNpq2SZSCR0cnJiIFKaN43vdDrmcDGPlLAnIglIxbnmMKK/HhHX4+NjdTodO1gpzHJwcKCVlRXduHFD3/ve9xZaTfyP//E/9Prrr6vRaOiDDz7QxcWFbt++raOjI3s+HII+j8I7kNK8J9nR0dFC4nxQjheMDHop4MbGhoEBmEzy7waDgUVmeV6tVssCBKPRyAIFq6urSqfTGo1mRUWKxaIqlYoBUqS5T548UTqdXmhR4a9zGUZQwsjBOp1OLbiBXBSJqJejSYsMIWvNSxOxATgq7Bci3DikjOA64MNHkCnEks1mNRwOLZfOS4SD/yMtVkIEvCEfDLJiOLvcK+DGvw8gir9LJpPGXmLnvFQUe0MQ6kUsAXJtbBJrW5IBcqShg8FAzWbT9hIOK8wFcwWD72WovkiHZxtxYj0rGJSeARRhQZHUw0LCtq+vry/IYr0CgzXAnBIMYr/TKiC4VrAd/D3PxxfzweHmGnzhJIJ/rPXguluG4Vk1z9r6fnsMnin7AhvuZX3+s5dlA6R49p5B5m/98IEeLx/2681LOiUtnM1/30fw/6Q5k+mLwXC+sw6CwUrAB+DEq3ZgxLyE3fsQ3t5xLQQi2Ivsc9QSHvz4Z4Z/4pl5bIhnQL2UE9YW/8U/S4C637+cj6iVAOqwteT5e+ZyOp3VbuAaybkGDPJ3XkLOORIEav4Zvwi0eWUG3/t169/Lnxv+tZZpXy/DeAkIl2CQ95fL5UzeuL6+rsvLS2t9QDSn1WpZQ/TRaKSDgwNjwIhWp9Npqzrlo0g4cJubm2YsUqmU9vb2TA6FBMRHd71O3b8eRigej6vdbptjh2MracHY8J5XV1dqt9uKxWIqlUp69uyZMVSTyUTFYlHhcFiZTEaHh4cWyZfmzWYp4Q1D9eGHH+ri4kKtVkuVSsVaQXz44YfKZrNqNpsaDodqt9saDAZqNBp2bel0Wjdv3lQsFltInIY5nU6n+uijjyyvk2peOM3RaFTZbFapVEqFQkFPnz5Vt9vVT/3UT1m0s9ls6tatW8Z2plIpXV1daX193e6baqv379/Xe++9t1AghAMT2QgHGj8j2X1tbc0OXmQ3PHfywnDwfNR1dXXVJHbFYlFra2s6PDy0wkM4oRycXhoIuK/X67p+/bparZYxq5T7j8fjevPNN03uWy6XNZnM2lLg3DOW5YABAMHcAdalOVjEoYJVwhEJSg2Dr8nhjUOCowIIYR/DOPiD28sj/Z4mms/1EK32sk0+/JoMOgWsCVq/YFe4Jt43CFj4mc/T8VIsCjSsrq6affPBCC9vBDADPGEoJJmjibMbj8ctMMHeQPnge0TiBAJMeRYAdgImOLY8D++svQgEvggQohJIJpMqFAoGwiR9jD1GNscz8c+Vex+NRlaQKxKJ2NngpX8eiPtn64MMXC/y+FQqZY4uOdE8x2XNNWJefbCHQh2saZ53EDQE87uCckNpDlh80AGQ6IHRi4J9fPY/Z3gw54GV/10QZL7odbhGbzc4b/idl3R6WTG2xKdbMHyxK+ThzIFn83yQyYM32G18Gc908z7sFe6L5yLNZapBqaQHTgR8sE1+D/tnHSwaRdCEwAnA188vChxqSoxGiz0qIQYA3ewxlBce+BFY87Y3yCi+KECMTfRrjXOEc2xZ9/UyjJeAcAlGLBZToVDQdDprYL61tWWgimj40dGRPvroI3U6HQMvtD6g3UAymVQmk7HGzKPRyBxynEuMWiaTUb1elyRruH5ycmJFN7xz4B01HA7vzK6srOjOnTsajWYFHk5OTkza6ZseYziIHne7XcXjcV27dk2DwUA3b97U97//fQO3XkJ1fn6u58+fq9vtWo7itWvX9OTJE5u3fr+vRCKhH/3oRxoMBtrc3FQ+n9f29rY5aBi3Vqtl8ltp1rQ+lUppe3tb9Xpd1WpVDx48ULFY1OPHjy1aeHl5qcPDQ1UqFW1vbysajerDDz9Ur9ez5vSVSkW9Xm8hsjsez/pIvvfee+bMrq6u6unTp8rn83r27JmOj4917949i2gic/OyIB8xTSQS2tzc1Hg8tlL3kUhExWJRq6urxmzSvqPX69kB41tU8IxisZh2d3ct0k3RlWw2awzwZDKxPJlOp6Nqtap4PG5tKwDx9+/ftypr8XhcT58+VafTUSaTUafTUbFYVCqVUigUWiju4h2af+4DB97nyF5eXmp1ddUkiEin+v2+Hcg8R+804jx4CSiDiDLODn9DkSoPLAEuQVmRzz3r9/t69OiRtQch4OAr0nGt3j546RdBEmkOXHxeFNJq1jT9ABOJhNkagIZnC9gbAF32GAEOb2N8fi3vvba2pmw2q83NTWUyGUkyNrBSqVglUqr9raysGANI3zBsHwEZn2/MfMLYeqcXx55ADODWO4mwCcj9crmcyuWyYrGYptN538dIJKJut2vPAOAJgMOpw2kcDAZqtVoLVSG96gPQ1+v1FphNz0DyNyhAULGkUimretzpdBaYC8Yy7Wv2miRjVGmuztrEsfZ7OFhNlt/5noEe5CEh9XmxHrwDDBjBKr/8PcHCILvHc+JcxD75wJAPBhEs9QVZODuQW3JfgDXmh5zpFxU18fYulUrZ/GWzWQvM4sewHgmgMS8E2rAJ0jyH2wcyuDYPerxNBURJ8+Abz2Y6nRVNgznnufmz2YNAPvscQkCut9PsW4CoB4U+h9ArLViDBIb57GXoXD8gmf3rWUHubzweL6Qn+P/HT+DnL6uMfnrHS0C4BCORSJhxwai2222LEjYaDdXrdRWLRW1ubmoymWgwGKher1s10ZWVFdOZk0OIcfMSFpggSriTU4YzFGzWjeHg4ACgYRBho5AKRqNRKynNwYHhwnBEo1GrZkkhislk1nYB5u/x48fK5/NKp9M6OTkx+VYymVSxWFQ0GlWn09HOzo5arZbJL/r9vp49e2YHKUAFWV4oNCvpnMlkjOVLJpNKJBKaTqcqlUoql8tKJpOqVCrGlAAiqaJ6dXVlTYd9boM0P0harZYd8rFYbKHCGn0gYSaIjmYyGSumQz4ETigRung8bk5yKpUy575UKtlzG49n1Wr98/POiXcsAOiwj5eXl+r3+9rd3VWv17N8yM3NTRUKBeVyOZPqhsNhlctlq14biUR0//59pVIpA+StVkvpdNqY2pWVFX3wwQcql8sfy0nza+6f+wiyLZ4hl+bPnvWPk0CEHGfRrwHPPDBwVnAMpNkcdjodY/u8E8a1+YEk8urqysCRLxbknTnPJvFaBKAAhl4eSTT94uLCAhLsGRw5nBkcJJ/74sGrJMtD9oVc2B/MMUElwA2RbZg01ALIwMnz5RpfxLQGZbxcIw6s/z0Dp88Dce7HMwpe8ukrFnoG2DMa3sH1QQPv7Hp2dDqdWjsEaWabeA/sM3na3INnWliXkqyFwXA4tICPLzzCcwmyTcuyr3GCg+vdr9vg84QJ9ICQ+fffE7TFDwgyPXzPQJ4saaG4EooO5MFBpQHXT7CHNlEAN9+3zgPH4NdeNsoa9wEoXzQGYOgDJT4AhowS6TE/99VyPTBl/ikq42XSrGsfJGK+giDQS1CDoNkHhVAKeJvu/zb4Gp7N5XfBv38Ru8vXXuYblMx6m8LrMp/8nnXi2f4ge+znybcQ8oEwr+7A1gX3w8vx6RgvAeESDMBcp9NZKIaSSCT05MkTvffeeyZfJJ8ESROHAIeNJItQ+wOe96EiqY8+UTyA3nM46RgSLwtBYkV0EikDjBeyRxzRYDNUH9Hk8CwUCgqHw9re3la321UymbSedwCRw8NDy+87Pz/X+vq6HXTr6+s6OTnRZDJROp1WuVzW5uamtra21Ov1lEqljJWTZob54uJCzWZT29vbqlarVjyiWCxaND6dTms6nSqbzZohJSKaz+f14MEDi+ojBSW/EyZoY2NDw+HQ2M6dnR1tbW1Z/zRaOcRiMQNIo9HImEukpVy3lyX5JPxisahMJmPMCoV+JpOJKpWKOQDByCj5gKlUSqVSSe12W/fu3TMAvLOzo0ePHimXy2kymViPRg59WmYMh0NjCo+Pj42xrtVq2t/fV7PZVCQSscquyOE8iGEsywHDfsT5JwJMJN4zKJ4lCEaeeWYMDnIvHfPyQGn2fLrd7oLjyv4LOiOeLcApHAwGFm0mKu8dRP+//v99TgvBBvaMJGOuARmSjJ3GQUMBQMQaoIjTieKAiDkOTTgcNjYFO+YZRiL1BGB4f3KffZ6nNN9f3tEleg9D5tcvDhn2k/2G8+mltp7x4dqDIAKA9yInEYAR/Fuel18bfBD8Y+4I6MH0cL9eGcL1E4hCyh8KhcymYpdgl/0a8WNZ9rXPsfTrPci4e1kh69oHe1gX/C2/85JLaVGC6QEhAQaelW+14Cv7djod+zvOQM5oqmxTaToIBj3r73OOeW0fCOJaeS/PAvJ+/I8PYtAzEfYeaST2E4UQ6wdw6efFBy6wN0FlBMOzt8Ggkw9IeWDn7TfPyAdUXyTTfdH696DvRZJOv/c8yPQBlmAgzv+fVwp4IM1zlOasts/f9EEu7BCAkOsgQLGs5/UyjJeAcAmGL5YgzYrMZLNZvf322xahf/311xWJRIz1ofgBBwuRNfLbcFSQaCEfQtoymUyM4SGimEwmF5LiAXXIkzAcHGw49Rz+FJfBsWy1Wtaagg+MaqPRsBxAnBNJBuC63a7W1tb0+PFjlUol6+MXDoet4Xw+n9cHH3xgQOjk5ES9Xk9vvvmmFeQZj8fa3NzUzs6Oms2mjo+PlUgkVK/XlUwmrcJnPp9XtVq1OYcBTKfTOjs7M4llNpvV/v6+2u22sXP9ft9AI4fH3bt3zRH1jiaAloOwVCrZ/zQaDYVCswIvJycnBrZhdInmjcezHojn5+eq1+vK5XKKxWI2L9FoVIeHhxYQCMp9vMOLM3lwcGCH/fXr11Wr1fTKK69YKfJWq6WNjQ01m03L6+h2u6pUKrp3754B3u3tbT18+NAcc6qp3r9/3woatVotbW5uWiEj2GppuSQogHlACY4398zzQFpLlNxXovT5LT7vh4PbR51hFZAu0hB9OBxaLqw0r3gKGywt5vpKMpuBk+qDQt5p9B+w8D5PUJrZNxxHgi2AtfPzc8uhRZrkpeKs+Uwmo62tLWMB2+22stmsOeNIWr3EjveKxWJqtVoLQS3k8lQL9jlK2BkKVhAtxxmk2BO5kjjmvnDGYDCwPc9+Y968PM07gJIWJGQ4eI1Gw9rXtNttk257JspLQLH1PFOukUJQOM+edcJmBxmZZDKpcDisfD5vNp+CZeFwWNls1gAKUlTkukEGZVn2NeCEOeO+OIvJL2UuAYQoO9ij0my/UWTEByl49jB4rVbL9iBAgufsWR4vn+Y8Rj5OxW6e+9XVlVqtlgFBJMW+UiprGVuFgoczhWBRs9m0++52uwsFU7ALBJO9jDISiahUKlkRJdh53pN55hoJugJYpXn7CEkL8+PtpZeSeobvRfJJQLpn2nzeKHP3ouC2NAfbfv9TW4HXDAJHKqH6wkQE9YMAkfeAtaN4Dt+jJmB9BYN3Pv2HgUIpEolYbQTsNsGewWBgz5+xTPt6GcZLQLgEAwet1+spk8nozp07Oj4+1vb2tkajWYPwwWBgfwOYI1pNDg6yTfpzEaHE6SOPAWPrJVueXQC4UBCCfB0OBBKvAZ1ElnBWgtFHX0HRV+ei4t/V1ZXK5bLG47FyuZwZ/m63a5p1gFe1WlUymVS5XNa1a9cMtFIKnbYM4XDYyt5j/EgIR2ICgG632wsHIdHNvb09c/rI6bl27ZoKhYIikYj29vZsngGyl5eXxiwCSn3EstPpqFwuS5odTPQBJKKXTCZ1dHSkfr+v/f19exY44vRNY77JUQTU4Vxw36FQ6GMJ/Z4N8O0wcF5u376tZrOpVCql4XConZ2dhfyo/f19/e///b8X+tQhI724uLCCE5HIrHgF0Wd6Tl67dk2vvPKKptOparXaglRFWp6II44Jh2av11O321W327VngNPimQXP/HjGx+ePeKmgP+jZq17GiAMA486aCTo1RMh99BrA6qP8nvHHWQoWnfGAFbDIewC2cJgBpoPBwBh3SQaicXx9LrJ39vweYU4A0vwPQR7mHTtArhXMFrmKXn6KfM1fu6SF58G9eqmcZxV9MSEcRR+h9wyrB97eOR2NRgtMjo/uB8GX/2CeWEusk1gsZs8G28+ce5YrFospnU4vtERYW1uz6/OgGSAYLDzBdX2S8eu//ut6++23df36df3BH/yBPePz83N95StfsfSJ//yf//OCfP6fevg8P4aXIL6IIeQcC7KDpF68CBB6sE7AwjN03hGfTueFwti3XCe5d5IWAAm5jwSJ/TnhZZ5BhYEPKgKSCHQwF9wHwSTOAqps0hsxEomoUCjYvcNwsc786/K9fw4w71yP3w+sd+7bP7MXyS99QMVLSYP/w/XwngBx/gf75+W17GnWhX89b1t9Dqe3EUEW0bO1XrnBmsD+ewmyn6NgANBL00ldwc7hv/gglh/Lcl4vw3gJCJdgIOsAaA0GAz1//lypVErHx8eWb4dEEgeKXA5f3pjmqb5Ag5euwe7hAHS7XTUaDSWTSTtQMVgwjRwagEBpLnHzUTOfZ0RErN/vG5uJoeT7arWqz3zmMzo8PFS/39fGxob29vbsgCmVSjo5OTEw+PTpU5OPMUdnZ2dKJpP63ve+p0KhoPF4rLOzMytUs7OzY9VbNzc3dXp6quPjY2tTQe5QsVi0aGalUtGNGzfUaDTMGQR0Uh0VxmU4HCqXy6nZbKrb7SqdTmt9fV3JZNIOASKn0+nUwLpncXGmRqORqtWq0un0wuv0+/2FwxCjDLPG76giSCsImCjWji/17R3jq6srJZNJ3b17V++9954xEpubmyoWi8aQEsnt9Xom48lkMgbGz87O1Gq1dHZ2plKppGQyadLVRqOxADBhzoIRRh85/ec+fM4bB7R35LycyTv+gCQAuneueI0gIASUIMuC7SHCjcPic2/4++DA4cAB4G9wKnxwwTsvfO1zV4IOG2wB98PrI2vjvmBhAFwwGNgQ7uvi4kKdTsckkd4hZq4kfcyR5DW5Ry/D45kEZZmAQRxNQDMf5DXCkHGdsDQ8e+wCLJ0HhJ7F9PlP/poBcbCiQafdAwZeF+AhyQJPnCPJZNKcWp+LjQojGo0uNJ1PpVKmkEACjFwXptTnMDGvn2Rf/93f/Z2Ojo70l3/5l/qt3/otffvb39av/uqvSpL+23/7b/rsZz+r3/md39F/+k//Sb//+7+vf/tv/+0/+r1+kkFQAibcr5eghNd/hMNhOzv5f3J1KUTiZaHIcb0awNtL79zznPkf/t8zUwAegp4UaGEdwTgFAaD/4OzwMkxfZTQIYrlPGMB4PK5sNms1D9j3PlgrzUEK10xqzNXV1UK+sZdect8ENYKyUmlRHurTJ7DRfPbXz/sEi8F49RVz4oM+HgjCqmOzeT74HV5t4W2sZ4b9h399AvyAR9aJDzCwXjgjvCQddUosFrPKwex37ASBoH/Kff1y/NOOl4BwCcajR48Uj8e1vb1tLGAul9PZ2Zmy2axarZYikYjl1YTDYeVyORWLRQOBaO+RBLHJfVQRhxCHI5PJWKW6RqNhVb0wmDhlOFpIXnBwOPQx1BxOAI5KpWLsmyQrRIDBLxaL+tmf/Vmrckq7Ai8npFIpRrdQKGhlZUXvvPOO2u22/R+yW0DXs2fPlEgkNB6PTZYKa1av19VoNBSNRi1/cWtry9p/cIDGYjH9xV/8hYrFojY2NhQOh/XBBx/o6dOn1l8PKc7m5qYuLi6Uz+fteVBVjEMCCefOzo61Cjk/PzdnuNvtWn4OBXfa7bZJ66bTqU5PT+1ARMobDoetqX00GjWpIgc9rUpgqMgZQYZKwOH58+daX19XPB7XwcGB8vm8bt++rc997nOqVCoKhUKWY3lycmLPkMqC1WpVw+HQGG0OmVqtplQqpaOjI6VSKX3wwQdWvCjoOErL0+gWR7nT6UiSAXsOe3I0CN6wfxOJhAVu6MPnnS3+x5cAxxmApSHyPp1OjakHICDzZu/iGHhHx8ufcca8E4kdoTVDMA/P59L5Sprk9uFckJcGEKSKH8wkjh+BGQ+smV9kTBSlQGLW7XYNnE0ms/xiwBQOT71eV7PZtJxf8mRisZgx4F4GiFOOeoL7w/n0DitMhc9H8lWXmROc1iB4Y3/6e/YsLU3qCfz4fpY+Bwy7TKVDHD3WHcGD9fV1UzfgLKdSKQMxFPug8TbsL3PGevH36Mcn2ddvv/22fumXfkmS9Mu//Mv6wz/8QwOEt2/f1l/8xV9IkgX3/m8OL9H1QQ/mlPXAfBBE8JJRDz7y+bwFdAGEo9GsSjfsni/m4fP1YN98Hp0P5rCeAHK+vRRBQ4K1fl8TbPAVhlHQAE7Ymzxr+pXys7W1NW1sbJgty2azCoVm/UTxV9jDPlDpA54ADuYWO8H7YJekeW7cZDJZeCbSvGqmV1v4KqAEUv1+h0VlD3kZ/crKivk1gDD+xiuqAFw8J+YR+TVzxZ69uLgwBQlzD0D0n/kIBugmk8lC1WlsrM8rzOfzlk6EjVpdXdXu7q4SiYQxhF5JRQDc2z3GspzXyzBeAsIlGDAnw+HQot2Awmg0qkqlYkVDptOpNUkHFODI+Gg1v+ew9jklOA8YXKSOOBM+So4TS8VCDjMvncA4S/OqfNwLBwjX53vpnJ+f6+TkRBcXF9re3jbNOsAUw7a1tWV/c3x8rJWVFb366quWG0VU68mTJ8rlclpdXVWxWDQG9fr161pdXVWz2VS9Xre8uqurK3344YcqFosaDoc6Ojoy4AvoTafTqtfrxtplMhndvHlT0WhUp6enkmQ5dd4RIKrGfKXTaTtckKlxECIdDYVC9pqj0chA58bGhhl/Dl4OFS/rOD8//5g8Damif7Y4iziE3EupVDLHZGdnx66jUqmoXq+rUCioUqkY0IaZQOp369YtjUYj7e/vG9DwBVJgHQDbhUJhoeUEa2lZIo6AOSpe4rBI89wLABfgjg/mzO9x/o+15oM3AE2eOTk5FFEhOABQ87mI3qlk4GDiXPLeXtaEzcBJ8RJY7A3OJhJRghOj0chaogCMYP69VHM6ndoaJ581nU6bE4Rj5KVUON1eysa6x1Zx3QycOM8GeubWS/y8NNSzwDh8vM54PDZbKc2lZTAayCu9c+n/F3WHL/MezEkKPgekwXz2bEAkEjGQGQTLyLkBOOPx2Bxk9mskErF8WIALIBt7QDCCNcD4Sff1wcGBvvKVr0iSvvzlL+vLX/6ypBnQ29rakjTr29toNOx/7ty5o/fee0+vvvqqptOp/tf/+l//4Pt8kuH3ipceAtzYywRKfcDFM4j8bSKRsOAhqhGeMY69V+7A/vKe0pyVAwh5Zh/2zjNtBG6xSZ5pehHzH5QyArqCfoC/TtYq5zpADOAHk896n06nVmSNIlbcF2vdA22fg+dBCu+FPZAWi8oEg2BBf8nneFK8i7kM7mUf9OHnMOQeiBM84edBQBtkB1/E2Aal+l4VwM943gyuhR7L5LKyNrlGX+GVwARnEfeHf+PHMp3XyzBeAsIlGKVSSYPBQFtbW9Zzh2qZT548sSqZRJ+SyaTJBX0+CBF2nI5QKKSdnR1zGDDikUjEGDgOIMAJyclE5CUt/B0RYp+7JM0PRt6HZHRkWV6SwbVXq1Wdnp7aAfjgwQOVSiU7FDKZjMbjsRWgefz4sfUXJJp5fn6uYrFo93B2dqZoNGqvI8mM7EcffbQQERuPx1YsYTyeFZ/Z29vTkydP7ACCVT06OjIHbjAY6NGjRzo5OTEpLeXXccbPz89VKBTMceAwluYG28tMaDVB8Rsi/ziimUzGWB4OJ8A6hwpFHTjMOICQi/b7fbXbbZs7gEg6nbZD99mzZ3rllVcUj8d1enqq1157TRcXF9rb29Pz58+1u7tr/a4AsIPBQLlcTt1uV1tbW3btiURCtVpNnU5HN27csPVSr9f14MEDY4u8wystT04Czxyww1rAGQAssC98zqCPiHsnk7nxBzRriEg6jieM0GAwsCAEzwYHCWfjRdVeAQYwCjhngDwPBgEeOJzeqcRJJTjU6XS0urpqTp8074Pn2yvgKDI8QInH4wZAcMK4Rl4LJwqQ5XN9WPsoLwDosAY+p8jL7bwagvfze5u1TDEp78x7J9GDwFAoZLaWe8eh99JggADOH3nZnjnwDr6X7xJo89I3ZOrcO44q/webyFryjC3rmfU9Go2suvKPYxJ+kn29t7enP/mTP/nYz7PZrDHt7XZb+Xzefvcf/+N/1P/3//1/+nf/7t/p29/+tv79v//3+g//4T/8g+/1jx3+nj04C4Iuv358oIf/J6BHXh1nOMEdcjv5W5+ewXMMykf9GpNk55GXSXqZOcEDL2N+kVQ0CEh4PWlRtcB6BbD512Owb7GDVEOeTGa1ETwAxQax1jyg5Z49OF5dXbX8XX9tzJN/BgBB1rWv9Ixt9kBbmsv2PRvLnuW92NfBr32fyGCaBCysb//hi+d4kOjtms81JBjm5x0/zvtvnvHHP/CSWu4VO+ptHb/zY1nO62UYLwHhEgwkdbQP+PM//3Pdvn1bDx48UCaTUa1WUy6Xs2jbcDir0JfJZCw3zjcwx+CmUimdn59bjmA6ndZgMFAikbAKfRwYVJm6uLiw/BCiRV6CJckcSm8IcPooeHB1dWUOqZfEPXv2TNls1sAKksP9/X1NJhOVSiWdn5/rr//6r5XNZlUsFlWr1XRwcKBaraarqysDE7zHysqK/vqv/9ryL69du6Yf/OAHKhQKev311/XDH/5Qe3t7ymQyGgwGJnMjb3M6nTVbHgwGevDggdLptMnKLi8vtbW1ZdLNVCqlg4MDm7dMJqOrq1lRnEhkVjm01Wppb29Pw+FQm5ub5ghXKhV1Oh2VSiXrx4dclEqISDq+//3vL1RnQ2JDdBUHH+cSaRGOqTQvFHR+fq52u63RaGRylLW1NaXTaavAenp6ahFb73ifnp7qwYMH2tvbUywW0/PnzxWPx/Xo0SOtrKxYH0gvJ/PN7XGMJJmchQO02WwasGDgqCzD6HQ6dujymfYk0mKVV//sfO4RjC3SHxwx8oYlGeAH6PPatAThuQOa6EfnK+B64OEBkJepeZkZTgvKgaurqwVJJ+1uYrGYOe8+eHR1NSs6FY1GbZ5QStD4fGVl1grHS9/Z98i6pFkeNLnTNJTnb9gz7AXePxqNLqgkcKZ8nhEgXZLJypBks1ckmXOF0+Rzffv9vtLptP1uMBiYw+/zesnBQ0bnAT/XwGvyLHDkkO56WR/PHSeagBVyZOwFeY+cJdI8zxPlSSKRWOg9yxpFzcJcEGjzzj7jk+7rL37xi/rmN7+pr371q/rud7+rN998c+G1kYkWi8WPqQ7+qQcBUYAzz4D78z0AkQx6VoqgLj1wd3Z2rAUP5yj7mCAQAcHhcGgVZz0TxnsTrAgGmDygA1RKsuCOZ+Gurq6syBKBRAAJQB97AQvHe7IvmRMUJCsrKzo/PzcZIiALQMoHKgBADuvfM/QEntjzfE+vX9aET2EJMvrYBlJNkEv7CsfMLWva5+D7fFneZ3V11dJbUD5gq31wnfdgnXjVzuXlpTqdzsJeZo585VeeDx+SFlQjBKZQWnEN+I34ZYBu0pA4czzDj/30QJ+xTOf1MoyXgHAJBg3Of/jDHxrLBdOXSCQs7wxnwUdeKTSQy+UMXDx//tyKMORyOQ2HQ5XLZW1sbGhtbc2KxHBArK+vW0ESSRa9LxaLxg765GTAiD9YvARFmkfScOIAJkQxLy4uVC6XjZF8/vy5Li8vdXBwoN3dXTvgLy8vzfCPx2O9+uqrqtVqJkGbTqdW9IBKn0Rc19fX9eTJEyuy8t577ymfz6tWq6ndblsLBSQVxWLRGJfRaKTNzU01Gg0znoeHh1pbW9OdO3f0/e9/3xw3DhIOfp+vKM3kTvl83uaQZ0j0DqN+eXmpVCqlUCikvb09hcOz6qU4+vQCZDCnOIzMRzgctgiipAWHkxzLXC73sQMxkUjo9PRUDx8+NGlePB7XjRs3LLdAkjWdf/78uabTqQqFgq1NghPD4VCxWMyANnlHBC7IY/KAkbEsEUcPtnAEKTCAs+zv3bPJXorlo9/sRarJSvNILg4lIIAgDw6BZ828g4QDFoycezvjZUoeELIvvZMozZkyz3ZK82DS1dWV2u22rTEv8US+SGDLr2/v7HM9MAzsE8ARLBsMAI4094vjG2T7eBYw2h7Y4Nhzv7CPPDMcbv6W+cRZw774/C6UAFwHgBX23MtOcb79PXgWAZDC3/hnQhuOfr+vbrdrQShsKeuM/CKY0yB7i6KC10AaDThk/wfZhE+yr9944w2VSiV96Utf0v7+vr7+9a/ra1/7mt566y392q/9mn7lV35F3/72tzUej/X7v//7/+j3+UkG+xewxr5lzXk2xTOEsFw43ZxT5JvzeuxF1jOBVdh+1DzSYrEQL9H1skHWpGcxWdueAQzmpLG/PTvl7QuvE4lEFnKdvZIomDM5nU5tnnzagc+PxZfg/gA82A2/v/AtkHkTBOM1fHDLz5dnBwm6EbSmuIr/H+TVFMQjSMf1M9/4Y4wf97W/Du4xmCcYtLO+2AzglLnkHPHVav25QWoI57hnQfkf7p+5ZQ6DzGxwHy/Leb0M4yUgXIJBIZLd3V3V63XLeYtGo2o0GopEIqrVagu6eBx/nGzYKQBKPp9XPp83WRHJybBcvJ6XMnnnDSM5mUwMNNHEHEPCwS/NjSaHDAUJLi8vrafNeDxWq9XSzZs31el0LHKOhJSoHQ3Vw+GwHj58qK2tLSUSCZXLZWUyGW1ubmo8HhtT12g0LJ+FHKV4PK56vW4MXavVUjqd1oMHD1StVi1ZmvubTmfFNxqNhgEvDGW1WlW327U5p29ZJDIr6rK9vW0gGvmoj0ymUinF43E7uHD0cI79gUYrCc/6XV1dGYAnkswck2/hC5TwmjiXvtorzrdngKvVqrXQKJVKajQaOj4+1vr6uh4/fqyLiwttbm6aA3x6eqrDw0MLQlD0KJfLqVar2RpNp9MKh8M6PDzU6empOVLT6dT6wvmWBIxlOWC8bMfLrbwMCcdK0sf2Y1AeReR6bW3N2nx4UINT4PczewqmzO9P79yzd710yA8CDF6i6MGgL6ghzVlOAgtByRwMPPcGSILdI2rOnAFqkFcBWgC3gEDsnb8nae4AMj+9Xs+uh1xfz46yVmFavDPN6wFUvVTXM0XBoir8H6/L79nHOMz8zucYe8DJ3obd8bJd5gtQwnXBBsNKj0Yj62UKWz8ej40lYBAAxFaur69b7ifPmHXFGiNt4EX5Rp9kfOMb31j4/q233pI0yyn8zne+84le+/9keAlwUCXDfvSBO78XJC3k99ImykvCCeCtr6+bfSTHEOkuLLOXjXoA/qIgBevMSz09uAAcBoGgDzT4PezXI/OAZNjvDRhzis4AGqXFNhGsZRhPLxNl7wUDiAAU2DrWnLcZwWCVB/HebhEYhS300lquAZCOTUXW6wE6gVcCtgxy+L0PxxryQM8XkoGZ9BJS5smfJ95/4/79WUKhPP4PG8e1U+Hepx94JQvP50Wy0WU5r5dhvASESzAwiOTMdbtdHR8fW/QN1qXZbC5UEyUHBKcMKWAqldLJyYlWV1dVrVa1vr6us7MzpVIpvfbaayYfAnRilCKRiDVov7i40NnZmRVGiMViyuVyBkgAMeQ3cEBRTvry8lL5fF4rKyvW0mE6nVqFzWg0qmazqXQ6bQUOOp2OMXI0ty0UCtbD7r333lMqlVI2m9XJyYk1mJdmrFW5XFapVNJnPvMZY0IbjYY2Nzd169Yt/Zf/8l/s+mq12oK04vDwcMF5XFtb0/HxscLhsDY2NnTjxg2TuCEf7XQ6xrQBMMm7qdfrarfbJusKRkDpZUgklbxDQPNoNLI8UkDueDyrUlooFFQul9VsNs2w9/t9c24Bk+HwvKDJdDpVLpezSD/SPK4Bh2BtbU3/83/+TzWbTe3u7iqfz2s6nVU3/emf/mnVajVVKhU7cNfX11Uul01Gd3BwoHQ6besG6VAkErFI+LVr15TNZrW3t6fDw0Nls1nbC8skQYENkua5e/1+3/KBObSRJeG4cDDjJPBckSknk0ndvn1b0+nUCiUhtWIf+qj62tqastmssQ4+0sx7+2IX3pFn33rw4Zl+1i6SLQAozx6ZMPdOBJ/cXBwd9g/X4CPg8Xh8IaiFE4bsEymVd3ZxhHDEyZnF+eLZBIGzd26I3PsCE/F43CSDML4vkpkmEglzDLEPnoX1MjsCIx7EemaZ/yOfCpuPc8rcYF8IBOHYEgTkdT2YjsViajQaxtz3+31jCnxOHO+PVHVlZcWYzVgsZoE95IXBPbxM+5oArAc2wZzMfr9vgTjAOgXPsMH04mPdeznjysqKVeUeDofKZDIGtiiow1r2rCLXJckcfc8w+1xRwAt7x1en9RVHfeDHs0vYBoKhrC0fdOA8wjZJi70QuQbPUrIHfc6qZxr5GXPAGvW5xJIW6iaw58kT5NrpgRiPx82/SaVSKhQKC3NI+yQCN+PxrKo2r09aCPYeZQK2E3YdwAkA5T7Yx0hGsdF+/XgpOLZlOp1akAA1AXuX5z0ajayoHs8AH44AMf1NuT9sFPudehDYasYy7etlGC8B4RIMcjl6vZ4SiYRKpZKm01nFLfrhURmKqJ4vWoCzdX5+buwUco2DgwMzenzgBPniCThLGP1CobDQ+F2aFYHB8GCsyA1YXV1VvV63PBgcPBrN37hxwwwklTvJoykUCkqn06pWq5bT9ld/9VeqVqsaj8e6c+eOPvjgA127ds3AFs5nJDIrr480MRaLmQY/nU6rWCwqHo+r1WppPB6bsUcCgmwyHA7r9PRU5XJ5oaIe70cbiGfPnplklUgahz1SPuS3MAtcJ6wrh70kOxwIBLTbbWtO76W+yLeIUsKUSjPmiGg/vcE8gxGLxXR4eKh0Oq2zszOl0+mFHlDSrJgDh9yNGzcsiHDz5k3FYjFVKhVJUrlctnyGZDKpZDKpWq2m1dVVlctlAxiRSMQOSJzRk5MTlctl1et1xeNxNZtNy1f1Y5kijuwrac4Y+kMdAIhT7Rke9jegADCGMy/pYwVE+F8GEXXPEAEycSgARj6qz6FPpNgzUNK8+bR3OH2PPl+RzgcdYAskmZ3w7SqC8yXJnFIi7L5HIS0nAEKeJWXgtHinlLmQ5pWRJdm+5Br83o3H4x9z4nlNAKgvfe+ZM543ttMXXeG9mHfvcAHCfPDA523xvb9HrhkHEWYJJxXbT5sfnPJQKGRAnp63OLFId30xM+YOgMr6g3FdVuaf+fWBE54lZ7OXQzJ3ONTs3R8nv+PDywoBRwAK75gD1ngWrCMf6PPMtAdj/N4zhD4Y5Rlqz6ZFo1Hby+wP9gD2YnV13qMyqDzw4NHnMXpZql/HHuwGmWevbuB1eT8/J8w1gCkSiZjagHvgTPM9cj1ohhn0RYEA0+x3bzuRTmMbfCqA/5qAkGf7gxJSnodnhfEv2OeZTGbB/gMWvVIFW+cVDIBcry7xAabgGRZcsy/Hp2O8BIRLMKhOSVT58vJSmUxGxWJR165dMwYAA4+R80betz7wkZxIJKIPP/xQ6XRaX/jCF6ysu9ftAxJDoVkTZYo7EJlLJpNqNBoajWaFKhgcThhLrr9arZrzRASr3++rXC6bg1QoFHR4eGgMAAac3JXj42Mlk0l9+OGH1sg8HJ712+t2u9rY2JA0k9tmMpmF6GoymTRGBVnH+fm5RbbJUUJqur29/bGiABjPaHReor3RaCgWiymbzapWq9n7SLJrD4fDBjKJDCIRBYBdXV3Zc6IJLH8LC0gEnobuOOawRNVqVaVSye4ZGZckc/h9dJRS/RyePKvRaGQgul6va3193XJHKUABw0AFOIplJJNJkyuurq4ao4yDvb29rcvLSx0dHZkTU6/XLbE9HA4rkUh8zHlflgPmRfIq5GSAnF6vZyW/Odh9lJ3hHZ3RaKRWq/WxXFHmzefM+IFT5eVSXlbkAaJ3SD1IxQEBQJJLA0PI78kp4rpYZ9gJL6ViX7BX/LXDrAIUPXjkdb3T4qW4khbmxttO5kPSgvPHXuX+cMLJvcFp9LYPILq6uqper2csMECQdeDL2nv5qgcBzLd3Gv2+DQIwbLh31HyBMe6F73Hqh8NZv1CCZziJXrbK64RCISUSCVM3eGkejAtyd8CJl5wx/8u0r3mmHsyz1mAKYahggOnV6fP3vcKH1/Hg2ksnWY+cF57p9j4BQUquFcde0sL7sCd4Lx9c8tfGvfL+rF8PgvBN/DkFwGEdYWs8Yw749OevB4Neyu1BoWc8PeD0dtJLRP21wTDCiFP8DIWPz6XzSqjLy8sFkIoNwDfxwSYGry1pgRH0tpr/YZ34OfEKCv+smHM/r+xN9izPMpFI2LUwz4lEwv4fVp9Um2AeMu/Ls/H5qcu0r5dhvASESzCQljx69Ej1et0cc5/jhkwJAOKrebKZKfbS7/dVrVbNGITDYW1ubioUmpV4puEtMgfPLvCzRCKhfr+vTCZjVdFobp7P53V1daX9/X1jA1KplE5PT63dwmg00s///M+r1Wqp2Wzq7t27yufzevr0qabTqeLxuPb29ozVIuqWTqe1urqqf/Nv/o29NodCKpVSNBq1/3v27JkdBrCRl5eXevTokcnkyIc7PT1Vu93WZDKxVgkcWDAoVHKltxY5D8PhrKALUfNms6lSqWRAKJ1OK5fL2X1Isih7LpdTNDLqTgABAABJREFUPB5XJpMxRxpATH4eUh1YPiJ1sCCJREKf//zndXp6aqCTvD1kXTjOSE/5XyL82WzWChQdHBzop3/6p81xp6UGB1wymVSxWFSr1dLZ2Zk5xTi1jUZDd+7cMSnju+++q2q1qv39/YU8NWQq3W7XWlOsr6+r3++r0WhYE3GYTsaySFCIIgeT92GJKpWKORe+cArOnwck3rFrNpv2+jAyPmrMIf2iwjQ4TN1u16qWsr+87M07FjDYwcg9cuFMJqN2u71QWIn/IQfNs08wFhcXF0qn05LmOS8wmQA67pncNO9AeSbDgxh/fR5cEgCRZK/JPAHoUDzgWLPmfQ4TOcEASc+uMs+0zuH582wJMlFd1UvLcL59BB/HGpYVB20ymZitACBjL8lJW1lZUalUsiASgN0Hz3CWqSBNDmawwqkPJnh2WZLJBweDgUmXvfqAsSz7GibcB2zYLwA0nhVzNRgM1Gg0LMjaarXsf2lMz1kGMCDvm+dM4JdKxfgDfMY38IEY1pMHruwh9hQ2xEuQYeqwP9wvaprRaKR8Pm/7MBwOq9/vq9ls2nuy7ngt0iNg+X3OnDRXSrH2YOLZy0F7Ks3XFN9jWwCD3IvPLWZvjsdj1Wo1RSIRU834fpDYlFgsZsXbsAec6dgQn+/vwa5n2lgb3ufywROvAvGFZYIAXZoHYggmBgNNFCDyCgKvBCOAQfBqOJwX48JeeTvkg9lBALgs+3oZxktAuAQDY057AK/Xpk0C+TpUr8QZ95E+DpJEImFtDUKhkLLZrDY3N9VqtYw5a7fbplXn/Xgf2jLkcjklEgkrqILkEgcfQ/j06VNtbm5aoZper6d0Oq2TkxNFo1Ftb2+r3W7r8vJStVpN169flyRrUdButw3kRKNRVSoVFYtFHR4eWm4cxrLdbpvzenBwsKCjx8mVZAxXpVJRr9ezyqo4tEjNvMwLh4dIt3dGyYtEMslzwxHgkIRtxRmEkURC66PxADKflM/74GwAduPxuO7fv69QKKSzszMVi0VjccPhsOWNDgYDkx6Xy2V1Oh1lMhk1m01tbm5qNBopm83q+fPnWllZ0RtvvGEysM3NTXum5FBcXV3pgw8+0OrqqjKZjEajkclPOZD29/ctYry7u6tkMqlms6lcLqfxeKxms6nV1VV99rOf1WAw0PPnz1Uul60I0LJGHH2UG3AGywQYI9p7fn5u0X/PEPighQf6XhWAnIj/Y696h9xLjCh5TpGioCzL5/1wHzggrEcABmDJ565QNIbrwAmmzQN7hvYGgCIcRGRnAGfsmgdF3lGS5qxCUF4WLLTBgIXDrngWBIfWs3eAPu94EXnn96gfkIbyegBuSdZSQ9KCfCtYyCY4sFWe4eQeAMEMiosRKAJQcq0EunCU2W+eiSBoIMmqkRKoQBkxGAxM9UFqQafTseewzPvaO9fYYL5nf7IGfE4bhb36/b6to06nY+udACR7xef1eTbO2xaeF2c7/oDPA/Oy4yA7GLQ3ADnukxQKKhaz1rFNvD/nGW1tfOES5k3SAvjxzCV2BHvjGXU+WIMMLxPFLyIo5fcE7+PfG1vHmcnA/kiL65a597YC5QvBMN6Da+P98A+4Rv9z/ufHffD8/HhR3jepKLwvdgQ7x/P09SMA7pxDXLcHktw7P1tWRc8yjJeAcAkGzgdGHYeCPjVE1jlsJJlUgQgU/WoAT5lMxhyFvb09FQoFkyLiKAS16uPxvFE7vZHC4bA1IyePbTQaqVgsqtfrqVQqGXDs9Xq6e/euSUvL5bIBNBiDeDyuk5MT7ezs6Pz8XIeHh8pkMnr06JEVOQBUYuB4rUqlolQqpWfPni0cAMhgAXD5fF7NZlODwUAHBwdmeDGezKPX1UtzQ+7lbDivFJ0hNwJnh79FKprJZJTNZrW6uqrj42NtbGyoUChYJdmnT5+q2WwamKcnI7JUDhocbJ4l8k1aa1B0B+ebaGUul7PrOT8/t4ItvkAEEuRCoaBOp6OdnR3lcjlrDzEajVSr1bS9va3j42Pt7Oyo1+tZq5BKpaIHDx5IkjY2NnR8fLxQ5Qxg/6Mf/Ujn5+c6ODjQxsaGHj58qIuLC9Xr9QVppD+MpeXJSeDQJVfXS7v6/b45Ez53xFePgy2Q5tXwAFiTycT6EPqqdD53DSfCf4aFwvHyjBwMhZcgIsmKRGaFXiiXz3pH/uulZDhcsNPIrryz7NkTaQ6euVfvpHLt/J8vwgIIA4R4CSNOkrTImvrXYf97R5j3o7ojgTVezxfTwo6wDz3bSiEJXpP/4znBeGLnuXcccAZOLmuIewJAEnjibKAID88Y0Ig9hQ2gAjTVQZEich2cFTwr8kUBfzxjgCQSyfF4bPJIP5ZlX2OjPcj2uW1e6uglnbA/tP0gYEERMZgZzxASyAQ8+QALgABnnvfijGbdsOexM54h9PJESXZNvsgVZw/Sad630WhY6gP7FSbN71fsimekPev1IjDocxX92R0shOcZc9ampIX5lLQQlPP3TTDeF3/z4MsDnmAhG9hKH4Ty9w0Q8zl53r56hYIH496G835+7fn39ooS7g+gyzP29+T9Js4N6ivQq9irO5ivyWRiQXQviQ1e38vx/3a8BIRLMOgTlkgkTIYB24MhRdK3sbGh0Wiker2udDpt0iMO9dXVVe3t7ZnEFHA1Ho8t4ugP7E6nYz8ncknFzslkYixOsVhUoVCwpupIS7PZrH70ox+Zs3B2dmYVUdPptBmfcrlsRmw8nhUvuby8VDKZ1HA41GuvvaaTkxNjtx49emRtLnZ2dlSv143FSyaT2trasuqF8XjcWkFIsgP24cOHGo/HymazZgiRjnhpCQeuN+Y+J0OaAcPBYGBFX3q9njlTRNM5dFdXV1UqlcyBBmiSF3l1NWsE/fz5c4sWEsXnkOr3+xZt/+ijj7S3t2ctOzhcut2uNjc3lc1m1e/3rYz55eWlrl27pu9///sql8v6zGc+Y8BzOBxqc3NTN2/etAIlSGnz+bxFkJPJpE5PT60Iz6NHj1QsFtVoNHR+fq4bN27o7t27Oj8/VywW08bGhjmKqVRqgSmS5tHhjY0NNZtNvf7668ZS04dTWq6qZQAU5GA8Yxwjz14j9w6Hw8pmswtST5w/nyuHgwZIRIZEkCcoXYJ14H1wLgl4TKezIlbpdNqAnpeg5XI5czZKpZJCoZDi8biKxaIBU/Y77CNrifUKeCIfmnmgIBRgGHvo74Fotq96yLwgkYSh8HmRfuCYelaB+/c5ndgonOJ4PG7PhOsgYAcovLq6smeJQ+dzijxrwDwS8MGB47opjoXTS3sO74gxbwSnCoWC3RdFyXCUQ6GQ0um0rR/UCqwD7NVkMlG1WlWr1bLnc3V1pY2NDZM9SvPAWa/XU7vdth560Wh0QQLsHcVl2tc+6CDNAy1eLk3AgTXEvqUqLioUmCpYGy8b9fmdOO++CicSa75mv7IWfaADWwGDxCB4AdgCnMXjcbNVm5ublhbi1yKN4Lkngj6caZzXBAyCwQPArWcDSRlhX7PHkXESaPHnNPsJe+PlmPQKZI/z3jCx5+fn6na7qtfr6na7Js/3QAhZLc+Q+SfAk0gkrCgY4M5/8D8ETPA/8DdgW5lXHzj094eNQ3rLOkQKHgqFTGHkfRneD7uJr4DMF5+DAoDr6+vK5/O2RrzElefK+KfY17/+67+ut99+W9evX9cf/MEfLDDAf/zHf6zf+73f02Qy0e/8zu/oC1/4wid6r2UfLwHhEgykV5lMRtFoVNls1mSZPhrb6XRULBYXZEU4TZ4la7VaFr2LRqN2wPuCMp1OR51OR71eT91u16LBOJoYpkqlYhVALy8v9eGHHxp4arVaFlWeTCbKZDLqdrvWj47XIyqZTCZ1eHiog4MDO9za7bbK5bJ2d3f18OFDq5KVzWZ1dHS04HDBNtTrdUUiEW1vb5t0DOcpnU5bjqTPeWCuMMQcwD4pm+EBIZFDHDCiiQAeadZ4HqcImSrJ6q1Wy0o7S/NIJc4k88TBfHV1Zde2ubmp4XConZ2dhSICx8fHmkwmOj4+1nA41P7+vklpE4mEGo2Gnjx5oo2NDZP4HR8fa2trS8+fP1e9XtfGxsaCNHljY0NnZ2cGYAHq4XDY2NrHjx9Lkt0rzvPGxobdO/d5cHBgietbW1uWwxoOh1UsFhWJRLSxsaH19XUdHh4u7IdliTj6KLeXMuGgweTgpCAbB3D49erZQg8ACUiwXoPRd75HnumBGU4YexGps484s7ekuawRe8UHEkK+90VdCEJIczAE0wUYojk698g69xJSaS6xBCAytwSjYLFwjqS5w8I+53vsIAwh/0PRGuaQZ+IlXMwnuVseXPoPgLh/NjjB2ByuzbMZXAuOIvlJzImXdhFowTmlpRDON0VpcOBxcGG1sK+UtIf9RalCCgHzi5y41WrZXHU6nQXJK440a4CxLPvaM9CsJYCcNC8641lEz3TjgPM6nDGs5yBz51UDgASGz231fgGAB1uDLees4boI1vjzL8gEFotFA2VeXuyZSuaFHEHuz0tCvVTVyy+xQ7Du/muvmvE/D+beYQOxW+xh7svn+HqwhR31BX9gdwH6tFPxFYSleQVn7sFLZ3nWnvHD3nh7QVAMuxRk9ACAPFcYU1IPAPo+L5i/83JemGTmg0AYAN0zf34NeVvu15wfn2Rf/93f/Z2Ojo70l3/5l/qt3/otffvb39av/uqvSpoF0P/0T/9Uf/7nf/6x4N7L8eLxEhAuwSAiTmJzPp83JwDQBFNXq9UUi8UWQCDMHpWwcOSopokD5mUdHDTkB2J4wuGwRSbz+fwCWNzc3LTefwCXQqFgDE86nTbgh4NIH8Dvf//72tra0mAwUKvVUrlc1vHxsVZWVlQoFFSv15XNZk1mRguG6XRqOXONRkOlUklPnjzR9evXF+QN5F9sbW1JkkUtcVI4pHxivgeEHDAMH9X3ZbFxoJD6bG9vmxGnP6HPGbq8vNTm5qbJcafTqUqlkjGxHDA44hyAOOzxeFzlctmie8lkUnfu3NGDBw9MCvbee+8pk8nYukilUgYapRljWq/Xde3aNW1vbysSiZg0eGVlxQoZHR8fq1QqGeBut9tqNpvGiAJiIpFZT8Hbt2+r2Wyq0+kYS9TpdHR2dqbT01NtbW0t9ONKp9OaTGZFfbiWSqWiTqezsB+WxXHEiWHNEAUm6OKDL16+zeGME4FTL8n2si8EJS22hwg6k14ezl6HycFpTSaTarVa5uTxul6WDktEFNlLz5BSs+a800lAgVwbnwvpAQ+vyb0iC8XZ9ZI52FdUB96p9MxNcC15QIgzB+jkvQF93mH0jCqACkCLDeJ3gHuepZdreWee1x+NRmY7g70QcUyHw6GxejiUXmYrLdoswIEvOIRziH3F5vv75F5YpwSUmCPSGaQZA84zZR5w9F/kwC3LvgbIeeDuJbtBEMNc+HUAGEDBwzzDshEk8sEdbxd4LdYzoMIzldK8+JJPlZAWi0xJWmAyY7GY5aFKsqCqz2H1+wTWkrXn5d6+PYYHPNI879cHd4JfY5/8zwk68Z5ByTd7mQJZ0hwQErDwMs1g0IzX8IDQg0HmHPuxurqqeDy+4C94ptQDfAJQPjDG4Bmynnz+MffEfVHADkaTZ+qfPc8FO+ADa6PRyAI/BH94Vsypz5H1az84Psm+fvvtt/VLv/RLkqRf/uVf1h/+4R8aIPzOd76jtbU1/eIv/qK2trb0rW99a6HK/cvx8fESEC7BKBQKSqVS2t3dVSgUMqkg/e+ITq2tranZbKpWqymTyejg4MA2dbFYVDgcNkkjzocHhThuV1dXOjk5UavVskIyo9HI+hXu7++r0WhYuwBYKppbd7tdlUolHR8f69mzZ1YtEGAiyeSMFKVB4gDgg/XDCR0MBqrX63Z93W7XJI2dTkePHz9WKpVSKBTSrVu3FIlE9PTpU62uzvrf5XI55fN5DYdDHRwc2MHmD61MJmMl46me6sGwND+0JFlOHknn1WrVHNdarWbA53Of+5xJLo+Pj6040OrqqhUBmk6nxhR6I+2LacC09no9Yx03NjZ0dHSkk5MT5fN5NRoNjcdjHR4eKhKJWJPiq6urhRYWn/nMZ4ylLBaLqlQq9r/SLDI3nU5Nxvr48WNNJhMr+ILkFSCXTqctj7DRaGhlZUUffvihAYZoNKrnz5/r8vJShULBnP5SqWT5jhyalUpF4fCs72OtVvvYobgs0jICPTCqRO1h6DKZzELggPlGwguAwxkjN4f1gyTLO384LgREkIki98NZxZlBOUCuECwAYA0ZMddJpV+cnOl0alVEcXqQUSH/XFlZWejFxr3gfBDMQP7GPQBmfM9V1hr7GEUFDiMMIfbOsxE+74jXhsFg/r2N9C0u8vm8zb8HYxTEYVA1GJXCaDSyIhu+ojDzhl0HUHtAHg6HdXx8bPJSHGOAs2dxstms4vG47TWuj8qfPBuAQaFQUKPRMNtH4SkPPHCoYVDI8ZZk9pnAIWtdmjumfh8v0772a4z78kEG1hyBSu+IAzRIB8Ee0KYEsE2AAUDn84R9rrEPWPggBPYGKbakBak1bX9gkzmbsAGknKDWAQBxXvt7ZQ2Nx+OFBu0+LcMDqfF4vFAlMx6P272zprEhXgUAS+kL27BPPHhiPoJMIXPjZZ3Y2YuLCyvEx1zyHCmy56X40rxuAKoL/Jrz83MDTrwnPWc904+N9UEDcqKRvBKA5XkyF74ZPaAT9t/PN+uN+QL0EuzBRnGvfM3A7gNgg0Gon3RfHxwc6Ctf+Yok6ctf/rK+/OUvS5qpqwjiZzIZ82ck6ezsTLVaTX/2Z3+mb33rW/rd3/1d/cZv/Mb/6Xb9FzVeAsIlGPF4fKE1gTfK0myj9Pt9KzhANU8vveKQoTwzBgf2JRwOq9vtWg4RIAeHC0eLdg1HR0cLRqXRaFiD9Mlkoo2NDSudTdl5oqSZTMYap7fbbbVaLXOoLi4utLW1pUKhoOl0qjt37ugzn/mMQqGQNjc3rWH9eDwrQJNOpzWdTnXz5k3rBXbv3j27Py+5I5qHw4WDhHwlnU4bMEmn0+boekbPsy4cghxWHAwYVAr1UIyFg4SWIMwfstlgOxFK9XPYkNzd7Xat+ubFxYU2NjbU7Xa1s7NjjFokEtHR0ZFGo5HlMsLscmBy+BUKBV2/ft3mr1AoqNVqWdEb5qlYLFq/MUpQSzPpRiqV0mQyUSqVskI6V1dXevr0qW7cuGH5KTjlsVhM+/v7isfj1gYklUppc3PTcqTC4bBVK/VjWZgEH+VGUoajGOxJB0DC+ePg9bll0jx/y0umGOwDPvsP1rIHMr4KLnsTCSlyX5wEHAhk0DiUXnqJc4CkE+BI4QlpzgqMRqOFPEHfq4x8HwbX4HPv2Ee+LP7q6qrl3v04QMgcsj+C70XQivvwUX4vu+OZURCGa/cOO+/vHXdfydOrOcgd537G47E6nc5CjhgBAGyyl9ABSjxzig1ELtputxeY5mw2ayqK4XCoaDS6AIIB8zw/ZLKwhXz2hXBwQIM5jzzHZRg49jjZQcmoXw84/XyW5nJOzhx6uQYZf68E8PK/ILPlJcn8P8/C7xsvDyVlgWdCoJP/xS6xt6V53rF/f0CjnxtAMKoc5kT6eA4t+5YPv6Y9U+gl6j6/1s+Rl9VL+phtDH7tlQ+AWZ/HyTr2YDyo3vDvz4df5zy7y8tZWyn+l/MPAMoZ4ZlO324MST1tOby6CWBHoAq74gN7tNJhHfn34pqwzaxbnhnnM+zki1QX/9DY29vTn/zJn3zs59ls1nzUdru9kLuYzWb18z//8wqFQvqFX/gF/eZv/uY/+D7/0sdLQLgEgwOVSHc2m7UWEciJiOz53DVkoldXV9ZPB8ePyBNFPzAaPoItyQ57DpB0Oq14PK7NzU0dHx/r+fPn1nfwnXfesd56H330kZXLTqVS1qoAcIVjxTWTD7C5uamVlRVrSRCNRrWzs6PT01NjzGAVV1ZW1G63DXhx8OAocageHx+rUCio2WxaewuMPk7c+vq6UqmUgSIkMT6HwcvuOBBgNwC6OMVI/pDrEo31UTckoThizDWvT3XR8XhsJdubzaY5XgDPbDarO3fu2AF7eHhoRXoIAhCdTCaTOj8/182bNxeK/EQiEe3u7qparVr+5dXVlc0tzkA6nTYpL1VK/f1Eo7M+kDgnq6urOj09NQlzp9NRNBpVt9tVpVKx+YSparfbqlarevbsma0V3lv6pylj/WlJUvfOjpckM284XlQhZf/6vBafQ4Kjzh73zpokA5OeUWDPB3NBkImSw8froRjAgQBsAQqluZPjQRNrGYeDNe9zIAlA4WDANuEQAXJgy3wuC7bEg+wXOZEwD0jDWKc4OB5EM6+eefXsJ/dHfpGXorKXqbTJnLKXfY9Y77R7yR2OGNcbCoWMbeV9/LMtFotmP5LJpLEFnjH2+Urc92Qyz5kGqGJbVldXrf8pthcQQToAdpL75R6YD58n6689yCQsCyAM5pzjmPvcSR/c4Bn4veoBISDdyyklLQAND/iCzKDPM/RyQ0kGcKS51NWzdVy/z4sE1AF6CShxRnl5pTSXPnOt3IsHwMxXMG/Q72EPRP0+94AwFostAELun3vywR0PCGHY2P/YO/YdwA/5ul+vvmdiUJKPmgAbxzPwkl7eh2dHAABmk/fwKgCegw92wfD7OeW54E94kOzvlYASAR8ffOR1fECD9crX/Jy5YnzSff3FL35R3/zmN/XVr35V3/3ud/Xmm2/a795880194xvfkCS98847unnz5j/6ff6ljJeAcAlGo9GwiDcGD2Ph+3xRHSoajZoTj9yLvoCRSESVSsWkB6FQaKHwAaALOQKSzPv376vb7apcLhsw7PV6Gg6HxhyFQiFtbW3Z4YERSyaTOjg4sN5/0+lUm5ublke4sbFhwBUGMhQKaX9/X3/zN38jaWa8a7WahsOh1tfX9Vd/9Vd69uyZXnnlFQ2HQ6vIeP36dZNGImlCfomclnujmE46nbZqmYlEQul02lpDhMNhbWxsmLEbj2fll8kDaDab1nKDnoi1Ws2ib5FIxCSqtJdIJBJmiOv1ujGSKysrajQalvuJk8nPyOsJhUK6ffu2geDRaKTvfe97ikaj+uIXv2iOOUzd/v6+VlZW9Nprr2k0mrWMuHXrljm3AP6/+7u/s9zJbDar4XCo09NTAw97e3t68uSJyuWyHj16pGQyqaOjI+3v76ter2s6nVqzetYIkl2c+0ajYYwPh7A0c2h7vZ4ODw/VbDZ1584d+/9gefpPIi37NCWpU7GTKnBEfgFQFCIgHxeAgnSUaDPXihTQ5/5Ic5kz+XjkheDoE3jBESOAgOMIUwRIRRbG/iIYgMO1vr6uXq9n+cKwXFTqYz9yDzhJDIAHDs5kMrHCMl6eyu/4f4rZIMPFZiJH52vsk2dcvCSc9/WOtM8nxGlF6tnv91Wv1w0IY4N9riX7ndf3EjMCRV6GxrNFvg5o99UKg+1KcNLI/0Rqh+OIfAz2kTxyaZ4HTYQfB5gWMTCPrFXsnyTrI0q6AOBQ0kK1Q/86wTXK3C/DIJcz6BzzrGDhOI/5W79PYbJ4prDqQYaLD54nTjygDNsNKABAYY/xAfx654yhsjg5/zx7SdaD0l8vQT1UMFwrr7uyMm/i7tMxmCNsCn/Htfq+eJzrSEn52qt7UqmU2VPmbX193QKzKB2YW/+3nikFyHLuN5tNY9OwbwRGAbw+0IP66EWtQaQ5WPIKpMFgYAXDgtJ9zk0YVq8uYT/ByuPv+ZQYL4cFJBMQ5+eS7Fxg/QE4+T/sCGua/yfQH2T+P8m+fuONN1QqlfSlL31J+/v7+vrXv66vfe1reuutt/Taa69pb29PP/dzP6e1tTX90R/90T/6ff6ljJeAcAkGpbuDxiMogeDgTSaTls/30UcfKRKZVWwE7Pl+WOQnJBIJkypKUqVSMSOey+VUr9dVLpcViUT0+PFj62vY7XYtBzCZTJp08DOf+YzOzs6MNdvb29PR0ZEZ4qdPn+r+/fsaDofGGm1vb1tRiVwup/Pzc/30T/+0BoOBxuOx7t69q2fPnuny8lL7+/sm6aKVwuXlpfL5vO7evatarbbQroCIGtJaJB44ikgZkTOSn+BlGV56gyOOFDUoS+t0OparmUgkVK1WJUmlUslaPOTzeYvEY+xxpiWZhKRarSoUCqnZbNr78vno6MgOC57T+fm5Hjx4oFKpZNVAT09PFySAHBDkGXIYMqcEFC4uLrS3t6dGo2H3J81AJg5MOBzW3t6eVWHDyYnH4yqVSlZ0IhqNWt/FarVqjHe9Xtf29rZOTk50fn6ujY0N7e3tGXD24OyTRhw/TUnq/kD3kXkObmkuL4OF87IsnDecGPLecLLIMwEsDIdDK4DA9166BlMMAyDN9g3SZVgd77CwbnBGeDZeOoSN8o4nkXauiUg0EfwgwPBsnDQHcAzmiGvhnvje700PTHwBB+aVaDlz6KVxgFDmFrYAgEv038sjpXkvOn7v2RvPIHhg6FkSHDikvIBDBo4bUvkg8xPsaci10L4GW8V1RSIRa5FBPiDzxNqZTCbqdDomIaYPLYoB1jbzz5rmeXpGepkYQoKH2Gn/7HHk/Vn+or/3sr1g4MLvac/2enDmwSJnlt/bBGB9w3TWPe8NsAA4Ie/0QSjUKqxbDwh5XS8d9uvTp7RIc+kh14gNCMpD+drLn+PxuBKJhBKJhJ3XniFk32E/ADbcD+uTPcsaBQxKsvvDTjNnvqCMZwi9fNRLTPnegypJ5gd4iTF2hLxB/h7bgN0jWMV78Kx8nqkHvCioGBAMPv/VP1v/Gqwrrhtb688cxj/FvoYFZLz11lv29W//9m9/otf+lzZeAsIlGAAvqmB6+SKGBeOLMSsUCjo9PVUsFlOxWFSpVDJj02w2LdJGVCsWi1mCeSgUsmqlvV5Pr776qjY3N81ZKBaLWl1dVSaTMaABCL1586aazaY5falUSg8fPlSpVNLGxoYajYYqlYoSiYQePnwoaV51i15mp6enZoxXV1d1/fp1NRoN1Wo1Y0QBjaPRSM1mU2tra8rn89rb27MDbDqdJ3wjRw1G4mFZibxRvMKzjMw14M8bZ8AOjpp3fkajkVUBbTQaisfjkmQOF3maRPBxnHHgML4wvshH1tfXjbXxrRtu3rxpEpFSqaTd3V2dnZ1Z1VbGs2fPNB6P9fTpU+uX+OTJEyWTSV2/ft0O1L29PXU6HZO9SrJDiAI8tBKRZoxXrVbT6uqqer2eVSNlbcViMVWrVXNaKpWKUqmUxuNZEZzj42OTMAalLX58kgPm05Sk7uVPHgBKi/cIaOMw56CWZE5NUOKEPWCuWfcwBt5BZJAXxjMGBFHhEiUBDgOAjgATjBbsFmAv6NgSpZdkzxfWCBaC3qE+h8m3VvHOCI7T3ycpw4GENcSJwhnl/rB/yDu5T58/w/e+YAM2lPwcnilOl2eDJJl01+fSDYdDk5968DQajZRMJq19Q6vVsuc+Gs37pnnnEBvFffAchsOhyT57vZ7ZOAAl19vv99Xv902aDKtIMAlJoFctABS73a5dB3POZ4B4UDIaXPP/nIcHeHzPva6srNiZwv5iLfscVkAZgQqAIwE7L0Hk2bCvPfsMO8eZyD4B3EuyQLEHZ4A+1jZMMaof/peiR7wOwVufd+YBFHPAWsWm8H5BKSRrGWDo9zLnNgFcH5RmPXKGMACEfm8y5/6ZeUmrnyeegw9m+PxNAq2+iI8HhR7cY69ZE0HWnP+hqBSgi3siWBeJROxvuFeCAjC33LM/azyT5+WzpPMAqLEjXhoqzVua8JpecuvHsuzrZRgvAeESDO/MSfPqVQwva4Ld8dKh8XjWe9A7/BiJXq9nUsbHjx9ba4RwOKz79+8rmUwql8tJmlU7HY/Hlp+yujprWByJzJod5/N55fN5ra+vq1QqKR6Pq1qt6ubNm5YvRzSv3W7r5OTEjMz6+roePnxo+ZIfffSRHYAbGxuqVqtqNps6Pj7W7u6ulVXG8dnf31ckElEul7MDMBwOa39/Xw8ePLBCOxzCzJlnFZDvpVIpkznCYFKVEeka8+Iru/mooT9cLi4uTIJKHtDOzo7JbZGNbWxsGGMIg1KpVBSNRpXL5QykernHZz/7WWsMHQqFLNofCoVM5nd5eal4PK7T01NJswOuXC6rVqup1+vp/fffVyKRUCaTMaloIpHQxcWF7t69q+PjY+VyOU0mE+3u7urp06f68MMPrTVFJpPRkydPrCBMOp1WNBrVK6+8oh/96EcLEr21tTWdnJzo0aNH2tjY0P379/X06VOT40jS9evX7VoajYaBUemTVy37NCWpe2AjySK7gAKCApIMfMDiSrI9zPqFzfS5YjggyJp8XpCvUDcej1UsFi167HMQWWusKyRqRN5xSPlb71AgD7u6ujJVwdXVlVWilWSSYFiLi4sLVSoV23PsK+/wAIhwcmA4YROIWvOBvYJFSCQSJk2XZs4RsnPv8HnnHoeN64nH48a8XVxcmHMGC4lDx1yQ28R8SvN8S8AgTnQkErFrjMViymQyJvX3zG673bbX6ff72t/fN3uNhBbWHvAN0Lu8vFS9XtdkMrFnFA6HTbHB/GNLkbhLsj620iywgY30eUo46h6UE2iQFvuV/aT7+p/DYF0TlJTmex01CWebNJfU+VxS8ml5Nvydd7YBBn5/E4TxeWywyb7giJdb+yAEIMWzZwAa1jdrjutBWYRdkOa2ibUMsAD88DMkhtyXl4YCAglSsX8Bgrlczu6rVCpZW66gXB7ZKfJoKusCCgFbAGJf8MmzmN1u1+bbqx48ww8gZl/7e2PP8uy4XwCyv26k95LsTCDAwvwSmJFkjF+Qeccmcw2cFd7uE8jzQTJsqe9xirrL54Hy+p7JDOYQLsu+XobxEhAuwQBgsIm9hjyYGF0ul80pw/iXSiWFw2EdHh6qVqtZ8ncul9Pu7q6eP39uEe7Dw0NFo1Hdu3dPd+7cUbVaNcNWrVaVyWSsqAtFIsgrCodnzccxGv1+36SLlUpFtVpNzWZT9+/f15MnTxaiWtvb2yb99DkuHBDk6pAr4NkMyvZjvH30D5aOiqfkQ2DgmFvvOJI3wd+QawhoxMklOokM1b8Osg5kqTCPZ2dnBrgB7OFw2MAmOXMUXZlMJlZg55VXXtHJyYlKpZIuLi60u7trVQLJGdjc3FShUNDR0ZESiYR+8IMfmOz34uLCWMnT01MdHh7qe9/7nu7fv69cLmdOIPKxo6MjK1hUq9UUDof14Ycfam1tTfv7+yoUCnr//fc1nU61u7urTCZjB8lgMFCz2TTWl/t9//33FYvFdO/ePTuYbt26pYcPH5q0ijxS2oQEx08ScfxxVcs+TUnqHKhBaadn/fnspWU+jw7HhLXvlQNeghh0CMLhsK1x1irPj8MdpoEAku/BxWsALljnDJgyXzBobW3N8ga9VNo7GN7hYE9JWnA0sGvkv/C3XirqnSIGc4cSYGNjw2zpYDCw3GBAG0DO5zh5RtJLSHkePieM5+IdIq5rZWXlY4Uo+DnPgyASMnqCX142Dtt0cTHv/cg+wln0cjHmnp/DAPq8Y/97pKL+2eIo40h7STHAnGvw0l1/jiHD9WNZmYRgUMEPLxFl7/I18+ZleD7Q6GV8PEvWVFAiSIABZg1bL8178AHaYJIjkXkVYwqdeVDnbQ6/g7lC4cMz9fmCAAtpzvD7+/1xbP/fxxJy7mAb/XuzhwA6sHnsHdYtf889+dcB7PG8/PV7pt+DQC9V9RJe/7y9ZJ8Agrfv7Bf2FO/Jdfp97s8CzwTyOh64eUaW3xMQAtgzT94mkXPq2W3OGb7378uzfzk+HeMlIFyCwea7urqylgMYHYwLBkaSOXvD4VDpdFpXV7Py/4DC4+Njk/6MRiOdnJxYdTCKq6RSqYX+XpeXl0qn09rd3TUjBACk4TmAsd1um/x0e3tboVDIKpFS3OXu3bs6PT1Vr9f7mDQGI9vv9+33p6enxhqQ9Hx1dWVyNkDRxsaG5ewB/AqFghlLgCYG1xt+b/SIRE6nU52enmo4HKrdbms6nRWSgS3zTiIG3TvwgF6klNKMlU2n0zo7OzNANx6PVa/XFYvFrB8gB+vW1pYVZyiXy9rc3FS1WlU8Htf5+bnl35FDFI1GjS3K5XJaXV1VtVq1g79QKOj58+caDofq9XrWdDyRSFhBnPPzcx0eHurs7EzXrl3TZDIxtq9QKNi98rwBAN1uV2dnZyoWi9aXkcjl5uam3n//fa2uriqdTutf/at/pdPTUyWTScXjcbt2mASAAdfN+CQHzKcpSd1H0T3w8E6HB4g4Cz7PheFtgAcNsAP83rNoFF8gCg/zj1OIc0BunM+L8ZIk7yxRXRNnsV6vL0TZvWTVy9K4B9Y9joYvpsPX0rzyoc8/8o5V0PnG6WS/IjEnuETAg/kPAnOeCa8b/OA9UB1wTV6SyteAMuyTXwPcPwUyfCSf18B+BcEpYIz1AeAeDAaKRqNmk1kftAjhNckh9HmTOOKsO4AhBctYKzAJXu7opWXsa553cE8z78swfI6d/8yHX18+6OAloOxvL+P0rLU0lzV6aST70ytvAAgUYYFVo2omDL0PPvkABfmAvC7snr8eb6O8DJx1y9nqbZRnJL0U0wdW2c8eOHnQ6ANcL9r3Xu7tQSVg2Sur2E/+Nbyf4INFfm37QNaLvvZ2nfv1Ekzeh+shCOBtOQAeu+jBq5eFejDN8DaW/+M58n5cm5ebw1D6QBqA0qdy8Cz9Gg3uh5fj0zFeAsIlGDjQ0kzmRusBDAqyQEnGRPk2BuQSPnnyRNlsVtevX7e8v4uLC6VSKSWTSdXrdSWTSZN9DodD3b17V4PBwKSYsIYbGxs6OTkxJqFcLpuzR488Sdrd3VWhUNCTJ0+scIwka0FxdXVlkflms6lMJqN8Pq9kMqnRaKSPPvpI1WrVKp6Nx2Nrxp7NZlUsFq1/32g0UqvV0rvvvqtGo6HLy0vdunVLp6enGo/HFiFFjoP0ysvBOHwwlKurs9YMMKXIxJLJpAaDgRljDssgMxMOhw2UZbNZjUYjPXnyxBquI92kl2Sn01Emk9HBwYExOMlkUs+fP9f9+/fNOCcSCbVaLQ0GA7VaLaXTaT169Eg7Ozt68OCBisWi/vZv/9b6IN6/f1+j0chkIDdv3jT2L5VKaWdnx9ZBPp83qVo8HteHH36os7MzjUYj3bt3T4eHhwqHw3r27Jn9fS6X05MnT1StVlWpVDQYDIyZ9bKxjY0Nm/N6va5SqaTj42NlMhn7H19JzhfOkJYrSZ2iQT6Y4Nk8aX6/vkABEX4ixz6y7AEjUX7v3AE2qO6LvBe2ezKZVfTESfDOIoy9JMsZXFtbU7PZVKfTUTqdNlk7UWafmxRky9izgCJ/3yggCoWCBU14f39fnnEL5m158IbTyJ4m6EPhJB9Q86/3IkaHe/COnr8mX/5dkjnQvk+fd8ioGu17qGUyGWNAYVRGo5H1AeW+yCX2LE+73TbgwfrodrtKp9OWDwbQp61NOBy2tjE8W561fzaeGQGgTyazwjNI8ZhbQCn5XUHJqGcS/in29adl+P0sLQImgqJ8IOv0bLGXesLSsX88q+WDtT53z4Mkqlevr6+rWCzaM+PvyPn1QR+e9dXVlbWOYl+zNthLoVDI1hjAg+dKvi7BDg88vNTSgzIPCpm7v++D8fetH28H/M/85xc9Q2kepMJOI+UkwOyD2T6g4l+De5ZmtiCTyUia7SmfCoAPh8zVB5d59pPJZCFQ32637bXZc9gW1sBoNDIwC5BjjllP2BhkvLwf64O1wv9xThHcwaZ6dvMfei4vx///x0tAuAQD6RCGmyR/jBSHCDLKbrdrTpQvEZxOp1UulxUOh7W5uanRaKSnT59aTzFJJjskcggzSF4KuTLISMLhsLa3ty3/xzsTmUzGItDdble1Wk2lUsmYJIAjuS5IPSkecXR0pF6vp5OTE0nST/3UT5kMg6bm9Nnz0SucpPF4bMVciLgCNHF0OYR8xFaSRdNxyDB+3W7X8tuQYPp8IM8WSIvMAOCHYjjj8diA5vvvv79QzbTZbGp/f1+vvfaa0um0Wq2WNjY2NBgMrNE8rT46nY45twD9Tqejzc1NqxaaSCQ0GAx0fHystbU1tdtt62mWSqWMofvoo4/00UcfqVQqWWuCg4MD1et19Xo9VSoVnZyc6OjoSK+99pqi0agajYZFKAHZR0dHxjL7z5///Of16NEjlUoldTod1et1pVIpe+YUmYGpJWjgx7LkJLBncZSDrCBOj3f+2PM4IBQqQs5MEAgHLJhzhHMeicwqD6dSKQNVsVjMVAKAFiLU0tx5AlSS2+Klm+Sl8Vo4s6PRyBh37hV5qiS7Z+wHYJPcFtrfeGk39+n374vWxo9j85CRkyfsmdXg/3Dv2AjPAPj3YJ5eBFD5fz4D6gm80GKCa8BhZr5wvpjryWRi88/vm83mQlAL55ViTQBSCsL0ej0DCaw/pHfeSfUAl+8BKVQQ9qoGb/+8jNVLRoNjWfZ1UOYtLQILgJ/fG35/e9YH+8f8eYYNgOntIwEPPiPZX1tb0+bmpkkPfSAA9tBXEQW0sbYoKIM9ASgE5bBero2Uk/fx4MszVp5R9WxpUCkRZN/8nDJ32A8/vBSXz3ztWbygTD/I+AXTFwC6AGHP9nomGHDlA0zYZg/8vFTf2wn+3svjPdPv309aBNEvsok+kAUA5xm/6DV4VkF2knWCXSeIF3y/ZdnXyzBeAsIlGDgL/rAlWuWjgysrKybdIq+DHnaZTEaZTEYbGxtqtVpWQOJv//ZvjamgxyAyRxyWra0t5fN5hcNhHR8fmzGi2MfV1ZXK5bIePnyoaDRqgOXZs2fm4FCNDJlnuVzW4eGhLi8vtb29reFwqFwuZ20XMpmMLi8vdXJyonq9rnw+b73uJpNZc3cKoSB3zeVy5kTlcjltb28buAKU+Uit9PGqjhwYHMY4zhTCQP6Ko4V01R/UPB/yKdbW1ix3E3CdSqXUaDTUbDYNlHFgnJ+f28GNI7e6uqoPPvhA+Xxex8fHBqL6/b4VzEEK2Gq1VKvVzHlMpVKqVCq6vLzUkydPDGSGQiHLF4SpSKVSymQyOjw81Hg81ocffmggIRQK6eDgwCqj8vwvLy9VLBYXnE5kqOSl4bhOJhNL/u/1etrd3TXHFACBBBHQQRsOntOyRBy9I+Mlg0FniTXrWWjPEBKV5nC/urpaWNdecsV65Hui1C/KAcNpByz4ypbkBuIAYo8ojsK6kmTBI/YgxWlwHmDQvPzRM56elQQE+kIODGygd1r8wEFi31ar1QVmxpePD/6ffx5B5537omonTp8PZoTDs2ItXB9MYCwWs2q9OOceAHp5HZJLPnhtqpuORqOFgjDT6dSCRr46pV9LgG1khXyN6iTIoOC0SvOcJZ4PIIQCGDjDXvrHGeYDFX5ul2Gw/7yk0gMRL+/0QMUzS8ireZYAAs86sQ48WICxg23mTKUFEHuaXDwUPaFQyFqH8B4E94JMF0yVtw9cCwVmALEeTGDjvCzSBwy8rWMvE2TmbGQd+0qeKysrC+d1cM0GQThf8xpeffEikOkBKDJK5tpLJQnise6RXXpbRuAbRt/7I+x7gDj3hs32wJRcReyVbxn244KLXCfz7a+fv+d77AHX6O+Z68DO+cAc9oOxTPt6GcZLQLgEA4NG6XCqUvqGp9Js81HIA8PTbrdVrVatrxuNT3u9nkqlkkqlkjGEhULBpCorKytKpVLa3Ny0nnP1et3kgJeXl9rZ2TFACuikIijGn35z2WxWp6en6nQ6Ojs7sxya0WheLGY8HlukEhnCZDIxiQXgZmNjQ+1224ArTnG73Va9XrfiFRwQvtANsjyi2z7axUFGlTYfMd/Z2bGqorRhQGrGoeHlZByA0gwwbWxsmIyXIj+dTkfXr1+3dhorK7Oqohzi3HM0GtXW1pa63a6xZsfHx9b/EQA8nU6twmyz2VSxWDRZaalUUr1e1507d7S9vW0l/YvFol5//XXV63WrwJnL5RSPx/XOO+9oa2vL5GGTyUSHh4cmPYO9WVlZMWcCILi2tqbd3V3LiQyFQsZeXF1dqVAoSJq1gajVahZFJp8N6Sj368eyHDDk4cCweWnoixwU78R7GSSvRQ+wfr9vRR+keR7R2tqayQJhgXwxBiQ/sGUoDkKhkNkI5j4YwfaOAPZgZWVlIUcWYEo0GifIV1P1kjQkojiOAFfy1bzcjPnBQfaRfs8AwI7B3OMYYof43jvB/oPX8869BzdethcM3nFNOITJZFKJRMJksZPJxCohYk8oWMV8AtJWVuZNvgFbVAqdTCYWVPM5oZHIrEIkygzez7NZvI7PqfJ5QZwrkhYK6iA9k2RBHUaQRfXf+7Es+9oz5tIiIMT552u/ziQtrC+etS/m4dsTRCLz3p8+184XWdnc3DTVCGknAA72C/1e6XUMMPCqIb92feAF4IMt+nEAwNsr9p5nzT0L6NlkH/jguvk5qhRJtj88W8lr00gedRWFk14k2cVGeNAOcA8GoHzQDBvjAST3gB/iC+Agn/WBNQLnzBd7FNs6mUysii/XSAAWP0HSwjX74WW+wRxNgtcE/vw9cG9e+eDXrrdJPgXAz9PL8ekYLwHhEozLy0utra2p0WhoOp2q1WpZvpl3pkOhWQ+/cDhsJdVv376tjY0N7e7uqtFo6O7duwaaHj16pPF4rNu3b6ter+vp06d2eNAagtLjsDSZTMaMAjLDfr+vvb09M3g0Js7lcnr33XeNGTs8PNSrr76qarWqer2uQqGgbrerRCJhzcmHw1kT9UgkonQ6rWvXrimfzy8wRjBMKysrViV1PJ611rhx44YkqdVqKZVKWV5jNptVtVo1g4URRPaGPArQjcMFMInH48pmszo/P1/ol3dxcWFlu8nXazabBkSz2awdml5+kkgkLPcqGo3q+vXrBvqR8cXjcWvlQAGKJ0+eSJo73cViUZJUr9dVq9V0//59kxjfuHHD1g39ECVpe3vbyv43Gg394Ac/kCSdnJzo5s2bOjw81O7urrXHuLy8VCaT0UcffWQtMIiWkoBOuwoA3Xg8tr5QABkCBP1+X6enpyqXyyZZo88mjjJBjSCb4EH3P/cRLATgHQTfh5KDH0fJF/bg5+S2IMXk95PJRKlUythEgjNra2tKJpPGHvAzGOogiPK5JDBskqxH2OHhoUmHyCdBruzzn3B0+b/pdGp5z0FmCjBKtNoHDSRZAMc7jDCigG2fZ0WAjKAYDhbryzuASJiDjiHPh8/eIcS2BCVfHhQS3KJ1DS0lcPRp78K9+uItOOL0+eM5sfeQbzHffCBLhvEBNNAeg7+BpfTsnk85wCn0+UnBghYED3i+zCNgwgMG7yj+U+zrX//1X9fbb7+t69ev6w/+4A8WAkl//Md/rN/7vd/TZDLR7/zO7+gLX/jCJ3qvv28A4r1MkHUEIPTVZQGIfs1hCwh4drtdA3kED3iunE9IRanEzXoK2g1pXk2WxvPYDiSmPLNWq2WBG+wAwBSbwntJi2uEwFM0GrX1wLnKfkL1w71L8zQL8lkJDLHv+d9QaF7FGFUJgRAAOTJqVCj1et32b7fbtWC7r5bsU3K8TJa/Zf/4IAogywdVeDbYWOT6/tzExxqPZ5W88Z3wK3hfAjOkyXBtzKm/Ds8QwtoBBr20nZ9L82AN9+BVVNgezyzyrFmrrGOCuIxlOq+XYbwEhEswcMroyTUez3LZyPPz0cNQKGRsG6zd+fm5tra2tLu7q5WVFT19+tSc7bW1NRWLRcViMf3whz9UOp1ecCgmk4kdQP1+3w6PWCymDz/8UN1uV9ls1qJlg8FAjUbDcmOKxaK2trYUjUb1+uuvmzHd3t5WuVzWeDxWPp836RrA8/LyUj/4wQ8MUCBVmU5n+Q+5XM4ki5ubm1pbW9PBwYEZpuFwqLOzM8ViMTWbTbVaLTs8cKCZV4AIzAMHmmcxvRyv1+vZ7zhYOUTIKfQtMdLptIbDobLZrMbjWb+3SCSi3d1dOziTyaSazaaBWFi3ZrOpXq+nYrFoxWckaWNjY6HylyQrpb+yMis28eGHH+rZs2fmkHBQPXv2TMVi0a6bXLZwOKx33nnHpISj0ciK37TbbXW7XU2nsxYTAPRyuWyOAkVJGo2GHeKsJyqr0qz+6OjIAgUwSe1224Ak94QD4seyRBy9NAkAxtr10jLPaDMXviALwATgRK4gz12SgQsYoYuLCyvsRBQbdg7GHcAGwPJAhdYiRKZ93zIcIQIggC+cWIAnDDN7gH3nZZX+exgwmJGgvNazhQBC9ixBHhw85pgoPM/DPxMc9aA8FGfJr0NAFc8HRwl7xlwyN9Fo1J4RtgV7wfUQ/b+6ujLZNWwuQJZ5w2Hm2WJ/WSMUwPL7Hacb5xVnkPf3MjOAnHd6uS/fPoQziPXKGYV9wLa8yEn8JPv67/7u73R0dKS//Mu/1G/91m/p29/+tn71V39VknR8fKw//dM/1Z//+Z9/zJb83xisDX+GeoYpmKMWXGM43wQSkQ7yfwTecOABZjjjGxsbBlgICvnzC5viGXHeG1UA4HU8Hhvg8ns4yGjyvbdR7HUPRljnFK2jmA0AxwMOb2/83PI+sIUEofz7sj7H47Gxg/R2hRn0voK3u37fM/fsC9atl29jc4N7OZ1OmyKDHsKeIeTZYiuwDdhVaZ4vyL37AlW0+vFsKNfEc/KyYg/4PJvq/8YHbbzk3T/noIQeG8zeDu7jZTmvl2G8BIRLMDDMHOqtVkudTsciXET7S6WS+v2+RX5ofr6xsaFkMqnDw0Nls1m99tpruri4sJ54yABhm8hbIKrX7/eVSqUsEk0+XTQaVa/XU7lcXpCOxuNxYzMxXDCLjUbDCsUgj6LADPKn4XCox48fmxNXKBQ0GAyUz+etV9/5+bk1aZ9OpyZBRDaaTCatrQVGFEfOl4WnIAKHE8aV94atCQJCH8XjkKWMtzRnL7rdrh2MBwcHyufzevLkibUDicViarVaOjg40Pn5uY6OjizXgwqdjUZD6+vr2tra0vHxsbLZ7AJD0Ov17HBEzpnJZKwa6vHxscLhsG7dumWgADBbq9Xs4BqNRmo2m9rZ2VG329WNGzeM9STPFJBHJdBisajBYGAHGQAPFoMIdSQSUafTsWun1yKMCKAwn8/bYekroPmxLAdMUCblJUdBFkGa96RisEZ9rgcgCDaPaDSHuHfmARG0XkCCKMmcNpwdSQvgia+J1Ptnls/nzS4BNMbjseUQI4GD8eD+ca68JMkzSr6YCvOGI8ac+Qi3B9X8ry+Gwr71sj1sbVAuFsz/wkljLoOSPoAZTpsPdNA31TuPPA8fta9UKgusqTRvaM2cMO/eGQVU8nOknTi8fv346/B5Qd5pJFDB+zJP7E/um3nktbCVrVZrAQizboKg8JPs67ffflu/9Eu/JEn65V/+Zf3hH/6hAcLvfOc7Wltb0y/+4i9qa2tL3/rWt6wtz/+N4YMw2La/DwwGJcie5ZFkZzEBTUCSny+CNJ6J80Dey1QBFOwv2HdsCQGCRCJhebXYcNhC6eOFlNi/XipJwMdLRlk3KyvzXr2S7Dq5Lh8kY3DOeWWAl1pyXewhpOCk2PgcQs/aBtUA/nvsLAEngGKwCbs0bzQPIGTNkyuMTQVswegTtGHvhEKz/GIfiMEWewDG/fpCTePx2EAnc4yNZs/z9x4QBgMSBIykuc31Qa9g/qFf334sy3m9DOMlIFyC4YtqNJtNY+YkmZwknU6bsaVQyeHhobWb2N7e1vHxser1uuLxuG7evGkylM3NTWN+eF0cJ6QOu7u71qNuMpn1lEskEsb0HR0dGWB99OiRTk9Pdf36de3v71vuwsXFhbW9GI/HOj09NYMIc4RkIxKJaHt72w4XGAici0KhYPcJSF1ZWVGpVDKgmUql9O6772plZUWvvvqqnjx5oocPH+ratWvWpxEwNRqNzCFmTjHsHNAcBjjDw+HQyq2TXynJcgBXVmY5P41Gw5rLP3z40ArohEIhVatV5XI5k9w9efJEKysrSqfT6vf7KpfL2t/ftyb00gxAwxbQZD6VSmlvb0/f+973LL9vOp2q0WgYSDs9PTWHs1gsqtFomKS13W4rmUwugEbu/+TkRO+8847dF2stEolYMZlsNqtWq2WRairPInkiUkyFWt7z4cOHymQyJp/DeYXl8IBIWi4JipcjeRBBk3QqwcLoBNmhZDJpvTGZUyqN0r/TV4Bjb+H04ZSSV8c84xTgUCBvTKVS1lMzKGv14B3WGqYSJ4e9HJRJ+n3G2oK9wwEhOp5MJu3euAZpnisE8Oz3++Zw+3xEvuc+ic5LWnBCkWWRUwy48+oA+jhyjQBN7J2PsJdKJev1GIlErPIuhZyws6VSyQDC5ubmgtx1ZWWWG4xD2e12F8CEl8Ii/cdRozgTMl7Wi7dt2CzPJEhaYCx8aXnAIkABeSsqh9FoZHnPBMUAYkEm4Sfd1wcHB/rKV74iSfryl7+sL3/5y5Jm5+LW1pakWVpDo9Gw/zk7O1OtVtOf/dmf6Vvf+pZ+93d/V7/xG7/xf7ZZ/w+GlxJ7cMdz8rlrvtgJzxnbyu+RQ2JPcfj5W2SkOO8ekBK89AEBH1z278f/sXbYA34ds2cJJnn2LsgI0m4IcAhgJSAizYNYSDs9EEM5AAPI+3kw6G0Z9gBmnTlvt9um5KF4GQFcLxHnbPfyUVIj2N/hcNjqEyB/5eeh0KzCeTg8awvFvsZu+YAXQRG/D9bX13V5eWl7mFQZGFkAF2cidtZLQZkzb5d8gACgyNdcN8oBb2+4NvZ6EIgy+LugjF5arvN6GcZLQLgEg4O/3++rUqmo2WwulGxPpVIql8vKZrOq1WqWJ0g5dYAJOYdf+MIXdHR0ZMnWyM4KhYIZN36+vr6uWq1mh8ONGzf06NEjhcNh+3ui141Gww64UqlkuQwAjHK5rNFopGKxaIdbr9fTzZs3DZAgY8UIplIpk5WEw7N2GbBI9BWkWiC5bBjOZrNpzh3GG8fUsysYsna7veAce4fJy/FwIindDls7nU4t7wknbDKZVdWsVqtaX1/X4eGhzffOzo62trbU6XR0eHioUqm0cNhyf5QPpzhNPp9Xt9tVKpWyXDxkutls1iSbgGSiuHt7eyqXy5aDCiPb7/eVy+VULBZ1enpqzDNOO2siKOUjetvtdrW6uqput6uTkxNtbm4qHo8bACG3Q5rLn3FQyE2T5tUrQ6GQGo2GSU0JUjCWJeKIs+XlZDhDODasIZ/cL81VAzwTHARpsTUCn2HEsBmsCZxFHE4YDV8OHVYCpguHAIeSQlAeuHMdPrpPPouPTAMicVoSiYTJVimQ5EEzgFeS5ar4CDcgxlfIpBCDfx1ApnfIPCDEOfLyLF+Awjta/n5Z18i3cMy8s428jXn0DB1sgZfgeTkwsktYFQIE2DjeA/sIg4iTiLPuXzvIVhKAY74I0vB+XA+Oa1Ay5n+OFBCHk+fyIkfxJ9nXe3t7+pM/+ZOP/ZyCWNJMJZLP5xd+9/M///MKhUL6hV/4Bf3mb/7mP/g+n2T4ffkiFsUzKZ6V8s63X5OcRZzhBNgIeqCY8WkbrE8YN9jaYIVKzjGui2coyZ6xb0fgn5lnqz2Tz//6swfgAnjlPoOFw7hfb+vYb/5r7BmDNew/OJ+8LfVScS8N9cyg/+wlxpyn/jmSUwjYZe8BfLk3D4yxOUF77YN6HtTDUvIcvWzW2x+ulZ+xHrwdgsHFlngwyYe3QzwLv4b9+3l5r59LP5blvF6G8RIQLsEg+gIoZCDVY+NSTCKZTJo8YjKZqFQqqdVqWc87wMmNGzd0eHioTCZjzYyRQpD3dnV1pUQiYfIRKkUCtCaTWYXLSCSiZrOpdrstScrn8yZ9xBFBMjYajXRwcKBweNYXsNvtKhaL2edoNGrXlMvl7Gd7e3vq9XpKpVKq1+sW9SPiXq1WdXx8bM4f5e9brZaePXumUCikzc3NBdkDBpoIO0yCd+i8nh9HHMDX6XQsMRwHjK9hOlqtlkqlkklbcYLJg6rVatrd3dV0OlUmkzFWwh96VAE9OTmxgi+JREJ7e3s6Pj62/FAKjaTTaVUqFStpn06nDdQXi0VdXV1ZT8oPPvhAkowBhnEeDAY6OjrS2dmZJC1ICqfTWZ842MpKpaKjoyNtbW3ZoY6zubKyYgV5ksmksTrMOQ4teaHT6dQ+k/vp98KyHDBeNsaBz57zYFCaR2UBZkTGcUZghVn3Xg4YdC48S4MsmrXKmuOZdDodi5jjwFBQCVsBAMIBa7Va5sACPnyOoL8mbxuQrXrA4B1ov2eDLRF8BDsUmlcgxPEKAhdJC86ONHfM2Ns4hnz4thQ+Mj+ZTKw1EPeCpBxmwAeweC9AKQwu4M1L1QgueeaONTAYDIwpRAIOYERS7h1J5IIwHp714BoAnnz2MlI/d1wvz4czwQNGziUvgfY5z0Hm/5Ps6y9+8Yv65je/qa9+9av67ne/qzfffNN+9+abb+ob3/iGJOmdd97RzZs3/9Hv85MMAhPsJ2meL+w/B3NTvZxvOp0VW4rFYpaywGt76aiv5sszBMiEQiE70wgOB3MGpfm6JxAizVuJeLvk9yDDAzj+nr2BjQL4EeSkaBoBXwLDfp35teEriwa/5hpYl6whbAjz5VlZP/8e/DEvHjAzD/65EiTjGlKp1IJNCIJAH/jyoMpfC8wf9ptrwU+A0fTS2B+3Z7y98Aywfyaw9T445O0L1xx83sHv2fdBGf8/dI0vx/+b8RIQLsGgl1Qul1M6nbZegPTDw+k5PT3V48ePjU36m7/5G2sync1mde3aNWO3IpGI3n33XW1sbCibzVqSN/3hqtWq8vm82u22SaPi8bjOz89NBnHv3j39zd/8jWq1miaTiba2thSJRHRwcGBVvTKZjB0m2WxW7733nkkqaFNQLBYt2brb7apQKJgjgnQzm80qkUioUqloMpm1wPCHFnkWyLuQSRIVTSaT5qBeXl4aeINloPgMxpR+jhhMDh1/AAKwwuGwlXjHKaYAz8/8zM/onXfe0dramlqtlm7fvm1OfKPRUL1e171796z6JgnoFxcXKhaL1gbi4uLCnl8kEtGNGzeUz+f1+PFjbW9vKx6Pq1arWd5krVYzcAhQ/9f/+l9bpJgIOrJhnGCqvb7++ut655139MMf/lDRaNQK4pBryDPl/SaTiR4/fqx+v69kMmmOcTwe161bt4zJAJAjJ/Mghkhuu93WgwcPlM1m1W63X8g8LcPAcWMNIW8ieOPZM9ZhUComzfuFtVotc0I5+IfDoQEEJH0EWJjv9fV1a9I+mUyMIUa+iqPY6/UMbCEjxEFCzgVLzj2hMgiFZr02pTnz4PNpALcw7Dgk3BtrBhsFAPTsFnMI8ANYexBNdWLvfHo5Fo4Nkkfum9cajUaW/yjNATpzTX4sxaUGg4E2Njbsb5lvnDVAIvMI2w7IDgLnRCKxYMP939Df1Ms6PWOJg+vZGK+WYPDMAAPMJ46iL2ThgSP7ElWBd2Q7nY7ZSNZ90FH8JPv6jTfeUKlU0pe+9CXt7+/r61//ur72ta/prbfe0muvvaa9vT393M/9nNbW1vRHf/RH/+j3+UlGkMHxLD7zwt5jnRBgg0FGao90m6AY83ZxcaFWq2X7pdlsWiACQAFwAexwJrFf2VcEEXi2khZACmoe3+LKg0PYSdQj7GlfNIqK06lUSul02oI0ADzkzj4ghmRcmsu7sZfMMX/Da/Ea7KfxeFaADzDImU0wkteiuqcP/DAfzIlXWQTBMTaaIChBFeaFAD0BM/YjaQFe8u5ZdOw56wN7Ji32osQ+eFuPGoP5Jq8R+0X1aWwrkloqsRJQAlB7NtEHO7gOAvE+gCstz3m9DOMlIFyC4RO1O52Onj59aq0FqCxJk3Zp5hg8evTIWCMOZEAjxWAAaeR2razM+uARQaJ4DVFlL33CUJyenioej1tvKwDq4eGhhsOhXnvtNUmzPMh3333XnA+i561Wy/IlkHTW63UDKVdXs4bzmUxGqVRKuVxOkiw/ATB87do1dbtdkxpizCORiHZ2dhSPx3V2drYgs0Ue4SNmHETIboiEMzDSOEDIX/gdhyYMa7vdVqfTUaFQUKVSsWc1HA61tbVlhndlZUW3bt3S+++/bwn9gFaefbVa1fn5uVUfJe/u4uLCWBzAbD6ft4gwuUg4ALVaTRsbGzo+PlY0GlWr1VKr1TLmKBwO6/Hjxzo4ODBASc4BCeo465PJRLVaTeFwWFtbWxbZpJdgNBq1AzWfzy9IbQlC4EgQROAg51D1EpRlijhyqAYPZC//kuYFIwhW+Dwd5ttLqvzvcNalucTSO0xeQoUjAjjndziDOLXBAx8bI82ZOpxYHAnk1t6Jwonx0XRK0iOfY5/i1HqpMeCMPBuYFR+lZp3yc8Cjl2x6aS33CPjzDqIHVB7Y4KT64hSTycRa8FDFmGARbVn4uyBYQKmB1BU1hn8eMD7hcHjBUWddpdNpA/BItl8U3eds8QCP5who9baY3zGCMkE+A/qZGxhl5hin2r/OJ93XsICMt956y77+7d/+7U/02v8ng2Am6wpQ4M8Nv8aYa58TJs0leX5tMvfj8Vj9ft/OJ4qmwO4D6HgP1g02xMud/TnHnvBA1itivA/g7QGvcXFxYdVyeb1wOGw5sgAVghL09PW5bQAgzlq/tn01Uc+4BQuPeUDopYyelQvKRT1biP31ubQ+kOTfz8swPVvOOsf+ANabzaY9/1artVBNWJr3sQxKVP08sAYIQnm5u6QFu+pBIoExgC62mbXlA4KsRc6UIAvrcww9y+wB4DKd18swXgLCJRhEhMnHIqm8XC6bvO7Bgwf6/Oc/r8FgIGm2WfP5vE5OTrS/v29OJXkH7Xbbiq/ghLz22mvGOsL6UbWSTc/nZrOpXC5nVQUxZrBcMEZbW1uqVCra29tTt9vV8+fPLSfyC1/4gs7Pz1WtVrW2tqaTkxONx7PeR9evX9dkMrHoJMY6k8mYc4LRgq3AKF1eXiocDhuoo4w+zBWgJB6Pq9frmXEk+schRE6Fl40wVwAj8qpGo5GBuEKhYIdeNpvVzs6Odnd3NR6P9cYbb+js7EyZTEbb29t6+PChWq2WyuWyJpOJ7t+/rx/96EcWmc3lcnbvR0dHxioSpfeSHK7vxo0bWllZMelwrVazgAFsKsVdxuOx9vf3rR/keDy2Ii+vvvqq5Sb6RvHD4axyYjab1ePHj+1aJRmDEY1GLdeRAwvZca/XW+hXlEgkVK1WdXZ29rG1BNj1Y1kOGIAV94ND5/PFpJkjAiuGcwXY872qcHDG41nBmX6/b84llWWZS5yey8tLAyhIlflM7iYR+6CU2gdLcJp80Qei9wCxoIyYn+O0eNAmzaPu7E+cOQrlEOnGUQIQekmqJIuq+5y4UGheqMqDSD57qSjv6xkDAK9XDXBtONw8G54z7CzBLy/j9GySf3/m//z83OYdB907pwBuHH2AACyglyX6iP6LnDuGX2/+uoLMF2CA58a64Fkz9zj+2EwPCP0+WIbBvXgn2QNDn2vlc8eYM9Yoc+Tz1XgNGEAYMl7fByVYB17ay+BrDx7Y1x7A+mAGw4NL/3MvXWePIZdOJpN2RgKoCJzSnsHLTLnm4Psyp169E8xb4+eeqfayUP9z/5l7DjJ+yHQBRb5f8WAwsCJ1XqrOPbB/ydsnx5/As5e8si+9HJ3zAH+IYJhn/31usH8t7KuXjFLd2QNELw1Hfsz54IMRPvjNmvN2y4PS4F54Of7fj5eAcAlGOBw2eUgikdCtW7c0HA4NfEUiEZXLZZ2enioWi6nf71vrB9iEg4MD9Xo9bW1tqd1uq1wuKxaL6eTkRKenp7p165bOzs7UarUUDoet3QDRdyrHIYEKMojf//737RDByNMDESfk7t27kmZJ/oPBQAcHB+YMJRIJK0YizStp0qOw0Wjo2rVruri40O3bt3VycmItLGh7wXs3Gg0VCgWrnjoej3V0dGSviwxsOp1qf3/fonU44ZeXl6avxyhjSH1lSA6yZrNp14k8LJvN6vnz50qlUnZYwEDCnlHApVarqVwuq9PpmAPtW0pQHfTp06dKJpN2aAJyAck8HxjWer2uVqulbDZrkth+v692u23tJVKplFKplHq9nnK5nNrttp4+farT01Pt7e1ZvimRUtjUQqGgQqGgcrls7LIkKzSEpM7L3CaTiVVSpCIpbPWNGze0t7enUqmker2uW7duaTweq9PpLG2jW5gjH2DgMEbmS94NVV9htJHshsNhAxmsMaL5OBGslVBoVqwHu0ABJgqI4KDA9sNSARY8Q+wj59IcVOGY+e8BhuVy2SprsgcIagB4M5mMvS77EDBIzm6hULAWMeQeUX2Y6DyOEp9xhoh24wR5Bgbg6CVkzDGNvwHp5+fnSqfTBs5DoZA5vDiYXB+BN3KNJZnEtt1uKx6PW9DNB8AA9Ofn56rX6+ZcNhoNk6x7pgfnHeeVZzGZTCwnNygRBLwyP8hFvZ2haAnNvFkDOIk+FxWHFacaQAjjTNVc6eM5hMuyr2GmvKQZp3o8nvfFI3DDeiQXn+8Beo1GQ91u19g/5o3gMHtY0gLYDLK6PrcTpttXKPUMIWc5oILnCGPEe/EBE8b5NZnMqmSm02klk0lls1llMhllMpkFWTgpHvwOQEGgxwM17hvgKMkCY5xNPu/P72vAGlJwH/zia/Y7QR9AE3vNy659JVPy/LBTvsATr9vtdhfUR6wPrxIhz9KrEPA/2J88f/Y4zDuADLDIHLO+sF2ZTEaxWMyK/BGEwOdgnXEd2DFeI5hXGJTOBqXgy7Svl2G8BIRLMKiW6R2un/mZnzHQcHFxoVwuZ8VAiPifnZ0plUqp2+1a8RYMLdU7C4WCOQS5XE4nJycmeQTMXV1dLVRwo7dePB7X8fGxGTKclZOTE+u5g2FEotrv97Wzs6NweFbd8uzsTK+88opyuZzC4bCq1aodVJKMuSMfDiNKj58f/ehHqtVqarfbikZnDd53dnZMxkbOEL250um0nj9/blFLpJyxWMzukXsj4j8cDq3BPIn8PrcgGp21wUgkEhb9Rr47GAyUyWR0/fp1q/i6u7ur09NThUIhq+Y6GAwsl5NDi0PcV8zjMLl3755SqZSm06nq9boxuZ1OR81mU/V6XaFQSI8fP9bnP//5BZYgn8/r9u3bVhRmMpno1VdfNenvaDRSLpdTtVq19yVay/D5UOVy2RxYDqHpdGrsq48mso5xRGhhQHCAwwwGq1AoGJhnLEvEkYiul9b6HBgAE3lmSI+QScM0MR+AEZ4DgIJD3Oc24cAhP/R5nBT6AUxJsusjKu5l1NyLZ9r8esFJ6PV6tg+9rAoH0rP0XvKdSqVsb+IswbDBOo9GI9tfXr71Iskec+AZKq4bZ4vfYYu8JJVcJWwLzinvx/94mSa2EAcKwO5zD5lvnkWn07EcKOTfk8lEnU5nAYj5PEP2ENF9ng15adwrz8+zIAD+9fX1hQqJPt/MO6q+NyLsoyRTBfhcR0kLaw32xo9l2dceKEtzp9jntErzXp+w4JyjwWALrxEsBsPP2W+ANkCD33/SYp4b+8g/Y88y8XqeReZMDjLwADa+ptiRl7P7YkO+sJIkyzeHueLDz5skA4f+fRk+py0IWJgzLxP1rKFnBmHUuIaVlRX7PddDIIa9OxrNeh2yx2ByfV68b2vBHiBgIM3l2zwX9ppncZkHGFvWBOAf2+VzenmOrDXa3CQSCesJzLrhdfF9xuOxYrGY2TW/NmAFCQx5dcFLhvDTO14CwiUY5KMgTSiVSlpfXzc2ZWNjw3LFfA7PjRs31Gg0rBBIrVbTcDi0RvD0vKInoY/+8/P19XVVq1UVCgU9fvzYDMF4PNbJyYlpzjFYnkUA2OBs9Pt9Y+AofNLpdPT48WOLlB8fH1tkVJoZwmQyqXQ6bbkKgIj19XW1221du3ZN6XTanFwM3tOnT5XP500+enV1ZT3ybty4oXQ6rVwuZw75kydPJC0eskT/ifbDoCLNpR/gZDIxYBaNRtVoNHR5eamjoyNtb2+bxKTX66nT6ajT6Whvb89aXVQqFbXbbe3v7+v69et6+vSp5Rycnp6ajAZH96OPPrJoPuxpOBzWgwcP7DAlwlmr1VQqlVSpVOzQqVQqVtmTlhDhcNgaxVerVW1ubi5UpIQpoVgM+SCbm5sm7wyHw+p0OppOZ30tqVLJ9QQj4DgCg8FA6+vryufzls/oK7n5sUwHDHtNWmyr4PsHwjDB2HP/ABGcIaRHRLUlLTiiRIJXV1fVarWMXWPf4CzBjsGMA7L8NQedVqL0Pk/KO5P8DmcxnU4vSKX4e89G4rCydpBGezYCJ4eovHdOcGB4TZwXL/Nk+Ig9oA5byNc4hDiwsIasT57VxcWFBTMA7ciqmYfhcGgSYeZzbW3N8kc7nY6q1arlb3a7XQMSMHHSXI5KwAcnkEAhA/APa+pz1Xi+vjAFACH4cx8II8jAfPu8Kf6Pdcjaw7HEafZjWfb1ixgSgrmsH1ha5JPr6+vKZDJWgIl0B2ku6SRP3OcRsmdIdQAY+CCBB2QAGc9C8eHZZp4p7yEtFsvxX7PeCJZ4MMi+C14H18+1xONxC1KPRiM7U/19cm8Mfy7AZEmLDdM9IAzmCQKcPaDmTOK6yNH1UkiuBdtKYAbWjten3YoHnag3PMj2ANBLhn1uL4P9xb35YBSDe/K2l+dOsAfigDOZeb24uLBg22QysboOPGsfYOOZYu/9evhx++Hl+H87XgLCJRiwfbu7uyoWi4rFYspms7p165bJypBP0pqBilTIBZ8+fWq9AU9OTlSpVJRKpXR1daWTkxPFYjE9ePDAmLJMJmO5bY8ePbKqo0jZjo+PzVBStAXHU5oXl6hUKgqFZsVwMJRnZ2daWVlRJpMx8JdKpUyCSGT88ePHBhiQuEkzRqVer2s0Gulzn/ucsYf007u6utL169ctuj4cDlWv1012RaGU8XjW8iGXy5mDd3p6qkgkYsCOQ4vIoCQzlB999JHJq5rNpqQZQCyXy1ZuvtFoaDqdWjsMIveRSESnp6cmIW02m+Ysfv/731ehUNBkMivYQvN4r9OnWhsAYDqd6sGDB8rn8+r1egb87ty5o52dHUkySbGvbifJWgwgPdre3lYul9PBwYFJZH0uo0/0v3nzprUi4bAZj2eFgfL5vAUgdnZ27PDkWXlGAXBycnKi0WhkDeslqVgs2l5YJgkKzgAHM0w2sk/PLk2nUwOEHPaAjU6no1arteAgjEYjJZNJc2xY9wBsgg2SrDohjivRaqL5OCi+oTngRppXq8T5ApyQs0gk24MhKo5yfT7HkDmh7L40AxQElGDhB4OBATAcVNY1AS6c6aCTBaDl2qfTqTGS3pHle+6LqDoSLxwgHGDawYTDYbMxAERa8lBQCzAL00mBiX6/r2azuaAMgWnBucIhw5n2A6bRg3OfQ4Ut8RJCZLysGQ/IYW7Ix+b50u7Cpy/wP7wHrDbvAzsadByXaV97UM76wz6GQqEFW0rlzWQyaWkHo9HIiqNxprKGabLO+Yqz7lkiD8I8uw349MGMaDRqCgTPSPnrB0wQKGEtAqg8KKAgSiQSMT8C5o3X5OzwQCMcDmtjY8MCBuQsEwT2oM7LWSkwxXV5dRH34SWjXibKvpRkEmnmCVvhK2Gzl5HN9no9mzdstH9t398xyELyTHgO7DkP1L0Kw8t3sTvMoQeI+Ajn5+e2v70d8CwswV3yoZHLwhBOp1MLRnp1BOvNBw18wMyPZdrXyzBeAsIlGP1+36KyvpCLNKuWibyKXKxqtapsNmtVNYfDoW7fvq2zszMlEglz8iuVioEKin3g1KyvrxvIKRQKCoVmZeNhhDY3N3V0dGQOHkwXESwMlo8Ec3DAcmDo0+m09dkjFwBZ5uXlpbF80ei855Y0r5p4cHCgWCymWq22EOW/uroyZ5dDKplMWn5kKpXS3t6eWq2Wzs7OzLhSNr3X62l3d9cOE9iujY0Nc559Urc0Ay9+7vf29nTz5k1VKhUDqhQDqdfr6nQ6isfjJrPt9/u6efOmtre3tbW1pcPDQzvIyuWyTk5OFI/HLdcLYw/Y5pmSm8EBRXR2OJy1IOFvqeJIAIEcRBLpqZK4sbFhbCGH7ng8NpB+dXWlGzduWAQUWXEkErEiO9I82uuT931OJLkP5EHCoPixLBFHH12X5tIpvvaOHIeud45wuAkKcEiPx2NrNwPIh3FgfwTZI9Zz8L19RVNkj+xFhmdBAFesOS8T9NVJKWqEhIocQv9/QVDhP7gO3tPLL30Ol7/eoMyVAfjG6eZnMIPSvLohYNmDYOYShxpHEPkWknD2FICV3CVym1AZUGmW5+EZV/8+yP1wXr0cm7XFtbHOvK34cSwSIAKmBLuPvBE2xO9D5gUlSJAthmHk2QXZHtbRMgy/b2H7fXVMn3tHQBFHHSaR58veHo1G1geWZ4dtxFH3e8ODfp8vyAfXBBscrHDqcx498PKyZGnOTAP4+F8P3rx98JJy//XKyqxwFvn2tMFhvlg/QVafgDJ2g3Uszdc86zAoUScoxBxzFvm2KgTTksnkgiyWtcp+4ufYOi9TxRawnwFhQabWS7L5GqDlA0FeTuv3OvYJkMYz8FJ5z3IGPzxw8/bAS1CZR88e+3llTvxYln29DOMlIFyCcXV1Zc1PyS/K5/MW2eFAQBIKoEMaRq8/mByiwel0Wqenp7axm82mHfwkSbdaLR0cHGhnZ8eKImSzWQMdl5eXqlQq5nhRLAJD4aVvOFnINRiwU7VazRqbY+w7nY4lU6+srBiDx88w+lTe5ECjxQMOM4wEgIiouM/14O9hWyiJPZlMrHUDkcH19XUVi0VdXFxod3fXpJbc63Q61c7Oji4vL3V8fGz5RDjtSD8BwJ1Ox8DZzZs3dXBwoFwup0KhYDmc6+vrSiQSJkfjgDo8PDR56tnZmba2tiwaiATNH57cc7/fV7VatTmKRqOq1Wp6//33TXIMK0N/Qf4fGV88Htfm5qYk6fnz5yaHQlI6mUx07do1ra6uqtlsGhs6nU5Vq9UsR47Pk8nE8jESiYTOzs6MJZKWq4y1Z6skLThzOAY4K5LsYOeZAkr4HxwmH8X3rBjgxctEvaNBdN4zazhKAEIAQVAyyv72oBIwJ8kcE/4GG+WLXcCCehYA59jLsnhv1jPsC6wC98Na9fMAiONv/GDvevCCg8je5VlQ7Ib/YU8xnzwHpM84eQA22NrV1VnlZyq69no9yzNjTqR5KwPsln8e3u55Z1TSghyY5831cC88d66R/MhYLKb19XVls1n7G+YFFofn6hkkbLNfI9gggIU0r3LJ75dlX0sy2wgLTH8+H5TBJpMrTJqFJMu1JdjL2UlfXfoU8jo+YOTBoA8aAAKDuWovYqU8gJNkz5ZnBGPEGsb2BAN+AAnWJPaA1yethACXT0fAJvk8RC+x57r4O/aIL6b0IiAqaYGx9XuIOeCavXQVm+gDLT5ABwPumTRv8/xr+NxNPvtnxc+lebEoXtvnRzNvgGbOEP7PS2R5Jih1sK3cqw86Bc8h/jcIypl3/4yDkull2tf/3MdLQLgEgxyr4XBo8rlWq6Xt7W198MEHlkd2+/ZtK21+fn5uBwZVR6UZw0ge3OrqqsrlsvL5vBqNhlqtlq6urlSv13Xt2jWFQiGl02kVi0U7DKiOhhND3hgNT8fjsRUVCUqFMCYcDBQtwcA+fPjQnLqLiwudnJzo9u3bqtfrurq6sr57MJq0xrh586aBC2nOaPpk6WazadVFiWIDNldXV9Vut/Xuu+9qOp1qY2NDsVhMd+/eVTKZVLVaNaYL2ejNmze1urpqeXb7+/v6wQ9+oI2NDZOJXl5eqt1uW4P5zc1Nc66q1ao+/PBDtVotvf766yqVSiaFJfJ3dnamYrGojY0NnZycqFgs2hwCaqvVqrGpknTt2jWr7grzQq/H8Xhs90/OZ71eNyeAIkOwqM+ePVtgWenziBzPfzDP/C2gIZvNWtuLi4sLk/rC5NBHjoI2FxcXyufzKpfLtuaDOYTLIkGJx+PmNOMc0jA4Gp217YhGo0qlUpZ712g0DHxRYQ5AiQMBoMLRkeZRW1gJaX6Ye2d/dXXVKuwiJ/MSSR9Vl+YFY5AZjUbzQkw8N5i7brdr7CHPHBUAToc0c0ZSqZQx4el0WpIWqg7iSErzNhI4kaurqyoUCvY7mG1fmMevKc804jgmk0lzUFOplNkcHLqNjQ2ThgHcRqORFbdiznkN5oW9Ri8yaV6qn+8BV3xPbiL7i+fDhwfoQVaO98W5Q3bs2X/mh3lEaogzKM3bHgACeA3/DNj3Pg+N9UGxIIJU2CA/lmVfe6YpGo1aVUdAuGewMpmMzRnSfS/hJ4AKy+wVL8ixpcUWEp4JDEpDOe+8VDGVSi2whNI8sIA8Eumml2ezH/3zxfaQroGPQBCLQAn/QwCE3ncAYJRL3D82ErbKjyBD6oFNkIXE9vln5XNkCWoDCnl/Saa0GI1G1s+Zc5HAC8AOgO/ZOeaXfowEPXkmBA383ub+2GuekfVnh2dtuS/mmOrlBHbxyVBbodQgB9KDZs8yY/+YWx/cwC5je/xYln29DOMlIFyCkc1mrTSzNxrRaFSbm5uq1WoKhUJ69uyZksmkGo2GcrmcSfroJYckpVQqWT4LGvnd3V2l02krNkGbAiSpGBdfIUuSRcnR8cP0EK0kAucT4SlrTHEZjPnV1ZW63a6xcdwjkqVer6disahMJqOnT58qHA4rn8+b5p+cIl81cTKZqFKpWBNnHDQYUPIiS6WSFc7J5XJKpVKKRCLa3t5eYFWoYNput7W+vq6bN2+qWCzaPR0dHS2AP5xUmJ5CoaB2u23P8dq1a9rc3FSv17PiOR988IGy2ayKxaKxlJlMxsqVA/IfPHigXC6nfr9vDoRnB3DQYBR8bth4PDaGlIIcXi5MDlQ6nTbJEAAEp8D3tfP5YZ1OR71ez6qyAr6TyaRJ5ni2yJRJXidwQQ5NUGq4TBFHz2BJ82bggBNpUVbq8+H4WwaRbJ4VzgYAib/PZrN2gONUEHX2EWEcG/a1d2b9//lrBxT4+wLcSFpwJnwU31cjxJnE+fCOL3/r20MwvIRJkjHY0ryaKw6ul7uNx+MFpgXpLcyOB+jIs9g72E7Aoq/iydzjeLH/kI7yPjwvL031Di3zynMISjf57AFBUO4HWPYM82g0L11PNWbPIGB/2X/MGXPuS94T3OH58LVneZl/f6/LyhD6/NSg3NezpkjyYAABS35dS4syvyCL55kzaV5BOChBDMpGWU8+d42/CUotuV6vKGBvwZzzdfDvg/nKMHysP+TRSKeRVmKLeD3mkQ8COuxHz8555QJBaT57P4T557pgUAGjvC42h+JznJHMD2dn8Np5/tJcRuyfQ5Cd9aoQDwi5D+4PsMp68PfL8PeKT0AbIcAd4I/rJ9fSzzOvxQjKUr30N2iTue5l2dfLMF4CwiUZaOp3dnas7DHSzLOzM0lStVpVLBZTo9GwhHWibb5wB/lnADlACwdSKBTS06dPdX5+bhE8DgyMK04ccj4KxBAB42DysjgcNtgrIn5ECH1xCQCIJCsog/NRr9fVbrdVKpWstx7GCWcYSQ0FN2D2ACz5fN4OYuSyjx490ubmpoE+nKC1tTVVq1Wr2AobQlPvcrmsg4MDHR8fK51OK5/PW+GYSqViVTiPjo507949i5xy0MDOptNp1Wo1ZTIZk67mcjk1Gg2dnZ1pNBppe3vb7tPnfK6srNjzRprln4cvPMFBhTOL3I6BE0crE6rb+uImjUZD4/HYKil65wcmd3t72/I16fuIAyBp4aAfDAY6Pz9XKpXS/v6+9vb2dHl5qSdPnnzswFuWAwYQxCHPz6R5mXnYGi/VQTHg5Z4M1tRkMjE2uNfrmUwIpz0oSfSshgcfBBO8fNRLVRkArWB+ji/wQCDGR/KRK3tnykf1I5F5g3d+7otEeEkY6z7olMByw8Igs8c+SfMqqTisgLBEImEBqXQ6vSCRBLQSeAGE8yz57B0uSfY3KB+YI5w49pKXs9GSAPkh8++DbR50+P3NXGLnAXowNBS28TlfONw4ot6pBMRSRZHf8b8+MAVo8Q4jc+/Xj7/+f+6Dc87L9D1g9lJjnqPPf/v/sfevMZKmZ30//q3q6kN1nY99np7p2ZnZXe8aH9bB4J+BhMQiiUhChJGdFxaKEpFEhITIkpNwSlAcIZlweAPxi4AI4QWIHASKIiASQYBxsNf27nq9szs9PTN9rO46n/pQXYffi9bnqqueHcB/1n/91sXcUmt6uruqnud+7vu6r+/1/V7Xxf7xIIbn7PewD8AE8waDOYMe8AFEPDiEzfRAxrNO5PWydz0b5aWkniFiP7JWfA4uP6PfMC0afI6aNJnPDFMWBCySzH7gozCC7J+Xi7MnWI8UgyItg6CxT+0ASPIZCwsL1rrp7OzMiqoxuBcPBL3UOwjUPSD0tpN78fPtAWdwL/Ez708RxEWVAdvJOuJvvB3wKhL2tgeCfp3w2uA+npZ9PQ3jCSCcguGr6ZEniLNIDmA8Htfi4qLJG8vlsm18WJxoNKpSqaSjoyPLE6zX68rlclpbW7OG7pubm1bp8+DgQFtbW5KujPPZ2dmEHJCDhPYNSCuRR3n5BQYJVpD8Gd8wFpCDAdrb29PS0pIxdZIM7AC6cBRxfpElZTIZAxo4m8hgkUlRAAWGNJ1Oa21tTUdHRwqHw6rVatrZ2dHl5VU11ldeeUXvfve7lcvlFI1GrQhEpVLRF7/4RX37t3+7AVDaL5RKJT399NOq1WrW7qHf72tlZUWRSETXrl0zFhC5pi8kkE6nFYvFTP45NzdnffsoMET0EuCbSqWUTCYN8PsKoLCCOPYwfmdnZzo+PrYm1AsLC9rc3NTJyYmBAwruwDR0Oh0LGtAjEVaz1WrZNfJ7nJ3z83OVSiVjsGKxmDY3N3V0dKTLy0uTuabTacuvkqarahkHr3e+2SNePknfOZ4NzpkHRT7oAsAHiLBXCBZ4ySefgXwTSSIA0LNjXuLqWcrhcGjN1H2BBQAYjiqM2OXlVWsLggo4EgATAi3YLXKsJE38PXNHcKnb7U4EGxgexDBn2AJkZD7PeGZmRsvLywqFrnpqrq+vG0BEBo4sv9lsmrSM/Dhkms1mU61Wyyodo5xAxkqwB9k274HT6XsBojaYn5+3gBuOqXfagk4yjhoOJmuBM6Rer5sDSmN0HGQKTbGPPVD04BsJMKDXf/EaWFUcWBx7xrTta8CNZ019fh37j/lmXyLd87JASQbGPKDi9QAb/s9Z4Nk/pKsw/1STjUajVmWbwJM0DgrynjB9Po+PdQNTdXl5af/CLLfbbZXLZYVCIbsGqnYit2Qd+blCDSFdnWUEk3gdcyJN5l6zx7lO7jcILH0gDsBG8AtQyZlI0BTbg93AhyDg1uv17IzlvQHZSHSZe/a1r/Tp5fnYX+yYt/fhcPhNDek9M4vvRJCBfdlut82m8my9vBXb6/vQIisnCMc6IJ3Dy32xBf5smaZ9PQ3jCSCcghGPx1WtVq1yIIdsv9+3BvJzc3O6ffv2BM0Pc4iEr9frqVarqdlsqlKpaDQa6QMf+IAuL69aQRQKBStWcnh4qMFgYGxio9FQOp02KSB5Njgu8XjcclsASzgvRN/Pz8/VaDTMoGFIvbyLQ4mqoThRNNkmTwfHr1gsWiGKer2utbU1A7uVSsVAZr1eNw09hwuHFDK6VCplfXi2trYsYri/v6/9/X3Nz8+rWCxajhJ5RPz8zp07FjWDuXz++efNYU+n0+r1enrw4IEWFxetUMz29rZCoZDlGy4vL6tUKqler+vhw4eq1Wo6Pz/X008/bQGA+fl5A0rkofT7fXMGFhau+loBtvi5NC544Q8Fz17ABEQiEe3u7ur8/Fxra2smffO9liqVijkM/BznBSkq0tHhcKhGo2HRVHLKyNd68OCBORVEe31CPmOaIo5engV77qU+OCbsGcqJA6p8zgeDKDNzB5iBOQfEBaVrXrbk80MBB779AHsax8rLFz1o4FnCTCEh9cWZCApwbThiOD+8D9fNGmNOcD4Bpnw27BjgRNJEP0YcxFQqZQElXzQGkJjJZCx4guPE61Op1JvYHGncigPWQLpy6rApnh1i7rk/adyT0jO1AEIALK/H5gSdLxilIDMCQwWo8wyNZ2YI5vj3Zn6DLCABAQ82PWBnbTPIhfNjWvY1TjHAhD3Bs/Jz7Pc4QDAI8D24ljTxLCVN7D2+58uvMf7PfoZ5pogLZy/PFhklAMOznQAraZy7zGDtSOOWRj7nl2v3TD6fAWD2Mlvuiz0SZFGZJ37O9XO9tGnwaTMwrtgxgiXeXgVBEGBKGlcdHo1GJrdmTrzc27N9zLmXifqeh/57wDw2gf1O0ID3J3DAvQSZQ2kM7rkX7p2+lj4IgPKIe/aycPY4+5r3hCH07K0fb3Vff+ITn9BnPvMZXb9+Xb/wC7/wpvX2Ez/xE/r1X/91ff7zn39Ln/MXYTwBhFMwYIpw7DHIRLay2aw5RhRBAQiUSiWTV3qGbX193ZzCRCJh8r9wOKzNzU3t7OxofX3dQBQbHSeM/DMiaziOlNFOJBJ2zThKPpmcqCJOP/1uyEEk2R0559LSkkk56E8XCo0bVdM2goqXODneecQY7u/v22GH/KrZbCqVSmk4HOp3f/d39c53vlORSES1Wk1HR0dqt9vKZrMWCefAANzU63Xl83kz3qurq5qbm9Pm5qbJdWdnZ1Uul002Wa1Wran29evX7SB79OiRFdWp1+tWaIUqsPPz85YXmkqlTEoDSOeAp1gASezcazCngMNjNBpN5GsBCufm5lStVpVKpSYkbZJMhsxhxeHhB4wVuST0WpNkzI50JYteW1tTIpHQ0tKSwuGwMb1+TIvjyHrEKfQ/41D1+TY4Vp75h40gJ40odb1en5AGSmMJkc9blCZlWY/7wpEJRrCJlOPE+sITsGa+Qh3OlpeWAhKwL9gxrt3LYn2uDs4H64p5CDrUOE0UtZDGElIAF3ONbaKqKAwD65u94sGkdwIBAdhV+pShhkBiCusAAMPR9fK84NzjsHqQ7nPVsEnekZbGEmSuy9vcoGzUFymRZKyyl4nxjFlTPqcwmGPupWZeBsz6+1o7jm+XgWPt89wA0jj4ABSqzXp2hpzw0WhkQSAPxPkMLxX1AQLYNb9XPTABfBBk8EVOCB4QhOL5s3b8915uLmmCkfLBIu7L5775f/3eBVwASIJrAlAtjXOSvZwdsBLMv8NnQm3gwTO+CT5Vo9GYkFjyFWQHeRYUyPLX6sFgMNgWzNP2QR8PHPGxsC0+uMDw3/t8VdaGl+8yrz5AT8BIkt0vrU18kNerAdjb/jnx9bg9/Fb29UsvvaSDgwP9/u//vj75yU/q13/91/XRj37Uft9ut/XKK6/8ud//L9p4AginYMTjcR0eHppE4eDgwKLauVxOn/vc57SysqJms6lut6ter6dkMmnVpXA2kVAuLCzo8PDQGKtisaj9/X2TDNECodvtanl5Wa+99poVb5FkAJAWE0jOYrGYySH4TBo5A96ksfwFRwhHx0dLMZInJydaWVmxSqm8lv59h4eHViBnNBrpjTfekDTuXYS0oVqtWrXCZDKpGzduSJLlAy4sLOj4+FjXr19XLBZTp9NRrVbT888/r1u3bmlnZ0eNRmNCfkrLhW63a2zNe97zHsViMXOee72rSp8bGxsql8sma+10Orpz5471NhwMrgoAdbtdVatV1Wq1CeDH4Qybuba2pk6no/n5eatMGo/HtbKyYodLoVAwcLi4uKh0Om0O7sXFhd0PgJWm9Rx2jUZDi4uLNr/z8/NqtVqKxWJqt9tWBZLf4QRQ6RZnmf6Qs7OzxlrjfCMZWl1d1a1btyzX8sGDB29ylHndtEhQYKu4P0ACIBDH5OLiQqlUynJV2AeAa5wp9j75qZ1Ox4I0vDd7jOchyRxFzyZ4JsGvHyRO2ALUCpVKxQqmIA2G+fPADEeJIBMAg/XH88UBgQ0nIo9qgXvAcfHSZRw/L6UlKEFEfDAYqNlsWr4rwJWoPHIuH5EnYo5tA9j6nJrR6KoBPewbrL3P1QHs4qiHw2GTW3unndxFKp3yfTKZnHDyfVTeA0OUE97xI6DHM6ayb71eV6VSUTwetzMCxzUod5Q0kZPqcwN9sRnPzHqWBMASzLWaln3NvPO8uE+UFLQXGg6HtldHo5ExM81m02TE/X5frVbL5pOApC/+wR4H1HD2+CJEs7OzlkKwuLiofD5v53WxWDRgIsmeMwGMIED1AR/YX5gjD+y8pBDFB2oi/zkEeVi77CvPtvH3HgB5ZQJAjbPZ73v2mmfamCtsKdJrgrvcc3Cd41dwJgP4kFkC8MPhsAFuguZ87xlZ3+MzkUhMKDEIpjOvFN8hUMrZy37zgSEGYI+5azabJmn3NsErBrhvAmk+R5A5IBjpgTNBhGBRn7eyrz/zmc/oQx/6kCTpO77jO/SLv/iLE4DwZ3/2Z/X93//9+qf/9J/+uT/jL9J4AginYKD9phgBpYJhewaDgTFQ0lWz+qOjI83MXFWKxHjE43GlUikdHBzo2rVrikQiKpVKVtr97OzMKlzOzl41gffFQXAQiUxLMqMLQMQAwVYiKd3f37eG5z6q7aOFOF+Ai4WFBS0vL6vdblszeOkqSlitVq0wjo9Ye9kIzjQOmC+CcP/+fY1GI924cUO1Wk2pVEoLCwuqVqsTffWazaZKpZJ2d3cVCoVUKpX0wQ9+0CKQN27cmNDO03OPgiwclshckQQWi0W9/PLLduBGo1E7dHwVssXFRWtmXygUVK/X7aD3AMKzBzwTnPdEImEgNZ/P28HgiwbgoCG3XVxcNAcF5qPT6SiXy9kBz7xHIhEDtYPBwKTBsAHeEafVyOzsrOVfnZ9f9bZsNBpaXl62fFScKg4+xrQwCazZ09PTicIiONE488ibW62WgRzWMwc0DhyHtn+9Ly6As4TTwgiyhn7wO/Z4LBYzlh6ngZxP3jPozPmIOeuCa0Yyjm2ABZU0AcY8IJHGvRNZi3w2gIrIPNcxNzdnARhyB/0cARTn5uZsT0tXLDifRw50kFEDjLKfPVhln3lQiN3yjrA0Lu4TlJV5VsEzC7B9fk2xJvgMz+h4++IdQ54jdg0mgjPFS3GZCy/t4/sgq+LtC3YfOzetxaJYN17a1+12J2TWnJOdTmcCwJO35R1wn2PP/LK+CAwAcDwjFZQhcj5wNvDl2UEGQIHAymg0srUCMPTMm1+/kibWoM9nlmS5cV4txFoN5sJJ473v1wdgTJqUrPogF2ekl2DiY3gAyByjuqhWq2ZL/WdjX/wzxC4yD7x/8B78a3hG/vnwXAjmEnTzknzeA/BHwM2rt7x/5eeKa2ENcab7e0J6j8oHgMg+9uoOgl18z9nv75nx1ezrvb09fc/3fI8k6cMf/rA+/OEPS7pqz7OysiLpKjWmVqvZa2gV9sM//MN/5vs/GVfjCSCcgoHunYIFSMKkMQAi96VQKFiuF/InovedTkc3btzQ8fGxhsOhksmksWdPP/20NWZvtVpmICnAgtHBcBCxR27B/4l60v7h5OTEioR4x5eoPJIq3otII0YSg3V5ealyuWw5ONlsVpVKxXLpEomEzQ2OHrI5Lwu5vLzUzZs3jbl68OCBJBlAyuVy2t/fVzab1dnZmbrdrvb29tRut3Xnzh2rlklOBVK02dlZnZ2d6eTkRLFYTJVKxfrH1Wo1PXr0SIeHh1pdXbX8QZx/HDYkofF4XIVCQa1WS4VCwaS/HBDIgnE0WBscKl4KG3QgARitVkv1et3KUJP3ATBEjoOjBwPdbDYVi8Vs3nE0kcQR7U0kEmq32xNJ8Z4xgB1cWVnRxsbGRCDh+vXrSqfTOjg4UDKZfJP8Z1pyEnxEHAfn4uLCggMczER3cTBhbL28h6APzjZ2AckWA4DvHQ2cI55VMDoP2Jqbu+pRmE6nlcvlDMxL40g0n+llmwzukf3N4P5gGLlPLzHHRgwGg4mehziZ/Osj94uLizaXPs9Kksm/BoOBtaQhIu+//HxQGp9/AUDSldwZZ4tAFUU1fJSe+arX6+bU+3n37QBwGj0biKPriwBxnV5e7J04z5B4YAnbwT6H0cG29ft9e06sQ84APovhWV3WY7BdDEVFeA8/vhb7+u0yPBDykj2cdySAkizI40EfwUPWF9/79/ZBEJ+TyloB0HmgGAwo+MAJ60uadOBR7rBn+d4zbT6vLyhJRxXA30iaUI8EZc5+L/A79jm+QZCF8vm2nrWTNFFF1b+O4Ax2lWJ9vkiKty+SJoAz88x7oWzygRJsMUDJ50J6wO6Lvvl8YQLs2GauHxsyGo2sSiqAlOHnx7Ob2H/+xgcFfU6xZ3yDUlEf4PJMNff45zmvNzY29Gu/9mtv+nk6nVar1ZJ0de5ls1n73c/8zM88YQb/fxxPAOEUjEQiodXVVZN4tlot9ft9HRwcWJ4KhVIajYb29vasgfXKyopVjFxYWFCz2dTy8rLlHT333HM6PDw0QwGDgyNyenpqP/ORvtFoZL22MN7IYXAE7t69a8VhRqORdnd3tbGxYVE5n3vg9ec4MLVazRgiwE8ul1MqlTJ5wsbGhl599VVVKhWTMGLMXn311QmJVDqd1q1bt/Tss89qb2/PDOnR0ZGWlpaMQTg/P9eDBw8sQnrr1i0dHx8rm83q2rVrunnzph2AjUbDGs9XKhUNh0OLpGYyGZ2cnOjo6EjSVdN4Dv35+XktLS3pwYMHunnzprEOAEieTzabtZwFScbIIZsl2gczSGGf+fl5q86WTqdVKBS0vb2tk5MTlUollctla5FBriaHA04nJe5piIw0BskIspbB4Krv2unpqTnARPL6/b4ymYxJUSn0QwXTW7duaWNjQ61WS/fu3bPKjel0WjMzM9bX0Y+3IkF5O+UkcB/IJnkGMAQcxtJkTy8cLl+qHaYLRtjnJrHP/B7D2ccR9OwAawrGDIeN551Op7WysqLT01PV63U1m01zaAkkISEClPiBY0Pej69QSV4VIBGHzLdz4PdeqggApJrf4uKitcKRZAwHjiE2FFk014ijXavVJoqqwODg9AKiYXROTk6MafDMGntLkknmpTGA7HQ6tn+9RNezgt6R574o4pVIJCyPGLkqrV5YXz7/CyeSARAHwPJ33CPrzwNvnFRsMLaf+6dStL+vaDSqYrFo1bIfl280LZLR8/NzOzs9Myxd5bZ7EFgul22dk/MOc+OfP9W9AXjSOO8WsI5dYH+xt4OMsweNHix6JglAgeQS6Tb72UuVsRNBdQA2CSUT6wkQ6vMMGR4kelaKNSONawcQ+KUCt69rwOu4D+YIu0TAg2tstVoW0PA1E4K5vMy/l9h7oMQAKHkpNXPOnGFPo9GoVR3mPgCE7C/8IIr8cC34ShAAXnGATfPzSNARFYQ0zssE4LEO+T/z5NVcwYI7PEPWkh9vZV9/8zd/s37qp35KH/vYx/Rbv/Vb+sAHPmC/297e1h/90R9Jku7du6dPfvKT+qEf+qE/92f9RRhPAOEUDBy8dDqtweCqFQQRR4zvycmJ5dSx8U9PT/W5z33OJIxUtcRxwKCWy2W1Wi1tbW1ZTtny8rIBRIx/KpVSpVKxA0AaRxO9E0REk4gTziQyQGnMJAST4aWrvD4cDFg+6QqkdrtdzczMaGVlxRyXYIGIR48emUyUfI3l5WWL8J2dnWlhYUH5fF6NRkNbW1tKp9MqlUoWwS6Xy3a9/X5fpVJJq6ur1jiedhqxWExHR0fWwH1/f9+c11KppEQiYX0TmVPkuRSimZ2d1fLysiKRiA4PD7W2tmbX/tprr9mBsLS0pEqlMuGo0VTazyMsYyaTsWqjs7OzlqMAwwH7S1Ghy8tLK/cfiVyVxveRUliihYUFNRoNZbNZczCQGfN31WrVXo9jBNNCZUl6RIZCIS0tLWlra0vn5+daX19XPp/XwsKCyfsYb5VJeDvlJMC+EOH3Uk4/XzgcyI2DDpyPTAOoKKzA8+GZw7rxtzh6fvj96JkA/5l8hpcN+mi//7+P9vu/8ayGd05w/LyzhU0AjDC4D/L9kFiyfvl7gkq+5H2v1zNZGXPCtcJKSjIAxT3xnC4uLtRqtVSr1VSv1yf2SrBSIHYE24kDx30GZZSezQiyIT4/KhaLKZPJvClvJ+ig++EZIb64dxhLz4zg0PvhpcvSWCLIl1/T2KBEImH3zd/4a54WhtAPXxQESR6MC7mb7AlfiZOq0ACIeDxuz/T09NRsLUEkL20MAqzgl9+Hf1Ku3uMGP3/ce3gbwP/9esB2zM7OmuSVvQ8w9MAhyHqzR2FZfTVOlADkCTPfHhjNzMxMFL1iHSKJJJDs9723gd4+Y7f4uWdESeeQxpJhbDd21RdikTQByn0xIP6eeQOQ+yCR38eeqWV4Jh/VCXPNPXCNHhCiNPBBPRQVkmyePEj39xJcf3/e8a53vUtLS0v64Ac/qGvXrunjH/+4vu/7vk+f/vSn9cu//Mv2dy+88MITMPhVjCeAcAoGEoaLiwvt7+9bsRgiXc1mU4VCQd1ud6KQRCQSUbFY1MHBgXK5nI6Pj7W2tmZFaeLxuD772c9qb29P73//+7Wzs6Pj42PNzMxYnhiVNclj9BFPDjkieDgpjUbDrjudThswoKCJJIsuYyx4L/IHyVnzVUzz+bzq9bpCoZAqlYouLy91cHBgUjMi9rThIGeOYi++Ul8+n1en01E+nzd2LRaLqVqtanFxUY1GQ/V6XaPRSE899ZTl3iGXRF5ChTEczXD4qn1CMplUOBzW0dGRRqOryqj0hkQiOT8/r3q9bjmSJycn6vV6euONN7SxsaHhcGgVViORq4qih4eH6na79nwuLy+VTqcNrGHoccKICC4sXDXWLpVK1iaDCo9cO4AZBxpnjnL5tNkgEkmz+mazOVFAIx6P23pgrsmh2drasvVJoaBoNGry5ZOTEysA1Gq1VK1W38QQTktOAgEN5spHtpFeSzIpL9F1gBFOuQdOMA8e1PF+wc9mH3smSdKE88OAbfR7DUcKRsgDquDncX38jS8Gwb3h7FKRkJ8zR9gLmDYcJQIMzCGRduwNf4cdk64KdWGniJizv5HaI80iKEHuDgGlcrmsZrNphVlwjgCXAD3mj88i4i7J8o98QM0HBnwuEo6cz18iKEVwgXQBH0gIAnIv4fPyWK8AYd34VAVe60EE9+ydXD6ba1tcXDTQypqDcfBjWgAh9+lBNPmmAERUFj6HkC+eO/PIuiCYh53mM3xu5uOAmv8/a89/sVY9sPGyb9bB4773oMvbANaB9xdgpQAXrCW/T6RxgEwagzIkx77yNSkU7APWD+c//oDfW+TdY884y7w0kmfAs/SKAD4L/8dfpzTOxffPgz3F56L+Ye9z3R6A+vcH4PoAjgeBfBHY8c/RB+hgbblO3tPbCgCyz1X1bKO3AVyzD9h6QMx4q/v6U5/61MT/P/3pT7/pb560nPjqxhNAOAWDnMHT01Nls1nrCzgzM6NWq2VNyGF92u22Go2G4vG4stmsWq2WyuWy+v2+5QM2m021223VajWT8UgyEEBVzPv375sT6KNrsAs+ssf/V1ZWjNVEjgQzWavVzCmqVquWyM3BguGkYS75Us1mU3Nzc9re3tZf/st/WYeHhzo9PdVTTz01YUgl6T3veY8kmbzt/Pxc169fN7nF3NycHj58qDt37piTNz8/PyGNvXnzpv7oj/5ImUxGsVhMH/jAB7S6uqparTZRlbBUKllfxlKpZEwZ7ObR0ZHW1ta0vb2t27dvq1araWVlxRww2IxSqaRGo6FkMqloNKqTkxPt7+/r7OxMr7zyiorFouUkPXjwwOYTx9znefo8CgqzUAwjEono+vXrarfbJivDyeCQQoIHCyLJnlexWJz4HX0IYV8ODg60trZmEVnWZL/f1/LyspaXlzU3N6f9/X0VCgWtrq5a4Z65uTm9//3vVzgc1urqqobDoWq1mtLptO0FDto/a3w95CQw1wAc78DTYoKoN7+XZAAMgMb3VKyDHfROEs4Az8nn0vB6nCYf9cYhOT8/V61W09nZmSqViq1xHIh2uz1RiMHnz/AZPocUZxl2ErZgOBxaIYt4PG5AESeYKpvcU6fTsf6sMOD0tcRG4fwgw7q8vDRJPe0rmHOYf6ScFxdXjegBhEhDvcTPV15EzoZqgf0NSMBOefBIzk44HLaeaeFweKKSq5drMZ/MPTJdJLD0nfVFXSRNAANpnO+DY8p64m9ZOzwzfu4dXGlcSAT764H68vKy0um0stnsRHVcL1njHqdFMso56O/PO9bsG2TWnvUPssLsCwbAn+AQZ6eXT7PWAFsAHdgp9jrrZnZ2skG6V/c0Gg2rou0Lo1EdGsk0jBE2AOkwgRIfmPJVVv0+8GwVrB45xYAs1ms0GlUikTD/4+zszKqespY5uy4vL61XIHtGmuyl6eXgBEp8Dq9n8AhoekCIffV7i73K58C8cS5js8mBDAaPPLDDx8GWeObN2wZ/PR7A+0CNV1NxDzyHIDPopbsEHr08lHni2nK53MR6naZ9PQ3jCSCcguH1771ez5qWZzIZXV5eKpvNGqi4ceOGksmkOY0PHz40OeTs7FUfvLOzM9VqNW1tbSmbzVqBiGq1aoVNksmkYrGYLi4utLS0pGaz+SaduI9ge4lDLBZTsVicOAQp4+zzRzDmGDMiXDTLpTjJzZs3zQlMp9NaXV2dcJ5w7K5fv27X0Gg0LM+JcvZ+zM7OKh6Pq9PpWMSrXq+rWCzq/Pxc29vbWllZMQkofYYajYbe8Y53qN1uT/SNmpmZ0cOHD62x+40bN3RycqI33nhDhULBCsXcv39fDx8+NAmI7ykXCoWMLSS5HeDX7Xa1vb1tDJxfD5ImHA2MNyAQRwP2ll6FHNxBuQ7f+8gf+ZQAzEQiYexvNBrV8vKytbF497vfre3tbXMKaI+RTqf16quvGsiORqMaDAZaWVkxx/7w8FD5fF6lUsmKBhEUYLyViOPbKScBpwgJVDCqzHpbWFiw/Dz2tc9ZwUkin5P3hkWgJHo4PC5X7oGoBw2Pk/iwhwme4ER4eaUvOhCUi/J/L2vje9+HEEeVHGPeH2mnd4aQihNsQiYN44z9oE+m32vItr3kFbm0D3jhYDN3sJe8xsvMcOphxb199DaSuYW99E4c+xFHy0f3/fMJAgtsM446BV38e8NyMPi/ZyO9lNM7iJ6BYH31er0J+R5AnuASeYMAQYqB+SBTcEwLQ0gOLnPJ82K/kvcLAPFyP9aEL5CCaoYxHA4npOF+H0rjQi6SJhQAyCklmQ2QrgrbABoACgADzrdut2tF1ghCBFsOAAo98wbLxD7njGcve1kzuZOse+aCAJZXv6DK4R4I4GAveE+CWdK4gjNr2Eta2Stc0+PYOC/t9P4OtpD8Reab5xFk1LHjMzNXFYkBuJ5hfRzg8zY1yPYGX+eBm1ck8Aw8y8c18q+34x5Q+lxR/0WRIIpGecko1/9kvD3GE0A4BWM4HKpYLCqTyajRaKhQKEiSnnrqKV1cXFg1quvXrysUCllhl2azaXlvyPMikYhWV1c1GFwVAvH9rZBDNhoNHR0dWWRekjlbXv7htfVeOoBci2qag8HAenP5yDKRdSKNHGrJZFKLi4vWtoHo5OrqqkkZE4mE9dkrlUqKx+Oq1WoGMNLptPXV8vKbwWCg9fV1tdtttdttJZNJnZycWEI6hu/atWt68OCB5eIRxadIDixMo9FQOp1WJpNRoVBQsVjUK6+8olAopM3NTTPECwsL+sIXvqCjoyNjQB4nmUkkEubQcfAwb8Vi0YpgcND6XCQPspnn4XBovf9wDmhzwXMEpPtcP0nmEPsS/uRrwSbASJOHGIlE7P1DoZDu3Llja6VYLJqUVpKt1e3tbXNocZSLxaJCoZC2t7fftB++mgPGO1B+vJ1yEnB0kDp6GRhVXAEX1Wp1QrbDc6LnWLAiL6CSdQUYwRlHegXbw76WJvOOvBwMZ+pxskH2MJ/tAz1BKWGQffJMnr9GSRNtVFiDRO25d+wQ7DzzyZxwzdJVD9JqtWpzgwyt3+9bewk+dzAYTJTXp18nc8Qe9A48gBCn0oMuXuf3/WAwmJAK4zjD5hAoYPhnEiyIAVMLUPXDA1PP/np1RdBp9OsUgEivUq4bJ5lrIqdxNBppcXFx4nzB/nJ/HqByb3/W+JP29dttcC9+r7I3CPCyBqTJtizSmAn0IITBe3lg4p17zyARrGB9eFmlB1P8LfJrACFgEMWCB4PBL88ueWm0VyxwPoxGI6tE7tcBezUajdrrAEzsOb+mWHe+WAs2LRiIoY0SgyCW/1svzfTsoGfBgnl73gfyfSd9sR8vp8e+kZqD/SbP0D9zLzFmPn3FboLCfo0F5bueIeS6WJtcn7f5fg3zWh8k9veNP8A9MGeP2wt/2vh62ddf7+MJIJyCkU6nFQqFlEwmNT8/r7t371oe2OHhoRnFUOiqwTNgZ3Nz0/T3N2/enCiHPjs7axLFSCRikq9MJqNEIqG5uTlls1nduXNH7Xbb+hkWi0V1Oh2TiXijBUggIojjc3l5aY5Ks9m0v6nVapYrCENGDuD8/Ly1XJibm9P169e1u7trvbJisZhefPFFM2rNZtOKp8zPz5u0FqakXq8ba3Z6eqqDgwOFQiFtbW0pHA7r/v37SqVSyuVyOj091SuvvGL5Hffu3VMymdTx8bHe/e5367XXXtPa2pp6vZ5yuZxVJstms9rd3VW327WqYM8995wODg5MLpJKpawABYcYYBxAQC6Pd6iHw6ExbTMzM2o2myax4RBgHeAkAg59xJCD2OdT4Rw0Gg17TjgCPONr165ZBcNKpaK1tTVdu3bNJI39fl+1Wk3Ly8vGBiLrrVQq+sAHPqD5+Xk9ePBAnU5H7373u+1gOzs7Uz6ft2cTi8VsnfpKm9JXL0HxBSuC4+2Sk4BTTqCGAAzAijVAQ3pp3IzZyyK9lIm/oU0D+yEUChnzhmPKv9LY8STiDMjyklTvOPEcWGPeEeSZejkl+9qvR67XP0/yIwF8OB2sCYIL2CiCY8imUSggpw86NOw3aVwsxoMaAlPkHZFX3O/3TRWArYOpwWnle+RkOI9ezu5laYAqnhO5wcjyKHAFm8vc0GqGPeznH1uALfZsjZfyekYHx9FLwCg45hkdGFaeB8+AXE+YWgpCIRPnmXl5PlJdxtdiX79d2sl4pi8YxPFOPSCC+WG9AyxQddCKhPeFrfdBF1JIPNgExBNYkGRSXRh29iRnCwwh7DPn/vn5VW9ZAAiqA9YZNss3NfdnUqvVsmI4BGFgk7lXv55IgSBY5MEUxYnYAzBzHniwPzkPAWXeFngW3efUESxlH2Bjka1TFZT97f0c7JVv33J5eWmBHq6HdUCu8uXlpeLxuOWVLi4uKp1Om41Eak16BZWEaR3FfALO8TcI9PJ8mCvWgVddsJZ8HqEPNBBwi0Qidv+zs7OWHzwcDk3mzvha7Osn42s3ngDCKRhE5lZWVsy4djodK6iSy+VMUtloNIwFAySGQiEdHR2p2+1aAQRJEzKF09NTyw9jE6dSKctnq1ar5hxgfDFyMzMzJk3EoHgpozRuYO1lJMhPKFiDg8aBubCwoFarpWQyqeFwaAViyF9aW1uzYiXD4dCACo4cffBarZaxcu12W6VSSScnJ1pdXdVLL72kra0tAyC1Ws2AECActlO6OthxciRZXidOL0VLMLbMA1VeOQiIoMNmcOhzcOH8Iav0MruFhQUVi0VjXf2BiZN3cXFhgBhjjTPhZS7BaK5PJOdg9828K5WKNjY2VK/XValU9M53vlO1Ws0q2Epj9onnUCqV9JWvfMWkyDyTcDis7e1tCxJQHGd9fV0LCwtaXV3V0dHRm6KH0yJB8aBIkhU26fevCk74Xnc+qoxcCoeRdUPuFmASAEdRJxwxGB7WFSoDgGBwPXlmD0cXZ5Rnwxoiau3lY55B8M4BeVbsZz4bJ4yWK7CHgBLWGcyBZ+YAjUjiAD7dblexWMzymjxTI42j5TjpONG+dQD7D0fJsweeuSRoA7jyskDPjhLoCObw8XPkZBSx4j59Xi971INBwId/Bp7p9XJTXucVFAsLC8amwNj7XC8c5dFopHg8rvn5eXW7XXMY8/m8gZylpSVzOJHnc/4EncC3sq/fTu1kYLNYA9IYJHpmRRqnWviAgpcdk9/nAz7sU85MAnrIe3lW7C+vAvDrG9/Av94DQoAMQR3Wil9rfm/49eTBqpdjcr6x5rlWH2CAeQYs+79jDUnjXFWCN6xpfz1eSouv4O0Z18S8s4+D//c5hb6quc979HmS2FVvV3xQinsCFCPll8YgivUgXSkput2u+X4wtt62+r3N/fEs/TX5QAFngPf7PKDH58MX4fn44LtvreNl8YxpOa+nYTwBhFMwQqGQUqmUReyvX7+uu3fvKhQKWY+8SqViMrt4PD4R2Y9EIlZNkfwZnHYibSRo41w+fPhQkiYifycnJ9rc3JzITSJ67IEZ780hw8EEc9DpdCy6x2ETj8c1OzurTqdjwOHy8lLHx8eW+0bzeWRmGHT6oBHBS6fTBoALhYLq9fqElKFarRpLCVN5enqqZ555xqL0kUjEgAmMXDqdtlwlDHAmk7HeYBRYGQwG1kKBth0YX55nIpGw3oI+EinJDqRer2fyM6o58rexWMw+z+eJ+EiqP/AoLOPzJahUCkDw+UccTjw/DpHl5WU9/fTTWllZ0f3793V+fq5qtaqFhQWl02k1Gg3Lj2AdPXr0SKFQyNbn2traRGR7MBgY0zo7O6vPfvaz+pZv+Ra1Wq2Ja5Gmqzx9ULLjwbmXNknjJu3IJ30ZdyLbOHtB5gWHh8CDpAlnhc9jLXmHigABjoNnPnyOS9BZ5LVBSZPPQeH9POBBJot9IGiC0sF/ITGemZmxohK8FnCJE9TpdMzBhRXxxROwadxPr9dTrVazisOwil5S7WVw2B4vp2c/wwjyDCVNMIfYBhxy5hAn0cvnWCOefWCuuX4P5Lm/YL6kd/oYHoj44J+XLMKU0DfV53UB3rknnGXsB0CEte3X+Fvd12+ndjKcfT4QEJTpeTAM0OeMQjKJ3UYazfrhXEfVA2hi/rDZBAK9bJTAET9DNSONWw94QOj3MGvG55V5tpnr8qDEA0FsFgEv2EFJxlwR9PHBFtYYdg3gBdP2OGDqaxVwfpyeniqRSBhQ4nPZh4A/Dwj9tXC9PoDrAaEPriBHxwZ5++X3nFdUoKry6wgbgmoHMOgDb0EA6IFg8Iu5IdjD+3M/7FPuy8vCqcgejUatx7GvLeD9PcY0ndfTMJ4AwikYHrQNBgO9/PLLeu655xQOh03OmM1mdXx8bNIOXiddRSwLhYIikYgVLCGSTt85jAHMXSwWs5YCN27cMFBIG4pMJqNKpSLpKikdNo7G0ByKHEIYJB9xr9VqdmBiKHO5nFVPAyjymsPDQwMZsVhMd+/eVTabVblc1nA41OrqqkXQcVaISJfLZVUqFZOW4bRwQPkm8b1eT9lsVq+//roB0bOzM335y1+2YhTveMc77NDY3d1VOp1Wv39VTKbVamlnZ0fValWFQsEcXdhOpCA4AORtSLKDQxpHeJHoVKtVdTodHR8fm9QX59DnHnEoAtD99zgP4XDYZLocrl6eyGHKmgEMA855xqlUSnfv3tXKyooWFq6azXMAHx8fKxaLWVScXJRWq2Us6+Lioo6Pj+2wotAPBxPry4+vRoLy9TC8UwGD7Z0FaVxAwkeso9Goyct8vzJJ5jj5CL5fBxcXF8ZuN5vNCVYZEM8axKHzRRb4HesD58ezzDDsHoj5Ykc+p8ZLIGmVwjogQHF6eqr19XWTtnn5Fq/jHmEykDyzd5BQ1Wo1nZ+fW19Dzxik02kLvLA/gvZJkgE+nzvDfgQ8eTmZNC78w/DOq88h5RmhNpBkoJm/Z95gnXAMgwEG7wR6CS/KDIJ0OK0wKYPBVbshrj8SiRiIRmrmpXTkdPMMGLynz431+W4UNfJr/c8aXw/tZJgHH3CVNMEMeuaIZ8+ZiyQcEBKPx42ZIggQZAG9dJ9/AZdcD8EivueZSDLlDQAMuwDoJADszyPWI/n1vhaAZ9tRtTA8a+dzfT3gSqVSti9YM14tcXl51T+ZNd1utyeCK9KYgQfwBq/PBzs8+8X3kUjE5Pz8Dekd6XTars2zagTpCKj4/XlxcTGRy4vdJAhOLrCX2fO3Po+z0WhMgHUf9PGBnn6/b7bES+H5Ob4a8m7WG2uX+UCGf/v2bSvY5Vv64Nf5IIEf03JeT8N4AginYADwHj58qN3dXd27d0/Xr19XPB7X2tqazs/PrRLj8vKyyeyofglAAszQigEj7KWNvjoeRhingSpd9JkjyijJPn8wGLypjL40rlQIA+XzJ/r9vlVIxHggBSE6v7e3Z4VxZmZm9Nprr6lerxs7SM5gPB43+cmXv/xly/Xb29vTYDBQoVDQ3NycVcQsFosWjS2VSlpfX7fDktYXjUbDnNR0Oq1ms6nj42MlEgkrnFOpVKxAS7fbtYbD9CkDfOI4IafEcfQMDw4azh2D0tjkY0hXB4Uf2WzW5Ln0oyN6yfzj5PN7nnG/3zdgT34SB0W9Xtfm5qbq9boV2qH9AKCXHo5Eo9PptNLptLrdrhU3+vKXv2zMZyQS0cHBwUTBgNFopK2tLVuXsVjM5NDS9EUcYV54JjxzKjYig2QdANh8LoivQgjA8fJECoaQe0dOCVFmGAz2vS/UAjPFe7GfPWs4GAwmAKF32nyemh/eMfI2wldEpZogP/PBEoI9vV7P8t1gvFnnOFX8PeAU1pN7A2CxpzwrEWzDQPTcy8fYz8ybzyH0gBC76Jk79iHOuW8n41lW8qCkcWEH/4yI0PP+AHUUAJ559lJe/g6bgf3mZ9h97LIHx75VDRJa7Ix3hKWxcy6NWyn4n321+/rroZ2MB8ZBBtbfo5cQ8joP4gg28MV649mRy0ZevQd8XiLMeRb8P/vd5x16FjIowfT72zOCQQYae+VZJp977OWyvkiJ31vYRc5DfBCkzARufJsLH3CRZOs4+Pk+4OqLuPC5ADrsq38WACJYW+YcHwrgNRgMLPjK772EljnimbDXH3eNsJy08fI5iMFn459F8PfsdZ4374Vvgz0ZjUYTPsrs7KxVFWfP+4G9fhwYnLbz+ut9PAGEUzBgA4hehcNhKzrQ6XR07949c+wjkYharZbW19ftEMGpBvhg+FKplDFxgEU+Dwnm2dmZjo+PdXh4qH7/qkhAq9WyHB/yD3zBiLOzs8fmMsBMYvhxgqUrh4GWDVQGjUajajabunv3rjY3N9VqtfTgwQP1ej1rcxAOh7WxsaHBYGCvxynhPuhZhKFeWVnRw4cPVS6X1W63lc/nLcflpZdesj6Bc3NzqlQqNt/5fN4MJJFIAObDhw8tH6NeryudTtvhQDI90TjYjVQqZZE2DiaaD+PgecePKq9EQr3MzsvPZmZmJhxIaVz6mgOS9YLThjPIoY6Rp4cgBwf5AsPhUNFo1F5H9dOZmRkdHh4ao12pVKxkeTKZ1NbWlh18q6uret/73qdGo6Fnn31WBwcHGo1Gesc73mHPF7m0H9NywHinx8u8eAZeguclZf4Lh9yzALwn+5k15J2mfr9vhSh8xF7SRMVSAgo4PvzcO55EnL3UkfXpi5lwHUixeD/Y0eFwaJX2cCYBbTj5sIEwZl7eRlABZlCSqR1877tut2ssKfbCyzB5H58rCBAKgkHvqPt8YBxMP48ES3DKyO9aWFiwYJh3ItlzRPl5L2w49hM7A7DwwN1LSvneA1CfdyhNAhgvxaNYhJdDYtOkcWVpwC7A3DuiFEziXOF+GG9lX7/d2skAeqSxBNk/I+YZe+0rDsMysa6i0aidGV7SSO9h8tAAAh7kB8/goGSUawiCFi8t5n3Z08H/e+DhgYwP+rKfkVJ6qSa/9z+j8B1MP6kDqHxQmuB3eMks8ynJArv8HB/EXx97+nHSUQ8KFxcXDQyiDsBG83rm0svQ8be8ZDR4NmOD/Jrxw6fXeMVFEPR5GS//98/UPx+uzbfa8SQBtnlxcdGUTV6Wz1739/IngcIn4+0xngDCKRg4WBRKIKq8trZmQKfRaCiXy5mcT5IVZUgmk8rlcopErhqHYnjIZWs2m5qdvao6ykGQSCSMUTg/P1c+n7dDY3d3V6urq0qlUlpfX7e+Oj7/h4geTq8vNDI7O6t2u62joyNlMhk78DBS9PsC6G1tbSmfz6vfv+qriGzxzp076nQ6lruG0cLhyeVyBmJeeeUVnZ+fW+4dAKVQKGhmZsYaw9P7LxaLqdvtWkVRqoMiqUXq8d73vlfValVPPfWUTk5OdH5+rvX1dcvR4yBcXFxUOBxWKpWa6ONHNBK5EKCAvAKi+6enp8YyLCwsaG9vzw49WhJcXFyYfJW5xtH3Mj0MPc+Jg5JI82g0stYlqVTKekomEglJMjCI3I/CRjhCzz77rGZnZ5VOp1Uul3VxcWHVR2kFEovFtL29rW63q729Pd24ccPky+12W3fu3DEpKXJYaboa3XIvHNSAp8FgXIGXvYxsjDVAVdpcLjfRB4rhnXnkhMhFYZqRTXItnslDPkQOcigUMibSMxF8BpJMLyfDQcTBxYGiMAy5zAS2cE7oUSmNeyTieAE6iFojZ5RkzDmgLxQKGRBCBlqv1w1MBlnLVqv1JvkXn8e9eMec4j4E3XAkeTZeyjs3N2f9Q5FY+QI/OKXkQjIX2Blk1DiOnsUFDHtlgc8hArAHHUfuiSCTd34BazxTJInxeNyYI4JdPv8cxzUSiZjUnjXcarXMqQ3mUr3Vff12aidD4JU59PvcSyxx3KVxfz5J1msWNiqXy02kYmAjPBN3dHQkSaYMYt95KTF7CEDS7/ctQOTZOr92YNXZQwBA/3Pkgh5oecaNwVqjyixqFQAOc4eN4DqQUp6enlrOuZdG8nk+UOYHKouLiwuVy2ULvkkyltQHeThjCZrz82QyqUQioUQioUwmM8HQE3TxuZDsK+bU71n/TCRZIIv9jS3gb31wyAd0sB+8jmvx9tjbUHwGgnFeOuxlvP1+X4lEwvqI+l6iqCoAen5dBffwNJ3X0zCeAMIpGMPh0HrvVKtVFYtF5XI5vfbaa1pdXVW1WrUN7o0Fsp6gFCwWi2k4HFqZdsBgJBLR0dGRbXzPFvnIkM+dkWTSLpxMKoeORiNLOMaAj0Yja2NB1J97I4/nmWee0c7OjjU2xiktl8vmVM3Ozmp9fV3379/Xo0ePNDc3p5OTEz18+NAAba1W09zcnDF2l5eXKpVKyuVyete73iXpqi8ZET8kR7TeqNVqKhaLZjhzudxEJHd7e1uHh4dKpVLa3Nw0tozngcOMg8Vcc+Bw+Pn5g/UhikpZanKaAEgcJBw+OAGhUMiKusCQkmPCAeIj+TjkOJU4pNJVRbdWq6VWq2VrxxcgePjwoVZWVuygl64Oh1qtpkwmo3q9rkajoXK5bCWzE4mE2u22lpeXtbq6qgcPHmhzc1Pn5+c6OjpSOp3WgwcPDLRcXl5+TRvTv52GdyRg+CguwB7BKcR5JqIdlDHhROF8eCYKR4N942WOME8+38ezGV5Sxef7HDUvEfU5KzgBniUjWs9a4nr4DHIaqa5ZrVYtt3lxcdGcC96TgJOvhImUjqCKNC4vz/UweB8vc5TG7AYODmoMGETYgCBj6yW8MIfI1ebn5w1MeXknIJdcO/YpDIOv3uoHrIQ02S/MS2o5AwgWeQDP77AzPHuukefCugiFQhbIAWx7mSwghzMoGo1OAFfWJIA1qGDgPt7KeLu0k/EKGC/l5izmbGS/eLkh65B1BDtD4MGv11gsZsobWHAYegbgj3Xg8/F8zhfXCYD0ASXPDAIIPXsYlImyP7Az2CI+hz3M2cTaIIeWeWNdo2ICiDJ3QRvjbRXr2c8D56u/X97DM4a8B/vY92mOx+NKJBLmIwEm+Uz22WAwMFDLepc0YTe9xJvnyGs9Ew8g9Aw/z9NLdz1769U+3J9fnwSd+JzRaGRqCuT5nL/YZHwDgmVBVhNA+ThQ+GS8PcYTQDgFg40+Go2buRKJpak6UbfFxUXLq0skEqYPx1nkYDo7O7Nm7gBEGKFsNqtWq6VoNKrT01MtLS2pXC6b5Gxpackc/EgkoqWlJUuMnpubMwe+1+tZkRIOARijwWCgZDJpTYyRBZJjNzc3p4ODAy0tLWl2dtaMIPmLiURCx8fH1ih+YWHBSp+fn58rnU5rf3/fovg0tI/FYtrf31etVtPa2poxhADK4fCqfcXTTz9tBhEWDQeH97x165by+bxKpZIODg4MzFxcXPVK8pK/UChkUgzfwNUDdC/xXVxcNABOuwrAIQetdBVRXV5etkOAvETYP5xuDghJ5mAC+mFjKB+/vr6u0WhkDno8HjcAe3l5qVarpePjYzUaDcsNXF9fV7VaVbvd1uXlpclwW62WYrGY1tfXrcjM8vKyzeGNGzdUq9V0dnamGzdumHMTiUR0enpq+W9+TMsBg7OAk+WLBBA9BgQFZU04QBy+XuqEcwXAJyJOcAJnxTNlwWIyXB9OAOuNtYyDFZSGcu2+yA3rLFg0Apmbl03C8NFfjEBXLBYzhwz2Mhy+ysmdn583BtD3FvQBDJytoKQJYMO/XDOyUwA2QSnvNHogzecBuJGGk09IvpcHz975g80HFCIfZZ59FJ/PxJH2Dr7P2fFRe88GAihwOLkXPhv7HHRGqSRM1VOeJXmenCHYcK/6YD1x30jo/JiWfe33J4P9KMmq6rKuOFe8TJk1RECIIKEke+Y8h2QyacXXCMbyfD0LjiPvcwg9Y+jz2nywJ1i0xMtEPdPFGgrmw3twDADhPmHRYAwJfrJHCYD6Yig+WMUXDJ9PsSDAw3uxP9kLniUMyke9JJ8vwGA8Hrf0CF7PZxJ8QiLNtcKSe8msB2zYUr7nmnkuQfmuB+uANh/I88wcAR0PerGpo9HIzgxvu3zAh2vhnPAAXxpXsvaMpx/Tsq+nYTwBhFMwYJDy+byOjo4MfI1GIyWTSTUaDW1vb2tjY0PJZNLkERwiyJWQaW1sbGh/f1+9Xk/Hx8eamZkxmd/S0pKkKyMC00X/QqRCGKZ0Om0/Q7aGocaw4LhQrSyVSqnVaimdTqtYLCqbzSqZTE70rsKpy+VyE3KOeDxu0sT79+9b/sVTTz2lcrmsaDSqbrdrxnF5eVkXFxcmb6US6/z8vN544w0lk0k1m00DP7dv37amsFRApeolzjONYW/duqVwOKydnR2dnJxoMBjo5s2bxp7CzjUaDZP48S+gkiRtDjWYyWg0qlqtZsVa9vb2NBwOrX0GcwsDvLy8bHLWbDarbDarZrNpBwUskmdu1tbWVC6X1Wg0LLqcz+d169Ytk7tSqCeTyZhcJ5lMWiXVRCJh1eAymYwODg40HA61vr5uFWgfPXqk973vfTav9+/ft9ffv39fS0tLCofD1otwb29Pm5ubJqENMiPTJEHhYEbSNByOCwYhofRSXw57DmKAEesBac/c3Jz17kR21G63JY2lQoAvAkWVSsUcJJwX/h6AEHQufY4KTiWgjGdE4CMajSqdThuIwDmTZLJCijLhrKZSKY1GIyuI5ast8t5Eruv1uh48eGCO2NHRkUlHPfCRxiDVA0CcOvJqyI0ZjUYTElsP/oKFJ3gOMAixWMza0mQyGWP5KdbEPCLRQorNNXllAKyPZ5W888Xa8P8H3HtA6fMgQ6GQstmssQU8N16DaqFWq2k4vCrKQx9Rgn8oQgiAdbtdCxAyr7C1nAsENf3enqZ97dkXSRNgiOCmJLPpgHhypmdmZnTnzh1LgaAXLgEiwCMM4mBwlcvuVUIUb+O5cy0+qMCa4TM9iwTg63Q6xvr7isH+LMGGUOOAz+Js85JG1gQBIq6DM8ADNa6VYLA0ZsZZr3xPDisgjsH7eTluOBy2YA/X6vePf39Y8Wg0qnw+r1QqZZJwby8J5gD4YH0BVV4K6gMz3Fu/358IQgFcsUHYxWAOsA8u+Xxg5lTSBHMaBMf4bH4+uE7mm89iffpCZtwHwJ715Od/Wvb1NIwngHAKBpEjnH6Kl2BY5ubm7ADB+BABgmlKJBJaWlqyyplnZ2eWw0dEHraM3BVfHZOeef1+X9euXVOz2TSpGkwjB1WxWJxgIiuVitbX19Xv9/XKK6+o3+9PSAK944qcEnaxWCyqWCxqYWFBf/iHf2gsZrVatYN1a2trgumTrhoR7+3taWVlxSJarVZrQtZAX0VAbK1WU7lc1szMjLLZ7ASjgMGmvcT+/r5isZgajYYZTJzFWq1mElWf3+AdT59k7+VhyLZ8NS8OXGmymbNPUAf4IakJha6qpnKwlctlDQYDZTIZi+7DiLJW+IylpSUVCgXlcjmTzb7++utm6JF7lctl1Wo1A6dUw11cXFSn01EikdC73/1uhULjRvTtdltvvPGGFcj5P//n/yiVSlkRmYuLCz169MjAMhJjP6Yl4sia4JkiLYTV8qCEfSLJnHlpfLATZMCByWQy9j7z8/MT+aG8zlfJJF8QIOEZLz7L56f5PDBYAC8vJFrv8x6TyeSE1BLnBMfEs57sC2wK90ykHGklgK1er1vV23a7bfnQyB+5fj/8/3HacY69s8q1BpnFoOSR4SVnVNrNZrOm8iCQ5aP1nmnk8wjiUKyC9SFpwsmXJh1arjv488fJZQko8H9YDoIUni2GwcIuIXP2RSZ4RpIsX5C17GW3jxvTsq99wEDSxHOTZJVCARWsdRQCFPQKgkrPCvvfE4BEPUN1TUkTzDB+BM/IA1UPIIKMNAoADz64T9YQ10GbhlAoZGcKa77dbptccXZ21iSu/vzkmjzQYN/44LD/1zP22FPPZHG9gGnuFUbLS5l9bhy2wNtYf44HgY9/HgSKeM6ARS8H9dJVZN18rjQ+64OMqq/oyr/YbYaXv2NfsWv+WslT9wEzX4WZgNrFxYWd9fytnzfPME+romcaxhNAOAUjyNL5hvBUt8SgbGxs6ODgwCLUkUjEomKSjEE4OzvTysqKRdLL5bKWlpbMeZPG5ddhLQBAftN3Oh1ls1nV63XNzMyoXC6rUChYFA1jAKuZz+et51E+n9fKyorm5+cnit2Qz0i1VJqxRiIRHR4eGkCoVCp2uMLyNZtNPXz4UM8995wZQQwo8tZUKqVUKqXDw0OT2MzOzqrT6ZhzSwVTpGuVSsUidbxfs9lUq9XS3Nyc2u22yuWy9vb21O/3rSqrNJaseMkfhwXsCNFAZKEYfyRyVDGUxkncHHrIYXle/Lxer1vLBg4iZL60+SiVSpqfn7eKbQsLC6pUKsbcRaNR9ft96/FIlP/09FTxeFwbGxsmO75z545yuZxisZhef/11ZTIZ3b9/X8ViUefn5zo4ODCWETZodnZWJycn+rZv+zaFQiHdu3dPqVTKKphKelPEd1oOGBwOn7/ngyGsH9adz8fyEX7WAixhOp1WKpWynFZJE44Dr8GZo6gLTgqHvY8qE1XnmnzLEn5PVJv1ReEXrjuXy02AYM8S8T7YHvZAJHJVnKFWq6nf7yudTkuSVRdk/+P4+gIrzLF3doNz7sGul9PhSHENXn7JGgyuRf9/9iNS0WQyqVarZZ/tnU7+9Q6odyzZb57Zg81k8HyDQNWz0N7RxBYhfVtcXJx4pn5uWGuRSMTYCeTjsD/eOSSdAcbQDy8vDhaLmpZ97QG+f75BOWKweA8AGqAkjfdFUEIojZlu7DSyUS9VhO3mM7geD1AfBwg9GPNKAL587m9QieSDSewhn+7iP9uz2AAVACyg0INgzwqiNPCBFH73pwFCDzj5Ox/cCoIsPtsDTb/PggDdB34fJ0f10k0+2zO30riwi5+jx6kyHsfA+feXZMGtcHhc0dnLj/28ezkugBOlBUXJeB7MTxDI/0k28cn4/348AYRTMLrdrh3KR0dHajabJr0h74Ny7V/84he1tLSk0Wik4+Nja+wMO1OtVu1wAmR1Oh2r8ohRgwVANsnhsLCwoFwup5mZGV2/fl1HR0c6Pz/X0tKS7t69a4fA7du3NRwOtbu7q2QyqcvLS+3s7CiRSBijiRQzk8kon8+r2+1qdnZW9+7d06uvvqp0Om3SwdXVVetDCPvV7/eVyWS0sLCgg4MD9Xo9ra2tTUg9YrGY5TwS9a5Wqzo+PrZ76vV6unfvno6PjycqlAKG/GE5Go1UKBQskh4Ohw1I7u7uTrAozC0DA+/neHZ21oo0UOFUGheLIUqHnCQYHaRqWjg8LnqztLRk11coFBSNRrW9vW1yl2q1avOyuLio5eVlveMd79Ds7FVPwcPDQ6tySWuRZDKpg4MDJRIJcyw2NjZULpclSV/+8petEI/PDe10OlpfX1ehUNDa2pqOj4/VbDat2msulzP2mKb2FFeIRqOKRqPa2tqa2A/TIkHBgfGtRwDwl5eXlo9J8AFngOqc4XDYpOHecQMsEUQi78ZHbgGQHPxE7+k/yfr0LAUHO0ERAFkkElEmk7FI+OrqqslEyX+ihyefh6St3W5bE3EYNelqj9CDVLpyapAne5XEycmJVeGEAfG5TThHvuALjtzjmCrv2OEg+sp+9CXE+fFOURBg8juk48xbsAWBpDc5d9hoZJk+B5I5ksZsjr8XDzzIH8d5xkmFKeB5kMcVDl9VYmUufd4mDjWOMbaNNcz8hcPj6paHh4c279528Ez8mJZ9zZ7wTL4HBhRIQjbJuUDfYCoB+4JNPhfPAzPOJhQX2Fyfv8r+9wVHJNlns889WwXg8KwgoM8HKGdnZ61JO/1/WSukb3gZqF9/fC5BBc8mkvuMSgAlg/dRADoeZPs9DtiZmZmx9/esGnaSe8YfYF0jdfaFnoJs3ONUAkEAxHr3dsfn27EWkOT6NcF7EegKMoG8t6SJ9h7MM+yxD/KxTnjOBN9QdvhAPgxht9t9k13l2fGz4XA48VrGtOzraRhPAOEUDIwaleqI+tGeAUeOHLJisWgG0GvRaVvx8OFDDYdDlctlHR8fq91uq9lsGiAhHwTD32q1rEjJ/Py8AQNkUMPh0Fo14ITcv39f6XTamAdYSiqmdbtdy/mj6EI0GlW1WtX9+/dVrVYlXRmkVCqlhw8fTjgwg8FAS0tLWllZUbVaVSaT0ezsrJrNppaXl43143DlgKEtR6lU0uHhocLhsEqlksrlsi4vLy0vg16I/X7fDniMtGdniAhi0PkZ8+IPcC//A8T5qmGSrCCO1/Fz/UGnEalpPB7XycmJVWYcjUbK5XL2WWdnZ9rd3dW1a9csKf7111/XwcGBCoWC7t27p+XlZa2srNhzXllZUb/ftx6WzC/OJetjb2/P5n1zc9MqjLbbbb366qsmE0PizBpEpthqtZTNZo1xAERIY2kTa4G9MC0RR++4e6mlLzoUlC0Dln0BEYpSsJZYgwSDfAELpEA+Es665HU4DDxn/oVBgnHy0tJIJKJUKqXFxUUrGDMzM2PfU5ABNpF1iaTTS46ozhcKhYxhorgEf4fNo5CGZwlxUnBasEs4kj567uWVPBN/jTCFzBl5UMGIuncU/bMid5p7JR+QZ8Hfermad8i5RtYI880eYH1wT54NIO+SfTsajcyRRyHA+gEUIlP1zE5QMcI64Wy5vLxUKpUykO6dZ5xu5tsXMfEgdpr2NevMyz0BdMxF8G+YV9YN69nn7vJanouXkUvj4ibI+iSZ1NivT89IcX3kgPE5fg+x/nzur++/ubS0ZOcQoN8HZ2CLfdAAoBdkuDwT5pU1fv/yvZdvevUNP/Nzxjz74i4AGi8XJa+P18DaEnRDYunZeB8E9izen8TgMYL2g+fhr93vCR8s8nYw+EVQgUANFVEZ2DWCDtwPr/fBahh9VGn+mjxTzffeT+JvpmVfT8N4AginYFBFlMImyWTSJFQ4UUtLSxoOh2o2mwZQ/OErjXMZiM77SC1gyJdHBoSSR0iDdXpinZ+fW/R6c3NTmUzGGr7jhIXDYWWzWR0dHWlpackqn0qywjIACiLKy8vLOjs7U7fbVavVMseGkvwcTMfHxxoOx/3UYBBw1l5++WWtra1Z5AoAWKlUjA2Mx+PWVF2SgWBv1DD0HMK+oMRgMDDwyLzjoOHs+uhrMH9QkhUaoCQ/wGg4HFrvLg8kOay9Y5vNZjUajZROp3Xjxg0ryLK1tWVg//T0VCsrK8Y45nI5CzAUi0UlEglVq1VjPAGngDcYz3w+L+mqN56Xxezv7yubzeq1114zRmc4HCqXy0mSyYqfeeYZnZycGMsci8VUq9WsgA/X7fMu/JiWA8bLAjnIWT9IuzmAvaPh5UuXl5fmmBOQ8LIo9jrv41lCAkXsdX9N0pilphUBDhmOTDgcttY1MPleKhWNRpVKpWz9UCQGxQOgg7UK+8XnwMjhfOEs4tAAEj07Ko2dQBxXX/4ex9E7VF6K7eeJgA32EYYPp9g7eqxTADfzWK/XTUUQDocNpPtG8X5P872v7iiN1zz7XZIBzMHgqrqwZ3soJAWrQv4m9p65J3CIfBNGkjnv9XpWRRTbF6x4SdCMgAQOJPPCXAGqeT5BR3ma9rW38/yMteWDKB4QSuNCKhRy8cDIyyC9TfABEZ4/QVoUJ6zLIFhhD/A8uRZ+jg3ywRSKVrHnc7mcrbd4PG4MHwEC9ivskWfXo9Go7Rsf6GI+WMv8CxPoAbXP8/MBNu7FA1tsngetHpTxc4DR6enphArLF5Hyz4PnFmzP4fe2B47+Pj3zKE2y7Dx3/3rPLAJwg6CZuQIQ8j7cM2vkcZJ5+gHzc54hf8P98Hu/5r0smTEt+3oaxhNAOAXDF4BIJpNKpVKWp9Hv902aQbPU4+NjXV5emmyPSPrMzIyVkadiJVFhIsQYIQqceCADKEgkEtrc3NTa2prOz89Vq9V08+ZN3bt3Tzdu3NBLL72kbDarubk5ZbPZiQg5xjafz6tQKEi6qiZKe4q5uTklEglrdJ/P53V5eam1tTWrVHl5ealisaizszPra1ev1/WOd7xDyWTSWLIHDx6YA/38889rb29P0WhUJycnarVaVuqa3js4xjiEvjWEpImD2UtV+BkMKlJcf+DgWGJMe73eRE4FjgLsBDIhgJnPjQo6VRRgeeqpp3R8fGzP9fz8XKVSyZzmzc1NJRIJ5XI5NRoNLS8va3Z2VrlcTplMRqlUynLXisWiyuWyHj58aHmXMFHdblfHx8fmJMIidrtdnZycGFDBcTw+PjZwv76+rp2dHWtbcnBwoHe84x2KRqNqtVqan5831pGWIsGI47RIUIIRbQCLl2Z5SRUMHWCBCK7PO4PdkWTOCECGdeMj2T4HzAc+AKmepfAOVSwWM/Zsfn7e9gOVBrFXVB2k0Tb3XavVLFgFs0WuCnJG7JrvJxiJRCZKu3sJtTTOtwGE+mrHwdxB7JvP35NkjhJ/T/4mjjr36lk+zypSdMnne2FLeI9gg2kcSv+9l+txXz7vkjnyzcWR5OPEptNpA4SeQZRk6hKcPED2YDCw4kbcE88HIIJ94bW+P6nPt/YBMVgW7sODkGna10FAyN5iDXpAGGR7vUQZYIXEVBoHLQj2dLtd8wWCPUAl2ZnD9bB/CTJyvnvmx9sTf82+WArBxNnZWSWTSQtg+QJovuUU1+XPLxhk1jtBIM5Zn4cYBIP+ew8Iub4gIIT596ytZ6j9PuPcJpDD53e73Tc9Oz6DZ8Wz4MsHfvz+9kCRLwJ32ETUNR4Acu08Fx/kIfjFPve22b+Hl4cyNyi5PCuKDSJIy1c4HLagHuuRwCPnCWOa9vU0jCeAcAoG+XDpdFq9Xk+lUknSlcEldyYej6ter6tYLJqss9/vq1KpKBaLWYn/UCikra0t692Hw4XjjdNyenqqbrerTqdjxWwwoLOzs8pkMup2u0okEtrZ2dHv/u7v6tGjR1pbW9Pc3Jzu3bunpaUlvf7664rH47p27Zp2d3f1zDPPGFtAvkEymTTHcWFhQfv7+3r66afV7/e1tbWlUqmk/f19Y0pDoZB2d3d1fn6uw8NDbWxsqNfrqVarmdHe29vTN37jNxpg3dnZ0dzcnFqtlvL5vFXMarfb5sQS2YeRhA0JDqQu0lVj+7OzM7VaLXMSw+GrVhHIagCXRHN94RjvLBB1pI+Uz1s6Pz+36okYY5iOVqul/f19xeNx3bx504qyDAYDfcM3fIPq9boODw+1v7+v7e1tiyqSRwhrury8bKxesVg0VqPT6Sgej+v555+3Q2t5eVmHh4c6PT1VKpVSs9nUyy+/bDlkRKilq96SrVZLW1tbymQy+tKXvqSlpSXLW6W5PY4yDqnPf/JjWiKOrGdf0ZJxeXk5UaCh2Wyao0I1V+9c43zgfAfzgPiXJvUeWLDOcNZo7O5zjKgkS06SLy+PI4EDgiycnEB+F4vF1Gq1LBiD40KQKBgAQaY0Gl3l/SJJZf/BevM3yONmZ2ctIAUoBeCxZ6RxgMeDWe4n2FdRunLEms2msXLkXUpjxxsn+/z83FovYDsBujhQyLFovA2zRj822FEvleNaceiw2aylfD5veVYUeEKOz3riPcndZK01m02bg263a/c0Oztr6oygMzwajex84j6Hw6GBeYApQDUYXPNjWvZ1sACYNJkLxj4BFPuCHPwNed6sP/+enCPNZtOcdSqCs26xDQyAoJf9Aiy9fQVIRKPRCSUMQQVa2+TzecViMatlwJoE+DQaDUsTgFlmn5IywHrxbDJzhd2H4QIAwnozh6xFD4pisZgFfQaDge0TgjYenMHm8bke1BAI8fJZQHi/3zfAzPvwHNgr7XZ7QnLJ+Qbj5oM+kia+x1YxV+wd7Bg2MJFIWAsYKrQHASP1ALysVBrnsHNdnrHErnI9rAN8FQY+kg9+B8e07OtpGE8A4RQMDtVkMqnB4Kqhu+9LA3CTrpxFDCcSDYx4KBSy/LhsNms5Z7AM3W7X9OYYN6I9GO1MJmMtKBYWrhq+37x5U0dHR0qn03rHO96hz3zmM+a8bWxsKJFIqF6vK5FImKMRi8V07do1VavViepVRAIfPXqkfD6vYrFoVUUzmYwODw9VrVYtujw7O6tSqaTRaKTNzU1jpzY2NszR8lErkqQTiYRJYDFwyWTSeuvBZgSjqBhkDCcDxxxHzedZ4ehKsmdGqXZJE+/vnXhkuTiLOPMU++GgW15etsMiHL4qHjQ/P69SqaRCoWAsHY4ZLUW63a6q1arlD6bTaR0dHanf79uc45QcHh6aM3P9+nWdnp5qe3tbjUZDo9HIHJNoNKqdnR3dvn1bW1tbunv3rs7OzrS6uqqLiwtlMhm9//3vV7fb1d27dzUcDq0ybSQSsYq2rNNoNKpEIjGxH6blgMGxYQ0irwvKovg/4CzI7sHUAg6kyaIm5BrBOnh5mXd+vHwIGfP5+bk5jD4QIskcPWlcrQ7nALCInBDWI5jrB/MISJmZmTE2Aeft/Pzc9nImk7FrDMpHuUYcJC+bCrKDOK/sb+aZAI00lm7hfMJiMF/kFhH0YXA9HujCfvD+MAf8y7wEn41/Jtg2nDAku4B32ADmwIMSHHwq0focM4AJ64TnxbPx6gmeuzSuXMz1w1YRcPjTZHDYez+maV/7dUbAhP3hGTfPUkljAMmaZ/36HETPELJHeY6egeN7L/fzgID9xnnl1w2BKh/USyQSWlxcNEUIAMTnfBPQkcbnmZdlw+iz1rzt8gVJgrmC/nufH+cBob9mH3jgGnw+Js/BKwe85NwzqTB/vtiMz6VnjgGC/sz2ElL/fw9GHycZ9WsF2Td2LBKJGDAGjKNA8IAQG/u4HEFJFryem5ubCEhga4IBMz/n2ErmzacTPJGMvn3HE0A4BQMjl0gkLCJLRSrvEGI0wuGwNaol6ouB8JvWy8zK5bLlA9LPjig4hV1yuZyeffZZAwGLi4smMVxbW9Pq6qpyuZw2NzclXTGY5J8gMYHhu7y8VKVS0cnJick/4/G43RuRtGq1apKoWq1msjly5qLRqLFu0rjJNQcY/RZHo5F2dnYmtPjS+BCLRK6KYviKaRzAGGYMH4NILSxAs9mUNC4WAuiDuaFwCnIdoqreefDvzaHPQUbuH3kNfCH1bLVaajQa6nQ62t/ft2hlqVRSvV7XcDjU/fv3tbq6qpOTE52fnyuVSpmj5lmio6MjFQoF1et1YwaazaZWVlYs8r++vm6Vay8vL3X79m3LBQyFQtrZ2VEsFrNWIGdnZ1pbW9PBwYGkq4MXOSl9EqlCenZ2ZjloPhdnmiQoPg/GgyJkyv733qFE5tzr9YwJxgHkoPZsFY4iEkcPKvmevx8MBhZAehzL4XOBeBa+WASMHI6Wf2/kYT5ogqPkHRWf6wIoYV02Gg2zgwAVrsM7LHzPl5fAcS+8P3sVQIXzhI2ExWQfM9eAawCQl/XhwEvjnEbvaPnXPU5SBqDyzwA748Evv0PC61lWAnc4okGJL5UpQ6GQBcpYEz5/yd/D3NycSceDoI4584AeIMq645pxRhnTtq+D9tyzcgR3fMqBD1YQFPE5a6xvLx8OAo5gPqrPVQvOL76CP6ck2d7kmnzeIPuI4CO/I0eUNS5pYi0FfQ9/TV4K7dMvgjlxQWD4ONYckIb9kSaLGHkb6Bk0fu/XOj+jjQeg0EvcCaR7Sb9nAoPPh33uFRt8L8mCPdg+Am5egcG+o50P5zfA2Ke4ECzj5/g5vCdSV1IE/PrhGWEfvASf5+7l9vhIjwvyTMu+nobxBBBOwSBCVCwWNRgMLG8Ow0XZdRKBI5GI2u22EomEyuWyWq2WQqGQ9YOjHD25ejR0TqfTFlE6PDw0aVcoFLIS8b/3e7+n09NTJZNJHR0daTgcGkg4Pz9Xq9WyHLRCoaByuazXX39d/X5fBwcHun79uh0i+/v7FiW8efOmZmZmVCqVlEwmNT8/r2azqRdffNEi4ZSEbjQa1hcxFovp+PhYMzNXlfN2dnb0zne+U/fu3dPq6qqOj481Go30nve8R1tbW2q1Wnrw4IGOjo7MiUIOs7GxYVVGvZGVJiVhRFw5MOjf1+v1rAx+KHTVuzCbzarVahmTi17f589wOHnHlkGkvtvt6ujoyD4L9qNer+vy8lJHR0daWVnRzs6OisWiAdrT01O1Wi2TJV5eXqrZbFqfP6rTemcWViYUClmFUT5nb29PkUjEcjxnZmZ0+/Zt3bt3T2dnZ3rhhRcsUvv7v//7ikQiSqfTxgBub2+rVCopk8no9ddfNwCTTqf14MEDra+vK5fLaXV11doUBMe0RByRXBEkwZEj2IKj5SVjvV5P9XpdkizHxAd8gsAKxs47HdgNpE++yq3PgWUfwBh0Oh0DWjD+OIfIE6VxzjOySXLOfATd91qjvUaj0ZjIn2Of93o9U0UsLCxYvot3OEOh0ARj4eeWueTamReuwf+dB92+uAfD5zMiGfVOF04fP/d5WbxWkjmR7G3YU5h27C6OLgwKOT7YI/KqfcEOQD4AFoDiWVX2eavVMgAIGKX1iGcBuA/WI05iKpVSpVLR2dmZjo+PVavVDEAAppHwwTzihE4rQ+j7pjI8O4eEmX2OA856DoVCds7hoPPseRachawVL0NEahwMWrAXPRuFtJfKvlw7gREvdfXfsz69pJC1Wa1WrXI5VXUvLi6sQBptlgaDgQWJGEFGDLUTgAjlEwFWPhepaCwWM5DEukbmjjKB50BFZsCMB6jYQ2yYZ26xl17Zwb4nUM/3KABI7cH2ebk498yc9Pv9iTXk2VuAIL18CZgSZGAuffEYb6O8PQoG9nzQDXsUBP88l8etby8b9mNa9vU0jCeAcAoGxhhpBpKIYESc3JSzszOlUimVy2U1Gg1zmobDodbW1jQzM2N5al7mRZSLhutEx8iroycVUc5MJmNFRRqNhq5duyZJZvBKpZJefPFFLS8vq9frWWECHMF+v28VPk9PTy0PhqTlUCiktbU1NZtNZbNZ1et1k0Qg0ahUKpJkTkixWFQymbRG8fQS/OM//mPrh1itVs0xgg2EvaRvGgZYGh925E7B2mGIMYbIHJF0DodD1et1pdNpi8bhVPvoppfW+PcdjUb2nGgc76P80hVQpW8cEcpkMqnhcKilpSWTlDSbTd29e1eJRMIOf195EIe+UChYxddEIqG1tTXt7e2p0Wio1WqZ5BQpWbfbVaVSmcjLarfbymazSqfTGo1G1s7i4cOHln9CVdyTkxNJUrVa1dLSkq0vL831uTCe3f16H0S0PaNAEIL9zaHsCyWwhzzIYO1IY4aa9yQqDhiUZM6JzzdiTcI+9vt9y1EZjUbm3Ptovpeo8pn+swCU7HkvZeLZRiKRCQeLdU7/U+zc5eVV9V2k3tKk9BBgF2QTvMQMQOilfLCaAGzvmAO4/bMi2u4LwABy+AJIcW3YA7/feT2SP8CSl/8iyfL35mVy2BWKPXhVA8BZksndKP4EIPRsEuskFAoZuAdUwKoAUHq9njKZzIQUmX9haPy+9eDSsyCMadrX7FPPgPrf4bQD9DwA4VkAPDh3JFlghbXnWWafGuEl2UFgCOPjA5sEMDwD6SXCnr0kmAAg9F+ofur1uqlZCFQDjLgW7tFLWrH5nOXsYV9cJigjZU9y9iYSCSWTSQuMMEdejcD8AaK8HNfvWc+i+UBPODyuuM7rPPv3uO+DLCHfB9VKvD/Ph2fiGUwfoPEKExQZQbl2kDHmGfueql4G76/Hs7X4HI9jif3e9YBxmvb1NIwngHAKBgaEDYkhwoBI4/4vsID0+kun09b/C2aoVquZJh5AsbCwYJFegAiSwmw2q0Qiod3dXW1tbVmUvlarKZVKWa9CQN8LL7ygl19+WQsLC1aJFHkgB9n8/Lw2NjbMSG1vbyudThtrhSE+OjqySJuXSnFAEUVdXl62vog7OzvqdDpqNpsqFot6+PChbt++rUajYaweBwYAEGeRCBjAiwiud1p98je5RTyDYNSyXq/bgd/r9Szy7p8h78WzJH+LOYCFxEmOx+OWSwXw7/f7qtVqury8VDqdnuhnyKFPURpacQD4iRInk0nLH4RhbrVaisVi2tzc1KNHjySNK7JxALVaLXW7XZVKJeXzeXW7XWWzWZVKJc3PzyuXy9nhD3CtVCrGClJtdmbmqm8dUd5EImG9LP2YFgmKr5zHOsDhwTFiX3PIDodDc7Bg7lmrXpaGgwWo9FItSeZwEO1nLc7NXVUGZo+SSwsIwrHyxX48cCcKzTUh8QZ8wlL7iD1OIY4vTgSvJYeaeyHoIo2ZDJ/nggPpc474CjatRmoPo8ie8/l+vEcQkHlWzTt3OG58Bu/jQSaOKA6cLwYCACM4NhqN+3Yyr8wXlTzPzs7sfJDGxR4kTeR1AYz5uc/pQsYGK8uzaLfbttakq/0PeOY9SGvw6orBYGBA28t2vePrx7Ts68elAHDfvrgK+91Laj27SxVYQCPvK8mcd58/6AuieODun7EHe+xXgA5BSNYKjj8glvx/Lw+E4UP+WKlUJoAgee/sUc9QegmnnzsvCfUySP4fBIQEdQGD9FHm/n1FVfLuAdfYVx9I4Tz2EmzSUgBenGfYHx8Yehz48/nB/nfeXkhj8MbeJmiFLUT9gQ/kQaN/PWsMsIrix//O55YyT9ghrtdL5KVxlVL2Lp/rz55gDuG07OtpGE8A4RQMDD/Aheqcksx4ITNAikk+XL/fVz6fN0kJhpaqmFSwpPImbR1u3rypk5MTpdNpraysmEzxlVde0TPPPGNOw6NHj3R4eKh0Oq1sNmvSrqefftraX1QqFTWbTStGkkgk1Gg0tLGxYRH+o6MjNZtNHR4eWjVQ8ijq9bo6nY5yuZxarZbC4bCBHpynWq2mQqGg3d1dq8Zar9fVbDb1xhtvGPM5MzMzUUEtnU5bVVGAb7DgDHmY5ORlMhkD3zi5PteIAykUCimVSqnVaqlYLBpjKI2jaDi5GNxIJGLNfS8vL02COxwOFY/HtbS0pEwmo1AoNFEddnl5WZlMxhjXarWqZDKpSCRiFWG/6Zu+SZ1OZyLn9Pr165qdnVWtVjNmFeB7dnZmss5kMqmlpSWdnp7qtddeM6kpfRyRklarVc3NzWl/f1/pdNoK/bz88sva3d3Vt3zLt+jWrVtKJBL67d/+bUnSiy++qMXFRXU6Hd24cUNzc3N65zvfaf3QkEJL0xVx9H0cJdkBjwOEc+SZapwW8kNg43GQvPwJZ4aKcZImVAFIRj14xPkkuNFqtQxc1et1zc/PW3VPQDs5pjhhVLkEVNbr9Ynm5+xbotRI37gWqgVTzXN+fn7CyUN21+/3rZKnZxB8MRmAFLYTxnxmZsYYyFQqpXg8boETevLRVB0b1e/3jVXnb3HavWyUfD1JbwI/3inzEk3YBN8PEBuBveI9CdbRUxZWFycVRx9b7PcM6QKeReD+YBRZW9I4jwmn3ju0SMvIAyewxAiFQnYmcf843jjmjGna1541Y7A/PLNDugLrwIMReooC8lAFeWm5Z/6w6QQ0+L1nndl/BFkAQwxy1lnLQSkioGh2dlaVSsVAqJcYNpvNN+WfshdHo5EVQxkMrnpnIpcGNHkWns/y+5mALX4QMvFcLqdsNms2iX3W6/XM32Fvsf89q8457nMPJRmTyVywZ3xOsg9q+SI5gGF+zh73xbU8sA0GA/G5kIZ7EDYajUwSjm9IsIm9zLMn9Qc1AuCw2WzaPWBvw+GwPVueHc+Sv/cBx2CAAL+FMU37ehrGE0A4BSMoYeL/wegzrA/GJZlM6sGDB8baEGWXrpxPWL9oNKqDgwNzypBYnJ2d6fDwULlczoxRNpu1aqR8Dj3lLi4uDIiST8h1NJvNieqd2WxWkUhEsVjMisrgUAwGA21sbKjT6VhLByKl3C9adWQ3/X5f5XJZ8/PzSqVSmpubM33+t33bt2lnZ2ciDwmDTGSUyLs3yrOzs2q329rZ2dHGxoYZPRy+XC5nkVAf7SUSSu4jEX2cR2my2T2tMjzI98/ZywU5oMhzorInzmQikbAy0+T18f7MZywW0+LioslHw+GwMpmMOZpLS0uqVqvWVqRWq5mEjGIV4XDYqr1ms1l79i+88IJarZZSqZQikYju3LmjSqWib//2b9cf/MEfqFAo2NzSImVpaUm1Wk39fl/Xrl1Tr9fT8vKyMcYUx2BMywHDYcxg7fgvwAf/h/nxuWyetcOZ87mCBBx83pbP/ZEm8xnJ9ZLG0V1Am2+wzvsE82lqtZqBGSLhPg/KA0IfTUdO7UENABBZNHaAgg44LJ5R8CwUji1/C7MJUBwMBspkMlpcXJwok+9lcl7Ci60BNPnIPzbZP09/HQz2fpAhxK55hsQzJtJYLsa6ocUHNga7wfxzjT5yDyDk/oKsBTYONYRnr7gO8r8A7cHCO95ewQ7xef4+/ZiWfR1kSIL/Zy2xXj2zzN+y/8LhsDHXPv+VPcKzYXB28FqfFxeU4nsmkNeyBqRxJU7/zJEUd7vdicCABzuwWj5IwxnL53ipqAdX/svvAw+cfPGYaDRqctFkMmmtMbj+ubk5nZ6e2vwSyCTQxLx4Rp0giAfeXnpKTqKfd/7mT2IDfRsb7l8ag1Oei18vMJf8nD3L6/CByM/2DGewhQ3sH/cBKGfNcT/cA+k0PBfsGP8G+xv6eQju42nZ19MwngDCKRmPkyFJk1WciFwBQgAmjUbDZFeZTEaPHj0yA3F+ftXL7/r16yoUCur3+1pdXTUASV4dlSnT6bQ5Cjh15+fnWllZMaeqVqupVqup2WyaocYZ6/f7ymazFhltNBoT+Tk4GDQyz2azes973qPDw0OLgNOGoFKpKJVK6fLy0sDejRs3FIlEdHZ2pqefflqZTEb7+/u6fv26ObTRaNRkiD5PwkchactweHioer2uaDSqlZUVy2FCYsnBgh7fO3KJRMJkqRhKL4/xUjE+1+cy9Ho9c37z+bxdB8Z+YWFBzz77rE5PT1WtVtVoNPT+979fx8fH1kdwY2PDCvBI0he/+EU988wzlvwfDod148YNVSoVkx9SyRQ56cXFhQ4PD83BgLVaXl425jWZTOr4+FivvvqqRXErlYoODg706NEjW6evv/66stmsXY80WUkSSSuf46XCwfX+9T6880Meh88h9L/DkZZkQMpHmHEesA8+YuvZIP4Op8czD9Fo1BqYE5VnL8Km8cV1AvQAZqzboOPq81ewS8jDyVlFJo36wANISRbY8AES70x554Uv78TAeiKFZY4ymYyxq7AuwWfjGUBsKXI75hhA7J8XjqZ/dj7/kKg9zrF3fEOhkBUTwkYwF9hPbLGX7mHLkIouLCxMFKmhsIUHq7x2OByq1WpJkl2XD05wX8y/b3cBMAwyf97p9bL4ad3X0pglDP6MwXwGQZCkCRDHGSFpYt6DMmS/z/gZew7Gn6JJfm/AoBE0kMbAj7XDfvV2p9Vq2d9QMAU7zvtjQ7zsU5IFffh8L0kM7jsf1PF5wASuYP8pKENwxNtBemQSfOX+YMYBjsy5Zwz5W0Cc37sEZrh+D/g8GAz+jGvBJnnml/2OsoNn7f0Uni8ybN8aCNtL0beLiwurmcD7BiXGvq0GIFMaVzoPBrG9L+OfEevHr/Ovxb7+xCc+oc985jO6fv26fuEXfsHOmt/8zd/Uv/t3/06zs7N673vfq5/92Z99S5/zF2E8AYRTMFKplDKZjMLhsEV5vFGXxsnqNFrP5XJqNBq6ffu2Li8vtbq6qsvLS33oQx/SZz7zGZXLZTWbTW1sbCiTyWhjY0PNZtOM6TPPPKOdnR01Gg3l83lJsqIjqVRKtVpN1WpVzz77rNLptA4PDyVJ6XRa7Xbbct0ApuT34YzW63X7f6lUMklYt9u16n20vsB58/KEcrlsBq9QKGhxcVHXrl1Tp9Mx5gljSCsJqmIeHx9PzBnR18XFRaXTaeVyOb366qt68OCBSUlnZ2f1xS9+UTdu3FC1WtXCwoKBtMXFRWt0T0VXDDTOYy6X0+XlpeXWlUolbW5u6uzsTI1GQ5lMRsViUbVaTY8ePVI2m9Xp6anS6bSWlpZMRipJhUJBBwcHunXrlrLZrKrVqh0mFxcXWltbUzwe19zcnOXxjUZXRYmeeuopSVIul9PFxYVOTk6sfcjBwYFisZjS6bRarZauXbumZrNpTOdwONS9e/fsWk9PT/XZz37WIqYw0OFwWPfv3zeJUKPRMElPoVCwQAKS1kajoc3NTWOeYWwWFha0srJibBRjWiKO5O4RgffSTRwoLwn3RWF8XiAOHz1IARM4WcjCYddwrMj5gvWKRCKKx+NWGRB5JE4EAFKSOQ+8PywhbIbPM8FpAYxQtMoXXwBUkIMLyPTyZRzS/f19A1rkMHsg5aPWOF44lYuLi5YXnc/n7T1g+pmnx0k+CYTwf3p0+hwdwDmOHs8L5xdnH+cQ+8OzoXIrbC/XT9AMye5weFUR8vz83AJ+HowjJcVpBCzMzs5aZVHWyMzMjOUJSrJgIesmnU5Luir8tL6+bte6sLBgEvN6vW7MI/nNXhrLOeCVD8ExLfva34d3jn3gln3L33tQESx+4gGUDzgGZXqsJ28zJBnIwJGWxgwkQQbP5EqyZvCcZawtz+bzeQADFD9coy94x77xQRLOX8+IBVU63LPPFySgQ+4v/wIG/X0CCFnvtFcZjUamdJFkARJpbFuZS54T98D+8nbGS0Z5HshHfRVYgCT3iO2CnWM/YlPo98jzkcb5waenp7b3CQAQgGm1WlZVFpvm9x/KAEgBFF7ci3Rls1A1EZzF1ntZK0Fr1sHXkiF86aWXdHBwoN///d/XJz/5Sf36r/+6PvrRj0qSvuEbvkF/+Id/qEgkoo9+9KP6/Oc/rxdeeOHP/Vl/EcYTQDgFg75gGAlAYTBBmAMexyZY8GR1dVWRSETr6+u6f/++MpmMvVez2bRy4xj+arWqarWq3d1d5XI5k0gOh0OVSiWdnp5qf3/fWjucnJxYwZlbt25ZsRqM0GAwUKVSUT6f1+zsrDmwHHCZTMauP5VKGVuwvLxsBxLMAq0ijo+PzXGt1+u6fv26AZO9vb0Jrfv6+rokqVwuSxpr8Rk4T7Ozs2o2mzo5OTGHEcZ0OBxqfX19ot/a4xyAfr9vBRaQbMRiMT18+NBkQjSFj0ajunXrluLxuC4uLpROp62cNA74+fm5EomErYF3vvOdJqnEOSyXyyqXy1peXrYKq8PhVeN3nMeLiwutrKzo4OBAodBVkZq7d+9aFcdut2u5SbASOzs7Oj8/Vy6X02BwVQCIiq8rKyvq9a7aAhwcHCiXy03kd87MzKhQKNjBSGn6WCymfD6vcDhsOaYLCwtKp9PmWMzPz1tE14+36ji+XSKOyPKkccTf5/gx2N8+Yotzz+/5l99JMhBGFB5HHhbQ5yLzmTgu7D1YfwA6ToQ0lrLj5OEQkM+Ck0NAglxgpEwATV80wgMu7gWHGScGpxmAyD14ZjDIzjBwbubm5izX2MvVvPLCD88SeimnL93OdfpcsCAg4Nlgy6SxownT4dmVfr8/0Swc9hSGV9KEpNDPDfOLk8g6wsb6eeacAFjQIkCS2QLfkgB2iPlDVTAYDKw3LU4kOcDYyqDd9et8WsbjnGKev2ecPPPk2ST+Re0iydZAUKrIc+U17E+GZ3EAbp4R9ioC9gDrxbcs4jXkzgbtipfB+iCKP+P9PiGQxTr3subgPgzubfai37OPm3cf0PHfe9muB9hetok/5YGhZ9q4d56fLyDDM/R2m2flA15eyeUZSu8z4aPxc5hNfCKAu5djk7Pogy/cj9+DzB3P20vJGdhx+o+SRxhUT/xpa//POz7zmc/oQx/6kCTpO77jO/SLv/iLBgipai/pTYHAJ+Px4wkgnIJB9AsDgzHyGxs2JhKJKJ/PW1SMaNHDhw8N4MXjcSt0sra2ZoATuQDO3dramrWugKGCDUomk+p0OtrZ2TEGLRKJqFaraWtry4oNrK2tqVQqWU8ipJr9ft+AD5UDYdLK5fLE4Qe4euWVV1QqlXT9+nUrVpHP53V8fGzXjeytVqsZ+xYKhYwNwOkkou9lGxg+SVpdXdXi4qIBsdPTUy0tLdnfUgTFH8AYY88AzM7OamtrS5K0sbGhfv8q2Twajaper1tOnZewIWu9uLjQ0tKSpHFhCcBRvV5XNpvVzMyMVldXFY/HjdnL5/PmhJMjRSXSfD6vRCKh1dVVA2KpVEqrq6va2dlRvV6fOLQvLy+VyWQ0Nzdnz2h9fd3yNDhQ6WHZ7Xa1tLRkh0+r1VKlUrF5Hw6HxjgMBgMVi0W98cYbxm7CJuLk4Pwy3qoE5e0UcSQSLb252Ijf30EHEgAU7HfmGQQiu95e8JwSiYRF1XH+qDjsgYCP4AMspasAVfDvcChwOqWxIwCLRB4ikkUArG/1gh3yjmu/37dKlUSiuS+kpV7u5gGil+IFHR1e7/e9l5n+acOzIEEpn79/L5/0A3l/KBQyKZ/vJ0hgKtjY3cu3sGf+85D2elYESRnX6nvWIZUl0IaT6fPLAOzkbREoIuebuaCROgEqz9xyH0FJL2OaJKOeHcfpBgx6AMY+9wAwCOqYd9a1XzfkjQJKOHuw/QQJ2GMMApUUpOI6fOEZSbY3YO64PlglbANgMJgz6+XvQcmwVzZ4G8fg7OL3fPngSzAAg430wNK/zgdkvMLKg+WgdNfbZGwv3/P3zJ+XlHog6CWxBHl95WOuCaYQpQRzgEKCeQSUAxC98oDnxzNiXfD+XAfXxJzwO9Yaw59FtVrN5gMgz1z+Saz4W93X9XpdKysrkmTKtOD43Oc+p5OTE73nPe/5c3/OX5TxBBBOwRgOx03fOazPzs6sSIjvbbeysqJWq6XRaKSDgwMrsJLP59VutxWLxXRxcaH19XUdHx/rlVdeUSQS0fve9z5zHIjy7uzsaGFhQe9617usOt3TTz+tz3zmM+p0OlbmPJvNTpSIp82DPxzC4au8lmeeeUaRSET7+/tqNBp69tlntbu7qy984QsmvUwmk8rn81b0ode7avhOxc1SqWTXSvNqHJj79++r1+sZS4gRhS3Z39+3HEAcRwx4t9u1Cmo3b96UJMu9qdfr1rCbiqG7u7uqVCoTDXd9lHBmZkbdbtea1eOo37t3zxyrWq2mer2ud73rXapUKorH43rmmWeUSqVMhlkoFKzSIhUekYp1Oh2tr6+bk1Gr1fR//+//1eLiorGxtHJ46aWXrOrr8vKyZmdnlUgkbE0kk0mtrKxYxL/dbkuSAb1ms6lSqaRCoWBtI0qlkp5//nkrSMM837lzR5FIRJVKRbVaTcViUfl83qS0rVZLhULBGEucSVhaqrzCCvkxLRFHQBiH9nA4Ljfu8zx8UYBQKKR0Oj0hNWUgw/Ws2Wg0sr0UDl/li5J3I8miyd6J57Nx+mB4AOhzc3NWkRInhmJFRLRHo5EFTHCOGo2GOZRIvyKRiLLZrM03TbtxKnxOH2sB0ELBKewMFQdxinz0H+AEu1GtVtVsNk1aiTzKO8g4eN4B9Q6fNJbjMfg8Lw+UZKCIvwFMRqNRZbNZDYdDC+jhkFGtFeede2+32+b0c93ke6FcQAYYvJZQKGS9aXH4mVcqpGIbCZzxWtYEdjASGbc0WVhYUDQaVbfbNTWLD0R4pxAptJ831uo0DA8WGJ4dZH/DlLPPfcVN9hEAhPQLnHefswujjKOOcgUJt2f3/Zrg+bLecPK9zfUsoGfluQ6kw4BC2Gz/c9gwH2zB5rGPUCQ8DhxyZkiyQC52i+GLWkmaAISdTsdaI1FkxQfjJE0AV69O8HvdByaZewAhX75iKvYSkI4NQo7L80Qyn0gkJlg79jCFvCqViu17QBiBM3/tvJbrJZDH84Fl5Jngi5AW4lUY3p85Pj62YDb+XyKRUKFQsHObOffjq9nXe3t7+p7v+R5J0oc//GF9+MMfliQLckuyftR+7O/v65//83+u//7f//uf+RlPxhNAOBUDsFGv181BwwnAiFI1j4MCJo7DGUPN4UDUfnl5WaFQyKIvOCj1el3hcNgKSuRyOdOZFwoFrays6N69e5KuDOXi4qL29/clya6TKpREMWOxmDqdjhUzGY1G2t3dtdwiiq+QLN5qtVQqlRSPx1Uul60SJYZNkhXR8QcYDjTM4tzcnL7hG75BOzs75ih6o8VBxSHc7/fNgPteYEGHkDwKz+D4Cl2np6cGMnGCzs7OLNqXz+eVz+e1uLhoSfK0tiB/cmNjQ5FIRFtbW8Z6It0AZCUSCc3NzWlpaUm7u7s6PT1Vq9UySfDu7q7Oz8+1vLysF198UdFoVC+88IJ6vZ6azaYymYyWlpb06NEjNRoNraysmLwPNg+AMT8/r2QyqWq1ar3PqOKWzWbVaDS0vLysg4MDZbNZbW1taW9vzyQsRDXpeYjjQvEa1uVTTz2l4fCqcb2XQAXllH/S+JMOmLdTxBGZ9+McEO9U+EqdHgRyiPuILU4HABKGx+cW8gwAA7wnjl8sFrPrgalGtjYcDlWpVDQzM2PrGMYBO3R+fm4OGhJzHB/AmmcFsU2sBQZMiy8SgfPL/QNUfDXMoNzWM63k9nBNBCJgQH0D7WAUPSj5CzIkkux7rofAFWANWScOPoxtr9ezMvo4vdK4NylMIvYOxh8mHTUFc48EnHUGsA2FQqpWq2ajvIwzKAeTZMEHJL5eOgibyzUwd7QnATB69tazB0FGaFqk4J4h9D/zDCH72ssKOTt4rl426HNTsRmc7ahpPChjzxOwIFAijYGNz1dD9imN2Weej09H8bLJoOwSYOIl4Pwda81LQllv3q6xRrzk2hc2omiS/16SARwfgOa87nQ6JlX3lTa5n6DNCO49L9lnvlBEeIbOyzN5Lffl58jnSfd6PfMxCMYxSPkhL1gaV5HF3vJcvB32jB1/71UE/v6YK+8PESTo9/sGRtn32AHWI2kn+G3MC+Or3dcbGxv6tV/7tTf9/Ju/+Zv1Uz/1U/rYxz6m3/qt39IHPvAB+1273dZHPvIRffrTn1axWPwzP+PJeAIIp2IAciiiQqTr9PTUqkFSQTQajSqTyejs7EzFYlGxWEyPHj2yQi29Xk+Hh4cqlUoWfVxYWNBXvvIVra+vW3S/0WiYUYjH41Zdc2dnR+VyWYlEQt1uV5lMxgqYwADBIiCD8mDicTlOkpRIJJTNZvX6668rFAoZg+gNmK80RqVRgNzMzMwEM8L3RBL39/fV6101uue1OIhBMEf0EIdnfn7e+pSRw0fkHJYWgI4jz8EMU7m4uKh8Pq9Wq6V4PK5EIqFr164pHL5q3/DCCy8YK5dMJrW2tqb79+/r4OBAzz77rPr9q7Yax8fHikQiyuVyFj0kuhoOh5XP59VoNJROp62sdjab1c7OjjkR165dM5ZwcXFRp6enOjg40Gg0UrPZ1Pb2tlKplOUnVioVqzh6dnam/f19c+4Hg4Gq1aokGZDu9/vGtlDgJhS6SsSvVqs6Pj7WxsaGGo2GZmZmVKvVjD1Ftnh0dKRwOGwVa/34aiQof9IB83aKOAZlioAmgAnr0TdxlybLj1N6ndfjFBA0ItiCM0puMXsf58IzcTB//nNhkIbDoebn59VsNs0ZkcayUZwEL4HzAArHh7Y1nl3ASQzKaL2Dh0OGIyZpwsHGUeEzYWD5P86Ol77hQAMumfcgAPR5Qr5NBOsRJ9bnRgGqYWqksYwqnU5PgG9vMy4vLy2fG9vGdaEUwcbxHqwJmFocc+YMZodr5W9wpn0RD+afe/KslGdBuRfko8yxd0oB9QAE7GhwvBVp2dtJCu7ztHxuV1BS6PdIMBiBhJFAos8ZHQwGtm94bgRJ2FO+xRR/h4LFV/5kneO4c36zPghseDWNd/69TN0Hn3jePhjFPWEzOCd5fy999Qwe987PWacoJpBO+znz68znLV9cXEzYVg8I/zTwwjPwdiioZPAjHA4bCAdsA1gJ7ODHsF54HUBWkgXDWDe8nwefPqAHePTBLHwowCJ+FMGCoDyeVAPWpzQGdswZATTUAfhH1C3w463s63e9611aWlrSBz/4QV27dk0f//jH9X3f93369Kc/rZ/5mZ/RgwcP9P3f//2SpH/7b/+tvvVbv/XP/Vl/EcYTQDgFg+ptsEv7+/va3d018EaRiNXVVYv0HhwcaHl5WcfHxyoUCkqn0zo9PdXJyYl6vZ42Nze1tLSkhYUFfelLX1Kj0dDNmzf14MEDlctlraysKJfLaX9/X6urq2q327p586YuLy9NvhQKhXT//n194zd+o/WhoqXAo0ePtLS0ZOWgiVyn02kz7Ht7e8rn8zo9PTUm7P3vf7/a7bZKpZKSyaTJQmDUYPySyaSksRPmC14wTzCVOLDLy8tWJIWDr9FomKEk4kr0nEMsl8uZ8ZuZmTGGkypfZ2dnarfbarVaxqwhgyM6ywG+tramWq2mmZkZ62+IHOTu3bsaDAba3d3Va6+9plQqpeeee86icOvr63rppZcUiVw1r+egw6n1/d3y+bw+//nPW45lOp226qqHh4daWVkx1qLRaCgWi+nBgwcm1SyXyxoOh5b/CYOJHFe6itAVCgULVmxublq7jmw2q7OzMz169EjSFYjxlekqlYpu375t8pNoNKr9/X2LRq+vryubzerk5GRCGvRWmYS3U8QRcOLzjFi77XZ7ovKld8JwDKkY2e9f5YxREZZc1HQ6rX7/KlcXVjkej5sjwF4kh3U0GpkywEesAV8ESHDmKbSEYweQRNrsI82wWMg6uQ7UAL5Yi6Q3OT04SYA0nJhqtWrgDMkVTgr3QX4Ma4/PIJcOQMrfocLAcSQAhFQfZQYOIddFUAbbdHl5af1WfeAL4E9LHuY/l8spmUwaSN/f35+I5tNn1EfoUQaMRiOroIjUkP6dOH/YbuwSQAKZrmcMg0GIWCw2kQ9EcBGgTwCInwG2fYEzP3AsGW91X7+dpOBUdfTA2gcVWEfk1Pu5IjDg2TOAGSAvlUopmUwqm82aVJqqtJFIxNo8SbK9wRlH4R9yTIfDoVKplF0XzyUUuqrIybX7wCwAjxxRD049+4XyBWm0ZwG99FsaM1c+785LvrF/fo/6/FjOfQK0rON+v696vW7SXN8snj3tpZEoMXwwiHzZarVq9orr8/LY0Whk+8QHTWBqsZVURg2FQhPKhmg0qna7bcEqAjiw/15yjH30TCR9l30AnbOAuVxcXLRn5qusMq8En/j8hYUFY1apI0GwChUK4JB197Xc15L0qU99auL/n/70pyVJP/IjP6If+ZEfeUvv/RdtPAGEUzA829XpdNRsNi3qj1NF7ls0GjWDjbRvd3dXh4eHFj3KZDIaja4qCq6srOj8/FzPP/+8AToqfBYKBTMkRPTb7bYSiYRKpZIVXTk+Pra+co1Gw/oPZrNZK21/eXlpeXHSVdGW4+Njra+v6+7du6rVaioUCioUCtrZ2THWDaM0Pz9v78chI437CHIoYKRxhJvNpjkpzFuj0VAymTTGxDt6OGMYZR8tw5FDIjkcDi1aT8GM09NTi5QOh1e9CqmU+cYbb0iS7t27p2effXbCaev3+wZCms2mHaoUxjk8PFStVrM+kNFoVLVazeYikUio1WpZRJF8g3Q6rdFopOvXrxvrQ9I590Ue461bt7S/v69bt27p3r17ury81Pr6utLptOWMcXj1+31lMpmJwiKsOxrV53I5A5r9fl+JRELlcllLS0tWTrvX69m6oJm9JHNU6S/px1s5YN5OEcfHMYQ+b9BHsr3kCIeDfUnBDmTGOCWekQtKRmHFsCuSLHLNOiK/DtaOtQzYZO94CRVtEZAX4UDg8PjS8Ti4ABScKJxDzyYE832QROI0+yp4MB8wngTOgo4t+xL7ipwTu+BzKT1D59k5aTJnDDuTSCR0dnZmz4lgGI7x6empcrmcPZfBYGBKDKL6PBuCJDj9sKYoLHhWALHhcKh4PK5Op2Pv74NFOG2eHQQ8E1DwzibPx8vUpDFo5zq8tA87QVAjWAkRx9+Pt7Kv305S8GB+JPPhmfKgHJwzSpIBOwAAe1aa7HPrc/g8A+uvwzM82BX+z+ewh/h7zojg8/EMMs/Zy0L/NBmpv27WL2DLS2G5bg/a/bry3wfBpJ9vGEKCFdgpP9c+oOFZUc+OcY3B+fBFm2D2YQKxdX7OfK4xcnlqE3D/QUkt+4SAKH/nc6r9c/NKC+YlyNJznawd//z8c/ZgEp/I/w1zhH3F5nq2k/FWAeGT8bUbTwDhFAwcmvPzc9XrdWMFYJ44fFutlhqNhpWK39/ftyqZMzMzWllZUblc1ubmpjmbjx49sgOhXq9LkkWSKpWKqtWqVRTFeCN7ODg4sO8xkKlUSqVSSWdnZ7p//75u375tDBARvZWVFRUKBd29e1etVkvValVLS0saDofa29uTJMtNW1hYUCqV0uLiorEKOE04lzgaXpoyGAzMeSWiBXNAuXmkdTgrMGEYVw4lImM+ciZdRTqR1lJFlecC27OysqJQKGSN3Eejkd73vvfp2Wef1Ze//GUrpLO7u2vR9FKppFAopBs3bpiTPhgMVCgU9MYbb+jhw4cmf0mn01pdXTUnDxBLqw6eLQWF6MUYCoWUzWbVarWsV2U0GtXzzz+veDyug4MD3bt3TysrKxOsEuwo887aIkARiURUrVZ1enqqWCxmgQgOtb29PUUiEZPLwRywpn1O3eXlpWKxmHK5nO0Fz1L8ecfbJeIYBIRexhiUIAMkcC4J6LAnvbTI5wgiU/SSIQYBIp9D66VX8/PzVoyByDROUDh81ZuSXF2un8/HmeI6WDMAGC938yXrgw4R7wFAAsBJsn2Kc0JACHDCfAGE/LphfzJ3yF19vmNQ0ucj916O6h06n0ODnI3n4R3kcDg8Ia0EMPi14Z8pDj2BMJ+PCWgIhULG5HIfPFdyf2D9ODsA5X7upXEZeuYM+4pT6ANlPO9g7hmBJ+YOBgin2z+Pr3Zffz0Un+A5esfcM4R+vfo0Bdgk9h+ME3lmBBmZJ9YRezVYbEaaLITiGV8POqVx0RvAmyQDH95GAAw8gGFPs5e5DphDzmzWmF8jBGE5zwGsHhwDPPz3MFmPWzdcJ/Pui0XByPl8TVhBn9MJcPTviVLC91oNSq1JkeH+Q6GQ+Ss+SMw9IL33ABsQSmAN+4cv4+/Zqyo8wPN5kby/ZzQJJHigzrPx8vNg/rGX4voUGp4dz4fxtTivn4yv3XgCCKdgICPrdDpqNBqW0C9dGYHr169bA/ler2eVOnO5nFqtlk5OTjQzM6OlpSVtbW2Z1E+SHjx4oMvLSxWLRcXjcWua/uyzz5qBuX37tl577TWrTtdsNnV5eWmf+973vlevvvqqotGoms2m1tfXtb29rdnZWX3pS1/SzMxVM/izszOtr6/r7OxMr776qg4ODpRMJq2Z/crKihlaiuJsbGwok8lYMRNYJAwuTEUoFLJmrIAoDCN99TCQSDcw7FQqHQ6HBlLIM+SQDBpmDpB2u23yHw4LLz8jn7LVak00mG2320qn0zo6OtLq6qrJTIfDoZ5//nnt7e2Z5Papp56yQ39paUlLS0taXV21pvLXr19XMpm0Z3JycqJUKqVKpaLhcKhisahQKGSAtN/va3l52SqFnZ6e6l3vepeGw6FefvllHR8fKxqNanl5Wa1WS6enp8pkMgqHw7p27dpEjhJzSA/EdrutXC6nSCRi1W6bzaYqlYr1f6zVanrxxRe1v7+vubk5pVIpLS0tmXOQyWSUzWY1Pz//pqIy0vREHAFTHKIEFgiSUOV1dnbWpD5IDQEIvqgRBUAIcrB/fbGmZDJpzaN5drDUOO2eycfx7/f7VjWUNV4oFEzG6CvicT2SzNGbnZ21z/USap9PGGQ4fA6LB5eecURCORgMrOE6TCUOoDTJrPj5B8B69pXgG5F3L49C4ifJABjPiGuFCUV66p1FSZYjiFO7tramcDisdDpt94fiAEcaVQDO7fz8/IQk07MU2D9ALvPI38Eoe4bIO/kzMzOm+GB+yP/2ziK2DCaZnHbPCnc6HdXrdZPkRyKRCWmiH1/Nvv56KD5BYAKgLk3mq3u5KAoT1gP7VpKBu0QiYV/SpOOPE8+zZE4J4JA7d3l5aed3JBJRvV6faESOysQHYrxSwQeCCKD4HGCABooVLxlFnsjrABLkuHMfyBODLDx/z7oFWPv1y3XyLwCO/FbspAeC/rP4G+T6BIS4Z2nc51Ua1z/gGi4vLw3oMZfsGZ8n7esrELDhPX3OIfceVCF4yT42QbpiLMnVJ0hETiiv87aXNlUEEqRxMSGfZ8nrCNx6m4xPRIV5f91+TMt5PQ3jCSCcgkEOEJE2WiAUCgUzBICc8/Nz5fN5feUrX9Hq6qqBDnJTUqmU9eaDZTo+Ptbzzz+vWq2m4+NjhcNhaxUwHA716NEjzc/Pa3V1Va+88or6/b6xg4lEwvoHUkF0a2vL8g9gEtrttt797ncrk8lYBUxvaGZnrxrVAxo45HCuIpGIGVkMYTweVyqVMsmTj6TjPNHcnGI8GNl+/6oCKUYP2ScJ+zAMPqKJ3MU7pjhu3W7XDnIkpTiqVGMsl8taXV01GRqf3+v1jN0Nh8M6ODhQJpNRKpWSJO3u7iocDmtjY8PK7B8dHVl+JxJTqgd6x4zcprOzM926dWtCQrOwsKCDgwPNzs7q5OTE1kM2m9Xe3p4ePnxoskSeBUzt6empSeAqlYpSqZQxWuQjMXBOyHPiEDs7O7ND3ve55DXIoaf1gPEOMQc9Mkxy1NgjsEU49BzKXqbEM0VaHixvjkPiG8cD+Dwg8nl7HiBlMpkJIIETiNOLAwUThJMA2PDAy5ej9/lIXCsDZwmH2jMSHmziKOKMe5kx+cswedK4AAOgBnkWvyOHjr2Ks0lknPuGAeS1SNdZx9gW8mxx+sg39KwRgJbrOjs7s8+g+BOl4XGuFxcXzTYh62V+vM1qNpsG7DxQ4fl4llaSPWfuyxcK8esXJxm2RpLlUwEMvVyP12E//ZgWKbhfSx4QeklmsHBUMEfYM6jMuwfknHesD9YN74Uqg5oB/B9gB+BheFZQunoW5HcjC/SMdHAE2UO/z/FbvESdvYyqBsYdponrZA9yDZwrnDGcsV5a7hlC9jJ7KigTDTKCXi4KCMUGEdjxzK+XAHv/hOfofRPAtJcQe4UFzxh1EnOJugA7xVnAfdLyhff2zK+3wUhXKURGPQZvc4OsIns5aOv4O/ayl0T7oJt/zyfj//vxBBBOwcAZpwT8K6+8ImlcFAEnnsjTycmJsQqDwUDveMc7tLGxoXa7bbl9+Xxe+/v7un37tgqFghqNhkqlklqtljF0AAoMMkaSw0u6yhl88OCBGQqKgcDQlUolDYdDYy+5tpOTE52cnFjRk3q9rmKxqGq1ap/pWQQcYaLf0tVBCZDD0cHAYoC9IZSuck0ALlT8ZOCA4axgjL2UygM9HC0+0x9mGPPNzU2dnp5aSw8qidbrdS0vLyuRSKhSqVhk7fDwUKPRVRPYR48e6ZlnnlEikdDJyYnC4bCeeuopHRwcqNPpWBEKJJqAgGw2q3a7rWq1atJCZKA8v7t37xrTRO+wfD5v99ntdk3yKY2r11E0JJ1OKxwOGziB8fQOAWuAOcMxPD8/VzKZ1Pz8vCqVimZnZ7W9va16va5sNqt4PG5FApDi+vmfFgmKd3oAZgQXkAzyxRpkH6AaYF/COhNoYZ6Q+nonCcccB8Pn6kkyp4kql17Syr+j0VWfQQq5IBvmevg3mHcEoOM9/XrxjLM0+ay9PIx1BWsOW0Zkm2thAJg9g+JlT9gK77wzBwB0LxV9HPtGDg2FeCjiAniEsZRkzmitVtNoNDI5tQe/nr3hufFa5pb58mABpmVhYUGNRsPun8AcrAVrxOcz8T7MlZcPArphIQmM4dgT5IFt8uvKgyM++/8f0rK3ixTcB7Z4JsHcQR9g4Bl7IOVz5byk1/8NAwAJoCFgfH5+1bsYkEPrGIZnFn1+Gc/C5yCGQiFj1CTZ+ejBAdcSDPrAEvpefKxjiqiwdwhM+P3LnEljmTtyZMCPv4agZNTPsweEPo8egO5BOnbNs3gMz6YTmPJ7D7aV548PwjUF1R3cI3ZVmgyk8pwIFBLcwl/hGfF52Ec+l+/xI3ke/pl4FQbDpyTx3Ll/LzcmqOUl/ayxaTmvp2E8AYRTMHyEBinixsaGpKsNu7a2pmKxqHa7bRUi4/G4Li8vDfgBsj7/+c/r6OjIKk5SdQzgdnFxoRs3bmh+fl5vvPGGFhYWtLS0pGg0qu3tbcszevbZZ+3Q8/kHgKJ79+5ZcYWDgwMVi0WTvJEbKMkqIyKbRFIRi8VM4+6NGYDw4OBAR0dHduA999xzJomjoIBnH2KxmGZmZiz30ctYPOBDYsJ8EeWTZI6Qz2HiMEd6OTNzVZUUQ4rEi9YMzFE8HrdKY/TvS6fTWl5eVrVatQIyHOQcTpVKRZVKRTdu3FAul9M3fdM36bXXXtPm5qbK5bJ6vZ7u3r2rQqGgxcVFVatVOwAk6bXXXrN7PT4+1sLCgp5//nlJV0xkqVTS+fm5vumbvkm/8Ru/oVwupzt37iiXy5lUGQaVwkX0RENyu7i4qEQiYU5yMplUoVBQq9XSo0ePjP3wEqqdnR11u13t7e1pc3NT+/v7BkimlSGkbDp7GxYJOaTPtWM9EQ2GufUyJiRaOBg4IBziFC4JRnSpTolqgMJQBDo6nY5mZmYsx9hLAn1BEZxEnAOAkQeFXlKG47i4uKjFxUUrIoQzB2NPPjCVAj1wRL4sjQNkVNsjoOTzBIP7nbnHcfFyOZzGTqdja5X3gKlAzk5wigg/z5XAHF+DwcD2hwfhzCFrHeCGAwyD7nP1cFR97iNOf7/ftz6kBGsopCXJ7FoikZiYFxw9n482HA7NFqMWCLKo2EGu2VfIbTabFnAicIhSwY9p2desA5xyWGIASKvVUrPZNAknc026QjgcNhke4Fwas7nMOcwzgQuCRKR0sHb9fucZcfbRDoVr9QG8IINLLQM+zysDWCsEDhcXF5XJZOw84Ez04IMA7OLiolqtlqlfCGJiYwgG4XtwP9JYCu7tHvJKDwg96OJ7X1QKKTjPSRr7D0hisTVInz3b6q8Z8AxQJECAaqfb7dpnHx0dTVRtR0LL1/z8vElgPWgLSr2xsdI4P5SzwweBaE0Wj8fNdnlZKuoFwDG+DfJ6Ahk+uENQgCB7sKLwtOzraRhPAOEUDAxKPp9Xv9/X6uqqMpmMGbNoNGrGChnFwcGBLi4ulM/n1e12ValU1Ol0VCqVdP36dT377LMaja4aw9frdd28eVOf/exnFYlcla1eWVmxJsmJRMIc+uFwqK2tLWOkiMbjVD58+FCFQkGVSsWq5mUyGe3v76vVapnxajabOjo6MqnrwcGB+v2+NSzHSSESF4vFlEwmjdUaDAZWIIVDCimjB8/0z/MSplQqZcwgTlOz2dRgMLBItzRmFpB6SGOdPQaeqCBy1FQqZQeiNM41WF1d1dzcnE5OToxB5WDrdruW50lEMBaLqVarGZt2enqqUqlkgLNSqRjwLpfLVnxgf39f1WrVWmXUajUz7OQMcIBtbm6aswK4+9KXvqTFxUV9/vOfV61WsxYCSNYkKZfLqVgs2uFPL0qcf8ruS+PoNQwqzjrztbCwoI2NDd28eVMvvviier2e0um0ldKnaiUD530aBveB0y/JZJ7IO3F2ABM+OOTnAqcMAIhDGIvFdHZ2Zo68l0961sm/ptFoWPEg1gr7x4MYPos1C6j1AAuHGOfBR9x99Jw9Bqj1LACOr3+NNGYCYCAIlrGmcZBwZnB8/OslTQBBr4rwMjIvncQZ454At/55ojLwLOPy8rJJ5HDqAFPYGYAsPUC5R++wSmMWERuL/eIZSGPpJgVXvDwWu8m8E6gi6OUr0koyAIEsjXv1ag0CEMwJ18p7enkfbIhfS9OyrzmvvbqEZ+clyOxv5o65lcZBYAA/z5I5Jb+U503fUUCh3zesXb9m/fnq1zPPln3GGQrTzRrjPrEJPtDgZaKkGPjzAWAD48WZSmVecqB5X89SAlL5nnXjwTfX7plOz17xvS8q44tIAcK9ssEPz3qztv17EgjlPCd4wjVxdvd6PTWbTQOgfj9iZ9mv/J6848ftQS/l9zYUQMuzpAggthbbxf3zjJENeyWLD6ZJkxVgg3aVa56WfT0N4wkgnILBhk4kEopGoyoWi1pfX1cymdTBwYHe//73KxwO6+HDh8pms6pUKqrVahbhisfjlsS+trZmfQkHg6ued3Nzc1YGHQkfjBpGoN1uK5vNand3Vzs7O2akYAR8IQySs9fX1zU3N6d0Oq3Dw0Mlk0kraENEmugfOY78nZd2wezRt6vdbuvw8FCRyFVeIZFQWAMOU0BXr9dTu902uR2R7c3NTYXDYYvQnZ2d2aG1uLg40SNI0kQfNozk5eWlJXOT70bc4kEAAEwTSURBVHjz5k1j5DgkqHLaarV0dnamfD6vSqVi1f9KpZJVTFxcXLSIfjKZNPYEdhCQVa1W9cd//Mfm6OLMN5tNlctlFQoFhcNX/RIXFxetCA0Am+T5hYUF1et1JRIJNZtNPXz4UMPh0ArKwAzAEEkySa+kCSef3kY4EQAZHFyeF88mFAopn8+r1WpZ64xWq6VarWa5cH+exvRfDwMAB+iTZBFYikh5qTRRW0CPD07wPWADR6fT6VigBNUAa5LoNdWLcVSr1eqbqv1J47wyn2eE0wgIwrn0eT1EsT3A8E6CB4w4K0S1fTBA0oRzxOeTT0SwA8cL59FXMgwyIbynlzwFWQVvT3z1YRgPQCn5VR4Q9Pt9NRoNuzbez7NpwTwoJMOnp6fmhCM7J/gEwxaJRNRoNCaCSDh47M9yuWyMLc/cVxj09+WlpJLeBLgJjDEnOLPkRnpWxDdH9469NFn9Mvhsv94HZ4YHKYASDz6YW1gongFzJ433n8/zxfkmry8SiRiQwnb4YIY0BgueOeLLF6nx4J29zf3wXLHbkgwM+dxk1pHPVfPFZ3gd7CDXSj0EFEQecHIPMHB8Jvsa++JBiZc1s7fZg9g9HwwDEAXTHvhsn9tHsIY1z/sAAAG8PGfqNvT7fdVqNXs21DfwthX74KXEzBdpAATqIpGIBXwJEDC/XplBAIDnwRfPnueNzwcofFxeN2uceWZ++ArmmE7Lvp6G8QQQTsEol8taXFy0g12SdnZ2NBgMdPPmTf32b/+2hsOhrl+/ruHwqmom1Rt93sz5+bnJCnHAe72eFY+JxWKWe0BD8Xg8rnv37lnF0l6vp9dff125XE4PHz7U/Py8jo6OtLi4qHa7rVQqZVHLl19+Wdls1pyenZ0dLS4u6sGDB1aZ8ObNmyqVSpaP5KNVPnoK2IhGoya1WVpaUrFY1Fe+8hWlUinlcjnLy/F5G8gjKOTio7GNRsOavF+7ds2cn729PQNoMJJE4ZFeNZtNpVIpdbtdFQoF5fN5PXz40KKes7Oz1lx9bW1Njx490nPPPaft7W07KNbW1rS8vKz79++b7LfVaimXy2k4vOr3VqlU1Gg0tL6+Lumqal4odNXDaDAYGMu5sLCgV1991Zy05eXlCSaXwi9UVT0+PlaxWNSrr76qmzdv6vz8XC+88IJOT09N0tJqtVQsFhUOh5XL5bS8vKxYLKZ0Oq3FxUXV63WTCdMiBOkf/SwHg4FqtZrm5uZUq9VMIttsNtXv97W9vW0922hRQtGixxWemKaIIyCI3JPRaGSMNaweh/LMzIyBOhwfHI3FxUWraFmr1SYYirm5OdXrdWPKfQCh3+9bAIFqmshWpXEOlC8dj5wJh4v3wWkhZwenSZLJHnl2wWeIIxmPx5XP55VKpRSLxVQqlWyeGJ6BJBouXbH9yM59dN874D4/zrMV3kHkewaOLEE5Posm8/Rj9VJZAi+w6qFQSI1GYyIHb2FhwUAkDtjp6akxuNgflBCe5YMx5P+AS/KA+/2+jo6OTGJLQQ5UDd5xhilC5k3ghnmfm5uzYBfBL4JwABDsdTgcVjKZnMht8kWzmNdGozEBEKdpX7M/fW6br0QtyZ49oJAAKX8/NzdnuWSs8yDTTcEXgg6++TpOPcwQQT1sCbJHni32hesmkMrneSk4e8QDU/L+CHggsaQ6KpWEPej0zLskZbPZibM2Eomo3W7bucs9kZ8ryXwEr7jxtgJZOzaAFBnPnnogR2AXvyMajery8lLZbNb2KfaDVA7+z17lumDxeH+AdbvdnmCCkeyyDlBIAch8cAs5J/uUAA1/NxgMzLdBvu6rvpKjj0qKZ+4ZQgApgJb1yBzymUjqg0G+aWX+p2E8AYRTMMgVYmMDFsjHy+fzymQyunfvnjE0lUpF165dM/YBVmpjY8MMHBE9AA0RsPn5eXU6HaXTaeuHg3NC371er2dtDEqlkqrVqiVs++pV9XrdpIEwR0hlyC/sdDpaX1/X4uKi9vb2LOLmNfK8XzQa1cbGhlZWVszh6vV6ajQaymQydmhgzHC0yPnB0C0sLOj69eu6f/++Njc3lUqlzMmDPSmXy+ZQxmIxbW1tqV6v28HTbDaVz+eNPTs6OlI0GlUqldJgMDBwzAFIlUZKn4fDYa2vrysUCunmzZtaXFw0hxLgvry8bNJVCgaUSiUVCgVFo1Gl02mb+3w+bxVG5+bm9PDhQwODyE0vLy/NMe92u1YIplAoGChPpVKWA4Rz0G63rZE8OVW5XM4OdIBys9nU3NycMpmM1tbWFIvFrJgNOQw4Gzje4XBYhUJB+/v7unbtmvL5vLLZ7JsOHMa0HDCsRRw0nDNyV8kbxKnj7wF+OPfIxpGKsX9wnohCs5bZv8j6arWaSZd8pVicFBwLL0PyuY/Bgik+t80DhaA0knv3ub7I3xOJhDHbZ2dnWlhYmIiKA9BwVHkvQDTsQZAN5PqksXSU+fJf3IN3qCORiPL5vAHXdDptf8vekjSRI8ln4uADVmkcPzMzo0ajYfLRWCw2UWmW64blJNjkWUXsk3duKW7jAaSXe7XbbXtu/A1BNO7dr00kZgAXzxqQqkBhEP88CU4Nh+PcbIqfBaV407KvYVu4H8+awJyR1wrj41mnYE4X4IV9hM1k3eLMezmqlxMG88n8/32OnAeEAAvYKf7eS7ylsWzbr0kvH/V7nH3Le0jjFhr4KUgaqZ5Lzh1z4QOEgKCgnNGDLX9dPofQS8EJ+jL3vrgN/8cm8y9fKI48OPNBKB8UkSb7+nlJOPMCQ4nN8oEvglkEHLhPn/fpnw02mufu8zth/D1w9TJh70exBphv/CmAf/B89iCf5/BkvD3GE0A4BQNgEY/HtbKyotFopGq1aka63+9bnzsMTy6Xs9ySy8tLPXr0aKJNA6yTz0Hc39/Xo0ePtLS0ZNKNYrFoMqTLy0tdu3bNHMnT01OVy2UzVgz6CWHAADo00p6dnTVgiTys3W5rdXXVInJeIy+Nc/d89S8Yi6WlJWMHYEskmUzTO6Hn5+fmyJ2cnFjeICCbAilUupSklZUVlctlVatVdbtdvfOd71SpVFKxWLTcwHA4bNLYW7duGbDtdDpKpVJW0ZScQdqHrK2tmaGF2U2n0+b4UnSHQyAWi2llZcWYuM3NTc3Pz1tBmu3tbZVKJW1ublpENJ1OWyVZAHo+nze2j2dHIRrK4+OwXFxcKJlMGtMgjRkIQAlVaTk8stmslpeXJ0AFzxBJHoUVFhYWTB4Ji8hnAIwYPM9pGICVoKQnGDzxBz6RbA5swFuv17PKdlSYJJKOoy6NWUHkyzDSBFawH8gIvWPkHToPprhW8makcWSYoJXPVZUmq/QBHvyXl7f5QkawlbAXMGDYGkkWaPBFbvx14dx4WScDp7Df7xsARj6fTCYttxUJO7YKlpx747nCwMGAkx/FdRKcajab9nxgeWCAKL6BlLDT6ZgEG4eMINbl5aXlE+Ps+pZEXB/XDdDgPZhDz/CxLmFOgoUtPMgA6AA2uEfsOU4pEn3GNO1rzi0vw8P5Zg7Ylx5I8Dwl2VlJUIz3ZR69nBggyP717D6fyx7zwNAXWuIZcR0AWg8CsOOwfI8DYNyTz3f2IJLvvWya9/F5bhRdYv366uEM7CTBJi/P9TmEntX0oJAvD8R9ZVRsn2fcpKv94Aur+JxsrywgFQU76OcJm+QDL14O7G0sKgJJBti8dJZnxiBA40F7UC7MvvXBO/88gs/NB/EAnthdvvDLgnnm07Kvp2E8AYRTMMrlspaWlkzyNzs7q/X1dd27d0/pdFqpVErHx8dmUCUZYLx165aKxaK63a6uXbtmBUiWlpZ08+ZNff7zn9fc3JxeeeUVFYtFq0CVz+etAMtwONTdu3eNmcD5qNfrE0wSDtbOzo7p4ZFsSDLnBiaC+5GuJETkm+FEcLiQO0XfumQyqTt37hiowpBSPKHT6UwcOByyRAVp+i5JrVZL9+7dUygUUrlc1sLCgorFos7Pz63PH85Nq9Wy6CI5XrVaTcPhUNeuXdPS0pIZ0XQ6LUmW/wcwhvHK5/P6gz/4A2u5cXFxYX2M0um0SWaQ3C4vL0vSRBS11WpJkjkOb7zxhsLhsOr1uoH4k5MTq9bYbreNecSJy2Qyun79unZ3d002fHFxYc+91+upUqlYThJRUpxTghWdTscYmsFgoD/8wz+UJK2trVlwolKp2EGIAw8D3ev1tLKyYgfc/fv3tbGxoWaz+dhy6dMwOIRx6GZmZiYqu3G4AgKYG9ZLt9tVq9WyOURyLcmcKBwk2DecvLOzM+s9CRvFoU6QhmI2niF7HFuL/NEzVMjXKHQBg+wLHgRZBuRnBLG8BA0HxEvJAaB+LXF9OKS+GJJ0JYH3MnqfJ+ij3Uh4kVqnUinl83mT18PaSzKbxr14yRp2jKrGBGnIrzs9PbX5rtfrqtfrJq3k/vr9vjnI5+fn5qj662AOABCeGSXfkH6ontHF/uJoIjH2QHFhYUGxWMyUKuxhD6QJPkQi41xRghCeKfHFZB4nB5+GQb4c9hznHAefvdFut7W7u2tKHdgjQCISU3JKeVZB6V4oFLJ9DFDA4ffXQGEXlAjsadail1D7HD32G+CKc8EzoOwbJOezs7PqdDo2F/y9l4xSAZcKwqwn5k6SnTew5r4dFmkNsKwAV4AowJQgGPcEaPb3xhzMz88rHo+bLclkMmZrsGc+aISdZe68gsbnM/ugFM/NM6jYr8eBZeYlaDMB7tyjZ3CxXd4W+SAfATGfI8n7ekDIs/W+FO/L8+R1+FfBfTwt+3oaxhNAOAWDYh/7+/tWAISI3f37902ycHh4qFQqpeXlZbVaLZ2fn+s7v/M71e129aEPfUi/8iu/ovPzc1WrVYtAplIppdNpnZycKB6P6+bNmxoOh3r55ZctOn98fKz9/X0dHx9rc3NTlUpFH/nIR/Sbv/mbEyWTiTwWCgV96lOf0ubmpv7ZP/tn2t3dNSPuZUhIQRYXFy0nD/DX7/eVzWbNEMMwIrNCulUsFi0xfXZ2Vq+//vpEQjzGVhoXqCGPoN/vK51OG2glYlYqlYw1jUQiKpfL6na7VniDg3l7e9sirdVq1VplcKCen58rm80qk8komUxaHg9RdGRw8XhcsVhMx8fHymazloc1GFz1C8Q5yGazevjwoVVcXVhYsOqv5AQCWsnvi0QiKhaLajQaJjOFZYLlYC3B1HJ4AWolKZlMmrPhnUqcTYrSdLtdy9n0LMPc3JwKhYIODw91dnZmjnoymbRKtABpDvSTkxMDEX5MywHjHSDmETDoc0+kcS4MxWE++clPmnPziU98wnKycOSZd17vC6sgG/XlxYfDoZLJpP7+3//7+m//7b/ZfvLFR1KplH7sx35M6+vr+lf/6l9pd3fXrg3wilOCY+IdQPJMAWA4ZThugCXeC9YSJ5QvabKYAdfA/3FqCBRFo9GJ3B8YBQAWlW9xlglIkQeYTCYt/wo2EAeZ60d5MT8/b0VeJFkQCHDHe+Ag+75nAPxgnhD3A7vGfQH0PeBiTWHzeHY40t7hpzKll7jx7FhbwdxKhp93GGv+9U6lvxbuGTsbLD4xLfvaO9OsOZx99gRzEYvFFI1GzdH+J//knxgw/Mmf/Ek9evTIAhg+j87n7knjAAjnHo7/wsKCstmsvuu7vku/93u/N3H2cG2JRELf+73fq0KhoF/6pV9SqVSy/eWBH/fgJY/S+Lnx/Cmcwxdnps/vww51Oh1b78HgDPdB5W8YOO6fzwKcsd7419sYgCP7SRozjHxPb75UKmXBDAJinJnk0LKHScfhWQMEAaBcD3OELQRwYg+CbBw/Y13weXwG78WeJFBPoIbgDOuFZ+afF98zP/4Lm+zXtGcCvT32kmgUJn5My76ehvEEEE7BGAyuGsUjgTw+PrYec+VyWfl8XvPz88rlckokElpdXdXS0pIWFxf1P//n/9T//t//Wx/4wAf0vve9Ty+++KIODw91cnJifwOjxgFSKpWM1SEPCSby9PRUP/3TP62XX35Z/+bf/Bv94A/+oEUZYSHm5ub07//9v9f3fu/3mgTOyyaIgHqHFFCHczYajcwhwTkmmk7ElF5HgBeiphgtaeyw+B5BPoraarUsAijJqrNSSCUWi6larWp+fl4bGxuq1+uan5/XwcGBstnsxLzncjljHzOZjDlq6XTacvxeffVVA12pVEoXFxdaW1vTG2+8YQcP0XgAXaPRUKlU0vr6+kRUc25uTktLS6pUKpb0PTMzo1qtppOTEzPWRFjL5bI1lSeSyyFPwZ1QKKRKpaJ+v69UKjXB+pBjCLjgAKJnXTQaNQeVw4rnRj8sHFFyXTjAjo+PlUwmTcqKM+4PcGn6JCg8H6R+gBL2o48As2673a4+/vGP6+zsTH/1r/5VffjDH9av/MqvmHOPQ+lzRKWrvUCzckkTYGt+fl4/93M/py984Qv61Kc+pR/+4R+WpIlck1AopJ/6qZ/SRz/6UVuDXpoVdDykK+YIBwMHjgg9To9/LVF4HCukcAAO5szPnzSObHOfkiyCDzOKFI1rCEphCSARwc9ms6ZkoCgG7Jy3aUTLkQFKMkePOQAEeSUAv4dhICjggZV3Hn2AxecxAchxALGvAFvpqggO9hbbNxpd9U7DlpDfyDXBLlLoCWDD88Y286/PHwvmknkHGhbEt/iZpn3t5d8AGpQdqACQT5M+QODz537u5zQcDvXcc8/pQx/6kH75l3/ZlCDS2OH2EkVsLfbeS0RjsZj+9b/+13rjjTf0Az/wA/qP//E/WlDDs4L/9b/+V/2Vv/JXLKjBXkKSDtCUNJFrGsyFYx2wf337C9YM14+SILjHAYTcBykD7AVAql+HPheWgGbQB5BkwTZpUpngK6Fms1nNzs5a5VR/X7yXT2Pg3EYG7QMprAf/WTwbz7YRkPKSbZ9XyPUyNz7f0NtX7A+pBjwDJOE+cIN9wHZ5MOjnMxi48/aaz/R/48c07etpGE8A4RSMhYUFa0OQSqXU6/W0trYmSXrPe96j7e1t9ft9ra+va3d3V4PBQPv7+5qdnbUcIUm6d++elpeX9W3f9m368Ic/rF7vqufbb//2b6tWq+lv/+2/rX6/r3w+r1/91V/Vt3zLtyidTuu//Jf/ok6no3w+rw996EP6pV/6Jf3RH/2R3ve+9+lHf/RH9dM//dMqFosGCH1V0JWVFTPOGB0kZHNzc2o0Grq4uFClUpGkCWBChTHyhqhKicMTDofNgcJZKpfLBnba7bZV1Ox0OhMSFt/Cg6qAkUhEd+/eVSKR0OHhoeUXptNp7e3tKZFIaG9vT+985zt148YNDQYDra2tKZVKSZJV0uz1erp//74VkvjgBz+og4MDLS0t6fDwULFYTCcnJ1bMg5LtmUxGe3t7un//vuXW3blzx6qybm9vW1/JWCym7e1t/cZv/Iaq1aoxhxj9er2ulZUVq25H7pYkyxsFCNIol0Ov2+3q0aNHWl9fV6PRUCwWMxkfzeyLxaI5mEg+6/W6YrGYOp2OisWiLi4udHx8rOPjYzs4cEBhAznANjc3rU8bkW4CEtMqGfWOSDKZNEcByRLBERwu5g+HBGb55OREs7Oz+kt/6S/pox/9qE5PT7W2tqYf+ZEf0dLSkj760Y9aG5hPf/rT+jt/5+8okUjoYx/7mFWs/Ymf+An95//8n/Xyyy9rb29PP/RDP6Sf//mft8qTACYcGvKRcRy9s0QjY/YdbAZyKvYIjhLSVpwKghSsZc8yYENwkohM46T46oHecQKMSbIcLMAg+XGAG6r+eWdtZuaq8BL9X3GmeO9utzsh15KuAGW73TZHkWJLOGEAY6ooEvTD8QOIE2zz6gocRg8cUWDwWhh+5sUDcu6L+fIyZeYduTJS/1qtZow9kj3kfu1223Ib+Rc77x1ewKtnEBnTsq9xgpEgAmoITgAa5ubmjBGH+cLhj0aj2t/f1/z8vN773vfqYx/7mPr9vpaXl/Uv/+W/VCKR0D/8h/9QFxcXWl9f18///M/ru7/7u5VKpfQv/sW/sKrTP/iDP6j/9b/+l3Z2dlQul/W93/u9+h//439YoIf1SiAkHo/bPgN8wvh5Bor7ZC8AdgheeTm7NJYkwzCyFpvN5puq1Xpg6IEo10JwgQAYwAsbhbInCMIAwj5fEJtGqozfN74oE3vS2xBJE0woe6ler9sceZkmn8t8e+ku/+dvvNIBNpX5J4jo97/PiSQoTsBPGhcoyuVyNpf+/b381ueTB3MvSZdhvXLPkuxcCrKE07Kvp2E8AYRTMGq1mmKxmMLhsFqtlu7fv69wOGyN5ofDq55x5P1FIhFVKhWtra3p2rVr+vjHP65kMqkf/uEf1u7urjFNP/uzP6unnnpKL7zwgl5//XV1u139h//wH/St3/qt+uAHP6hPfOIT+vCHP6zNzU195StfUblc1k/8xE+YxOyll17SvXv3LMeGQ4+INuwZRguHNpgkDnDF2NbrdZMoUsaZQhkXFxdWvW52dla1Ws3kIiTZY7i8XEIaF3uYm5vT2tqaXdfa2podTsvLy+r3+8ZERiIR3bx505p1DwYDHR8fGxBCwjscDnXz5k0NBgMdHR1NJJHDfp2cnFg0DQNLFUhex/zU63XF43F98YtftMbiuVzOClPQ9xE5KPcFsAyFQuawAziSyeQEa+Hn+fT0dCJiv7a2psvLS2unAWimVxSOHg4FzMtwODRgClD0B5R3TpHWsDY4SHi2RD+73a5dF5HhaRisT5hTD1rm5+dN2uzXsHTlZKyuruof/IN/oPn5ef3Yj/2YSZdnZmb0iU98Qv/P//P/6G/+zb+pz3/+85KkH/iBH9BHPvIR/Y2/8Tf0fd/3ffrIRz6iv/bX/pp+9Vd/VeFwWD/6oz9quanb29v69Kc/PVFIBAdKkjk10Wh0AhB6UIijgYPgI8+ww1wvzg0BHu+IemknTpGXkD6ucESQZfBVGZF043h5ea6XYuJ4sbZxHn01T64TWSqv4/+AOz6PfZZKpSxYREsJ5pEiHoBVnFtfEITrBHR455n9TfEXabIHHVI4ovaoJ2AUeW4+iAfY9TllgBjADc+F58X30rhnIQEOL2NmTNO+Zl1wf8wZ3/u9gA3gbCwUCvp7f+/vaW5uTj/0Qz+kZrOpYrGomZkZff/3f79eeOEF/a2/9bf0O7/zOwqFQvrH//gf66Mf/ai+8zu/U//oH/0jfexjH9O3f/u363d+53c0Pz+v//Sf/pMFFPb29nRycmKBJ38eshd9exkCsYB3H1T0QRHP3Ht7RiCHnFQfvMAOsK991U9vS/yaAOARiGF9SmOpNPseEMbr2GPkEBOwZj/5XH9sAkXUYNX95wCamUufl4hqwstAAcM+uAYIJBCD7+TVDtyTNO4DGywIxXPAXvJMsFM8C1RZvoiXNA6mefvtpeCAd56P/9fbQT8v/tqnZV9Pw3gCCKdgYDhJ1O52u5Zvt7W1pVKppLW1NZPZkTdG0ZYf//Ef182bN/Vd3/Vd+sVf/EUNh0M9fPhQ0pVzl06nrW1FOBzW8fGx7t+/b0UOisWi9vb2lM/nLdqP00MO2F//639dzz//vHZ2dvSFL3zByuhnMhlJmpAncUhgcLz+Ph6PGysIwDs/P1er1bICJjhCHDDcM8YICYqvvBaUrOzt7dmhNhwOlc/ndXh4aI7P9evX1W63tb+/r+FwqHv37llRhsHgquUErRUoKuFlsPF4XA8ePDADTbGW27dvm3SKYkEzMzMW9b93756KxaL6/b6eeeYZPXz40BhiDoB8Pm8MIMCKcvXpdNoKeNBziAMP59ZXP5Ou8gPpYYkMNRqN6stf/rJFra9du2aHHKwduRPMM8AeqRJgvlKpWPsAgKE0bm7PnHKIc58csj4xXpqeRrce6CHr5ADt9/smrZXGSfv8zf7+vn78x39cd+7c0Xd/93frJ3/yJ3VxcaFXX31VnU5H5XLZ2p/cvXtXw+FQtVpNd+/eVa931dakUChMsFo4juQYzc/P6zu+4zv03HPP6d69e/rjP/5ju1YAIZFzHDn+xVkj+OMdCm/PWD8ML2f0bAFgkPfxn0WAgd8DwFAZAAhjsZi1eCBoxboLyh1xuuh96ovssNYlTYBCWDvkZjjVAElpnDvFz7FJRPuRXDMP/AvrCOD0vweA44j6Yg8wpL4IDmvOg2f2M9eAjHU0GlnACnYGJ9o7hl4u7AMdXs5KU+xYLGZBLj+mZV974MO8+WIbnh31z6XX62l3d1ef/OQndevWLf3dv/t39TM/8zOamZnRG2+8obm5OR0cHFig77XXXpN0VXTu3r17FiC9fv36BAvlpdB8vf/979fNmze1u7treeqsM6qCE8TwgJB78NJPbIA0mUfo9zkA1ANCCsUBHD3I8KyUByg+N9l/z37DLvi9DSCfm5uzgCZrEQAGK8jf42fQ8xgmn2flgZ8PdpKfzfNlv0rjfF4vPedfn26DT8PnBINsBI1gmD2j6NfcaDQydp/v8a1YBx7o+uAEaxZ22P/rQTz/+nURBIDTsq+nYTwBhFMwYGpIcL59+7a2trZUq9W0sLCg559/XnNzc7bx0+m0isWitra2tLOzo3g8rtXVVSWTSYuKwTjyvoVCwXLXqEb21FNPWaGQRqNhBz9gkL59qVRKd+/e1aNHj5ROp/Xss88qkUgon8/r2WefNVlno9HQ8fGx2u22NWCemZkxB4FiDKlU6k1RJhp1e509wIMoPEabA4UKm71ez4o+nJ+fW+UwSRPO4Pr6uk5OTnTjxg2LFuZyOd26dUvLy8s6OTnRxcWFarWaNjc3NRqNdP/+feVyOWNoT09P9bnPfc4KtlDEJpFIWAVFGrvjlJ6dnalSqRgjA+M3GAxUKBTU7/dVq9UMLG9sbKjX6ykej6tcLluuGa0eqKqIo+3zWJDNRKNR1Wo15XI5y2Mhsogs5Nq1a6rVasaAUkgml8uZ/A8Jmy9aQp4askdkUWdnZyYRqlQqisfjE4cpz2d5eVnn5+fa2tpSuVx+U3n6aYk4ejCA4wxLy5zgMFA1NhKJWACAaHGv11MymTRngTlFGk1xKIITrEvynHiG5Psip15YWNAXv/hFfeUrX9H8/LwVcqK6bDDnDGfCSy3ppeejzKenp7bX2ecLCws6OzuzqDVAxoMXgB8SM/JacUoIOADMaFVxcXFh88r7A3LS6fRE8QXuGxkXzhefW6/XzUGG4Ts9PbW8YL4ATMjNYNgJWAEAkb6xFgBO/297ZxIb6Vn9619VudyeXR7K89CdhG5o0iJRAhKgRgIJBIIdSiQWgBBE7NgCOzZhCSyQ2EBYg5CQEJtEiEUSkiCUBEJ6ijvtbo9lV9lVLo9tV9l3YT3Hpz76Xv6XXK6SqvNIre62a/im933P70wv6XuIUIxXIjZcYwQdkSefjsl+dEQ/6VaLoY3Bz7gl44F7iPjztZxEkXhmvUHPa7gfOHQkmSOL54tnF5ppXCPYue7eiYmzgGvGuuq3GyHlEpHOOoHhnYyAc58Yt52dnVanSvo5zxFC8Z133tGdO3eUyZx20mR9GBoasqg+W6Xs7e2ZCECs+Hvn0yp9CinrA8fLnMBrWA/5bBy6zBH83IsP33yGz8Y5wvNG5gJzkx8/ZMpwrZgXccgyv7KG8jPWIB85Y+zs7e01lF3wvT4bp7e31+w36pGxffzPiST6RmqsDUlHFJla/I0QZP4nUoujl0h/tVpVtVrV2NiYjWXv0GNM+/tACYC/V965J+lf6iCl5hrXzUAIwiYgaWTQDGR8fNy6Xo2OjiqdTttedqQ8fPOb3zSB9POf/1yFQkEf/ehHVa/XG/LJMYRoHENNyObmpsbGxix9ihognzZGNIEJrb+/X4899ph16qT5TX9/vzY2NhpqBOk6iBFGt09fCE0KB80mMOBopMLCIMmal/BaJujj42NrirK+vq5cLqdz586pr69Py8vLtvgRTVtZWbE0rf7+fl28eFHt7aft/dfW1ux8qVEcHx+3rmkdHR2amZkx793ExISk0wmTuqLj49OOZcvLy9YxtFqtKpfL6eLFi7aP4UMPPaRqtarJyUm99dZbKhaLkqR33nlHJycntt9cLpdTpVLR4OCgXbehoaGGmgTS2jBEfY3PwcGBdSw9Pj7W2NiYstmsbTQ/MTFhiyKGSH9/v6XFseiwePkoEXWMkqy+go6rGE+VSkVbW1tmdD755JPK5XLmfPA0ywKTjOh47zPXwQtt/kxMTOjrX/+6RXZ+8YtfmND3nlpEu4/i+PQun86U/OO7FPKnp6dHn/vc5yyj4Nq1a5qbm7MxRgMKGq3wh8/juCQ1dPVFpDHP4bVm/CLIfOTB1+7wc5/qyLFjHPb29jY8o6Tmckykk+E97+/vN4HuDRy22EGs+a0AiLjRTdXX6XE/Ec2FQsHGKcKN4+feeFHKH1/LiVj16Z8Y5jxPvhGNJPsMDEBff8S18Y11iIzyGUQw+RuR76PAPv0MiJ4gMBA/nmYZ18k6MOms+ZGvnzs6OlKpVDKnwNjYmL73ve/ZtfrRj35k75HU0GHWp2cCz5uP4ibHdPJ5Yr178skn1dPTo76+PpVKJa2trZmDjvvS3t5u95dnmfPycxnPIWPVR8KIJvqmM96B8KB0xAdFDZMRfcaOdLadCXMivyfzAUcKx0xkESeUH8cnJycmfvx7WD+Zb3gvAkySjVNEJePS3wfSRBHtXCefiusdbdLZ/qU+gksmFffFi1LmN0kmChGjvqQDAelrOZNpvf759feG72MN8DTLuG4GQhA2AUTGhoeHLQo3NjZm3rCNjQ2rGZmamrI6mVKppJ/+9KeqVCqampqSJF26dEm3b9/W0NCQenp69Le//U2vvfaahoaG9PLLLyubzeqNN97QysqKarWabty4oVdffVX5fF7nzp2zbR+8wYLhRTpQNpvV6uqqzp07Z3sSktKBCDg+PraoACkTTITS6WbwTMhM1kQIMHZIA8UIIpLIxMbkzfcNDw+bKOro6LB6Cjxby8vLlqZ3eHioSqWi8+fPq1qt2gTs072I0oyMjCifz2tnZ0fT09Pa2NhQW9tpq/fBwUHV63WNjo7q4OBAd+/etU6w8/Pz+tCHPmST9p07d6w2YHp62gyt+/fva2BgQPl8Xv39/Ra1XVlZsYU+k8lY+q6P/kiy6Fu5XLbXFgoFE9nUYdJxFS8pHdcwcPEYVqtVixZS75jNZlUsFs3g3N/ftwY6dIWlmcjx8enG9TyntVpNV65csWdqcXFRU1NTDWIVvAH8QQdxRAQ1m82aIK/Vag1iGy+wdLrdyQ9+8APbQkQ63U/z9ddf15tvvqmenh7Nzc3phz/8ofr6+vTiiy9qb29Pf/7zn/Xyyy8rk8nohRdeaKgt477zB9HP88VedG+88YaNs5OTE6sn9SljNGHxtTJ4viWZAexTIjlnn1bnU2p5TpJpTBgkGIG8n1QpnE8YUf4Yu7q6TIxKspR1STbuiKZzfL4uj+ggzXP4DOYIjOKkEUj0AVHK/IWh7+sDmXc4Dv7NZ3GNeA/HxvXm3vjvIi0YhxCvwzhk3PGMci99AwmMTISwT8/394m1AsMa5x41hdBM4xoR5J8FGqCwrhDlJuvk8PBQ9+7d00svvdRgzLe3t+vmzZt6++231dvbq0KhoGeffVb1el1//etflclk9OKLL+rvf/+7zp07p1dffVU3btxoeEYYyw8a16wTd+7cMccu45o1jAgftXLce9ZhhCD3lWiVTzH0gtCnjCYjgAgRLw7973jGpDPhh6OHdRRnNc8coo+Oxzg2u7q6GpxNfo5hPFSr1X+JguNwZkxxjkTXGMsPSgtlLsVuImpLNNfXCANilPvHd2KPJLMDEMCMfcYVcyJOGbIkcP74dF/uc3Ku5W/uh+8D4L8HmmlcNwMhCJsA6vowruv1uhYWFmzi+NKXvqSpqamGVJLPfvaztkcO3l+fGkRXTbxdkiwdCS+Pj8YxcWAQ+UJpn0bE4o+hcuXKFXs94iyTyahareo3v/lNQ848IoPFq6+vz9KypFNhzDnihUL80aQBEYVRg+GTTqc1MDCgYrFoG8+3t7drdXVVmUxGy8vLKhQKkk43Dp6bm7M98ajXJN1uZGRE2WxWw8PDWlhYMI97sVhUT0+PpqamdPnyZVtA0+m0SqWSCfh6va579+5pc3NTxWJRuVxOQ0NDthm87wz7+uuv6+TkRFNTU7px44alvyIKubYYtqTQ9vT0WHSNBeDo6MgimbOzs1paWlK9XtfY2Jh2dnbU399vUdTBwUGVy2UVCgUdHR1paWnJFs9sNmseZJ8mRM0aAgdBWi6XNTAwoMPDQxPRGNScaz6flyQ9/vjjun79uiYnJ3VwcKBSqdS0XUalU6OGtvMs4oy573znOxoaGjLDC8eI98z7dEH/M8abjxAl03e8d98LkmR9jq/T5TWMQ0kNYm5zc1PPPfecvR/Dhz06iWoifPE6YyT5NFSeN+lsi4x6vW5p4BhonL8XtAgaagcRnuPj47bxu4+EUs/qDTZv9FJDxVzohRgGH3PvxsZGQ1MVf1+53tQEkjrvUytJG/X1i319fVaLhYPQp7NiKFLD5KMlvu775OTE6jo5P66fJDtOMjR8ul+9Xtf29va/rAs+2oPTCIOSDsrcC6KQlDd4mmVc49z0z5IXaFevXrX9X31DDmCMMX79OE1GXXGI+tfxfsZgcnz7n/taVP8Z3IuPfOQjll3zhz/8wZzCCD6flsyzwnxAB2uOyQtC1u1kPZp3JvCHZ5rxhu2CQyebzTakfuOcJnLFa4j647hmOxmEJH8TZSN1l1RWMoBqtZrOnz9vUTsyW1jLsDdotMdWTz7jiHmHPQ+z2WyDQ9fXEVKGwbWiAR9lNqztfX195uRhKzHvYMOJDhwD38lc4kWmn+98g5pk1JbnnMwJT7OM62YgBGETQA1MV1eXNjc3lc/nNTQ0pI2NDY2PjzfUifiBzMTmU6S8h9CnKWHMkGrqi6N9jZ43NpOwoHjjTVLDpIQRIqmhcx6v4/OZYBCFCCU8nj09PTbh48H2i6ikhgmM9NqNjQ1tbW1ZytP+/r5GRkZUr9et9m15edkMRlr61+t1VatVW6Do1sXG0729vRoZGdFrr72mTCZjNV8rKyt2LJwnC15/f78WFhbU3d2tYrFoUbhSqaRUKqWZmRkTsu3t7Zqbm9Pg4KBN2HieEePgU4H5bLqUHh0d2d6NRB5JscvlciYgDw4OrL5jYmLCxG4ulzPvIoK5re10P8d0+rQLrt/wl0WWRZ/PR/D66ElPT4/u3Llj9w3PLKIAmmWB4TwYc1Ljnlng/58UdT5Fi7HqPfaSbBx7AzM5JpNpPv74wBuTfI8Xhj6980HeaSLCjElfQ8v7eY6Zu/gcBEatdrpXn08r80Ys33dwcGDNN5gPfXo6tTs+ctHd3W1pnD7ywVyAEwnDlC07dnd3zYvP9x8dHVn6uE935brxOyLmfu5LRnZ8qihCA3FI5IYoqL+/iC4v5Ike+miAfx78WPNpvv66kt3Ba30qL0YnhifRGo6bc0qO6Qc9bx9UWIv8dZca10FICr5kCmZybProi3cO+XXPj+nk+x/0u//d6/z3+zRU/vhUQfDOBcY5DmMi4ZIaBAbroR/TPhrlhYn/fuoku7u7rS6VZkU+su67jfJz1iVEHfcGu4i/yWTg2ElzxwGWSqUa9hQkNZWMHd+ZG3uHPSkZw/7nXGMvCrHvvC3GPcKh4OcXn97J/Omd9FxPnO8+u8LbbDiy/B9EIL/DzmSe4jlJPhPB+4MQhE0Axna5XLZGDbu7u9a58cc//rE1OUmn09Zl8NKlS3rnnXfU1tamwcFBFQoFzc7O6ubNm/rEJz6hW7duKZ/Pa21tTQcHB3r44YdNhM3Pz+v69eu6cOGC5ufntb+/r+HhYesUms1mdeHCBfX392t4eFgf+9jHNDs7q56eHr344ou6d++epYal06fdrTD2rl69asXyGAZMMEw4nO/FixeVzZ52V2XPvlQq1bBthW9tTSoHxhmT9fDwsHUOZeEj7RMDJ5vN6vr16ybWqBHCsMKznk6n1dfXJ+lUfE1NTZmRNjMzo2vXrqlUKqlarapUKqm7u9siZ/Pz8+aVLJVKZpwNDg6qs7NTN2/ebGgYxPmydQSRBdJNiCYgSn1dQVtbmwqFgj0PFK+vrKyY15EaQRZqb4hLp4voysqKZmdnLfJIDWSpVNL29rb6+/tt03u6jO7v76uzs1PT09NWd5pKndZpkbrK/cejTjpy8rw4Fqm5UlDosCqdRfXYdqRWq+lXv/qVOR7Yz87vzenTS/f39xscARgxJycnlsrL+CJi1tvba81XvLedZ7+9vV1DQ0O2/+nMzIxFsokiEeWen5+3FEqfggUYhd7gw4nl2/MzNjl+Lwi9oYiQwlDD0eRT43A2kKrHuOjo6FA+n7fPJXvCR0y8OMW7zudxXXHM8NkYlhyj7wLoa7EwCDGm+Axf2+QbhpBuRqQJkcV9xEDr6OiwrR3q9bqdO9kNfAdGoI9MIoSTqWrJ++KbgmBI+qYo3HsfHSbVFUcRx+YFSDONax/N9yKN6/bCCy+YaN7c3LTnl2vCveceIaARItKZoNra2lK1WjXj3s+f2Wy2oRkRESvGOOsLGS9ECjmHWu20mdnu7q52dnZMoCBWklkKvAdB7OsBqfVPCsIH1Q3iQPRikPPGsUDHUJphEXH1qdY+9RIhx3Vh3CQzK3wtoo9m+uinfz2Ocp/WzX3o7u5u6GbKfJ/cQsan1DNv+SwHqbH7qe9MS10ncwRjklpn7AH/XHJNsWW80KRu29dS8m+ul/+cB0WxPc00rpuBEIRNAvUYtVpNy8vLKhaL6uvrM0P67t27qtfrtgfc7u6u7ty5o+XlZduAfWhoSOVyWZK0vb2tUqmk9fV1TU1NqVarqVAo2MRCipfPxx8fH9ft27clNRaRM+hJrVxbW9P6+roqlYpt8s6E5+sMMU5Jm2JBxFitVCqWUsnCt7KyoqOjI42MjNiEe//+fVUqFdVqNRMbe3t7GhgY0ODgoKTTtMW5uTkdHx9busi9e/dsUUmn0xoeHtb4+Lg1PBgbG1NbW5ttON/V1aVqtaqjoyMtLCyYwOQ8S6WSbty4oba2Ns3MzOjmzZsaHR21OqPDw0PduXNHQ0NDlrY6MzOjzs5OTU5OanNzUycnJyaqqAnr7+83MUgUkTpFFg86xc7Ozqq7u1t9fX1WNE7NSiqVss3ma7Wa1TjOz89bShg1qdwLNqWn4cDJyYnm5+e1vr6urq4uTU1NaWRkRFNTU5qfn1d/f799B4YoKTKlUsnSZ/geNmSXZCK/VquZWKVrrKdZPI5HR0dmoGFw+C0OvOcVx4Rv6kAdMGMnn89b2iUNaer1upaWlqxDIR5lakkwQvx49pEuL3Cq1apFnoiU0XkOwwCj0Ys0ogM+XZh5CAMCAwVj06cwcjw+SiCdbYTMedAh0df34sTZ3d1VNpvV2NhYQ90bryESmEqlLNWZ64KRx9yI0wmDMZU63fMTo5DoAo4rDEDGkXTq5MPwLJVKdl97e3vV29urjo4OjY6OmsE7ODho8x31t6SOekFGiYAkra+va29vz+Y47hXzAvuE+q61rDE4njCQcdBwf3wdN2KFccw8RXYDgrq9vd1S2U9OTlPxPc0yrn2NGw4GSQ0iievBVkp+zPh0Zy8a+JmPBuMo8MLGi1GehVQqZfWM3gHhM394lpPRIS/U/M996qev92PcMIcg0nxqc9LJQwokn8Fcx+dKZ9vd0LVzYGDAooFE5RBA/noyThFwrCccI5E/oueIIl7rI2TeYUSmgB8rZFcRIfROEVIp/bzLcfjIPuPAZ/0gAplfuPb8/OjorPmeLyHhefBZCKTq+q24vBPdz7VsQp9s+pOsJU2mIHuaZVw3AyEImwCiggMDA+YBxlNcrVatnXJPT48WFxfV1dWl4+Nj9fb2anx83NLvEF/Xr19XV1eXlpeXNTU1ZW3PMd4qlYo6Ojo0ODiorq4um3h9mgSTIl5LWsBjAHV3d2t9fd32AfM58wjDYrHY8HneU0q9G7UBw8PDtoik02kznM6fP6+DgwMtLy+rXq+rWCxqdnZWi4uLtoBhBHV2dprA6OzsVC6Xs3oWal1o2b2ysqLt7W1NTExoc3PTjDSMRjyPvmthX1+fJicnVa/XtbKyYrUEMzMzWlpaUqFQMGOTXP9CoaCRkRETjfl83iLACON0Om17xtE+nFqler2uwcFB66JYr9fN6CRCihG5sLBgUdatrS3zylIn4WtIWRB4/fr6utVZjY2NqVKpmOH9yCOPaG5uzuom8/m8VldXJcnqMgcGBnR0dNr5tLe3V5ubm3Yttra2LGWXdOCtrS1VKhVLn4VkyuQHmWRqWTJlkvuHyKG5ifcw+86YRK1pUMCC773t/F2pVMzASXpweb4xUHgfqds8m5KsZsx7j/3nJD3e3vOdjIYR0XrQ7/214bP5HUYX+276Pfu4FowJxBFpoCcnJ1ZvhKAhdRRRylxLFNUfF5FBjHd/vbLZ060AuHc0sfA1W9RNk6ZKzZHv8Mr3+yY9/Mx75x9UR+qfNUSFPy+ug7/efn9J/x0+i8CnxmLc1uv1f6kfQkSfnJw2KmFtkmT3ieNtlnHtnRw+3ZC1DsHlRUFy/HO9vaPFf44XPNJZtIroDiBOiRTz/Th5cAD47/XRPpqp+MYiyTpaH0XypSLSWU0s0XSOO/keLzR8xBDRxTzpI4SMDSJ+XCc/T3BOPLOIpwel2PIM85x7MejTfb3DjH97EeQFvYfP9uI0mcrpxbyPqIIXdl7AJe9HMurJPOXFP6/HWcjne+Hvnf7J72B+8Cmu/vnn+5tlXDcDIQibgKOjI2siwgbk+Xze9onb29szz+vMzIwVPt+/f18jIyMWqZFOB/zY2JiKxaIGBwetdTIiYWtrS52dnbpy5Yr9Dg8w++x4Y4rJg9RQxGA+n7cia1JbBgcH9dBDD1lqk49OeM8zCwP1LUQevUFFZIqN2Il6cRzlcln5fN4881NTUxoYGDAh1tvbq9XVVTPC1tbWNDIyYnVy165dUyaT0c7OjoaHh+06ptNpFYtFq0kk/dLX9SwsLEiSCevFxUW7J6VSSRcvXrTzuXDhgjY2NrSwsKCRkRHryLm+vm6pIBgVeE5zuZzVH+JBZiEhujkwMCBJunnzprq6uiztx+9jRtc1oroXLlxQsVi0PeLq9dN92vb397W3t6fl5WWNj4/r4sWLun37tmZnZy3SgAeUukSihSzaxWJRw8PDtr/W3bt3dXh4qMXFRY2NjVnEY3JyUrVaTSMjI0qlUnZfPc2SgoJjx9eAeq8vBgp1YhhiGPBEbUgj8s9KW1ubdQDN5XIWxWOfs/b29oaGD0QdvQHgjQAaLGBE+no47zH29WbgPeA+5UxSwzklRYeHyKD3onsHCY4rRJQ3jKhdw1Ct1U4bI3G8iNb79+9bxAWjFLGOYY1TivkVbz3H7Y8fpxlCkmvsDTPf1KFWq5mzx18jzp9UL+YhBKlvDY/Dygt0niWcd16Ec80RsJw7x8A147niWHiddNbtkc/zziU+k39LaohOeZplXHuD39dZMp/jWOX+eqFOlMk/v8wB3khn7HlBwHPI77zA5N8cF6UIqdRp3R33xzuBiKzzh30R/VhPRgsRFNJZjRvnw31PCsJkfVpyHvGplIhBv1WDn/MY2z4q68Uc94fr6KOFCBuuHXV4/J/z8jXGjAVfl8g99RkT3AP/jCTTLxl33Be+w9/P5HPghamPLPI+xpifyzk+39CIZy0pMB9U0+nvr3cePug8+ezg/UEIwibgwx/+sAYHB62mjbz/kZER3bp1y0Ti1taWlpaWLAVqaWnJPPpMNJLMQKE71d7enm24XC6XNTg4qEqlouvXr9u+d+l02vbTo5YJgdLR0aFSqWQiD0/x+fPntbm5qePjYxNVXV1d1iWQxY9UGjyYW1tb6uvrs7qHfD5veyB64xFDqKury+ob2b7g0Ucf1cDAgC5fvqx//vOf9t633npLExMTWlxcNCMMAVKtVtXT06NCoaDHH3/coix0MGUD+VwuZ419CoWC6vW6+vr6dPfuXY2OjiqXy2lyclIbGxsaGRmxqBeG39ramiYmJrS7u2sRtIWFBS0tLZnortfrGhkZ0fHxsR555JGGwvhKpaLDw0PrKtbe3m6dQXt6ejQ+Pq6+vj5lMhmtrq7awkZ6bS6XU6lUUiaTsdTObDZr9WqdnZ22lURHR4c2NjY0OTmptbU1Pfnkkzo6OtKlS5eUTqctRXlgYMC+s7u7W/v7+yZyaTRTq9UaOjpOT09bKm0qdbqX5vDwsJaWlrS4uGjRb6I7UnN5HHGusIEz6dl7e3uq1+vmRKhWqxaFQ+BgJGFYe8MPj7Af796AT6VSFrnH0MFIk86iPqSZ+ZoTDFS/JyWCIhk98N5sjo2/iXZiRGFkJCPvyfcxZyAEh4eH1dXVpd7eXvX09JjhyPXiOxA8PnonyWq1eL13cuFI88YZnRWBz8fAQozxOfyfyCQiFq88Yh/RSeqbdxBw/b0nn60u0um0Ge7cI0lm0HNPSP1CUOJAYg6UZI0vfC0hr+Oe4jzEACdrguNLpVI2d1PDxnqEIyEZmeTeNsu4RvwQYfIN3EjF9xkxjD9vvHvBIJ0Z1X5c+e0QKAngWUTg8QzzbxyXpKtzL7lPOAFI4VxdXbXOmeVy2ZoH4RzyW0X4Z9WLYRwSPgOANc5/xoNSRKWz/RXb2toa6gZ5fnwNclL4+kiZF3WMOV+Dxzn4ul4imwh6X1fo6zkRpTha+X5JDbYO4s5H/X2UjnHlhSnOeLqckonFvUjuycrcz7glIooA5nyYn3idf/YQvTgBuDeMUZ4bshWSW2tAM43rZiAEYRMwNjZmEyqiKpfLKZPJ6IknnrCao3Q6rbffflvj4+PKZDK6deuWRcsuX75sKXpDQ0MmCOncSfQgkzndPL1UKunzn/+8JGlxcVH5fN6aq1CLkkxlwXjCUOjs7NTo6Kimp6cbiq2ZQPHcs4ixIA0ODurSpUtWa4Yo6Orq0ptvvmkC8+TkRFeuXNHOzo7Vza2urmpyclLSqXH50EMP6eMf/7jVYM3Ozur+/fuamJiwKEMmc7pFwjvvvKNMJqNHH33UCsGJJlYqFfPG53I5dXd3q7u7W9PT01a7hCDr7e3V5cuXzUhtb29XuVzWzs6Onn76aauBaG9v1+joqCqViokoUvnYoqGt7XT7jd7eXq2vr6tcLqtSqaitrU3nz5/X+vq68vm8hoeHNTAwoIcffthE6Pb2tkZGRiwlk4U0k8lofHxcqVTKjMrDw0NrKZ5KpcxAwHB7+OGH1dXVpYmJCRONRBKHhoaUTp92XSTltbu7W7lczowOajPZYuP27dtWI9Xb26upqSnrmPvoo4+qra1Nq6urKhaL/xIteq8LzPe//3298sorOn/+vJ577rkGD/0zzzyjubk5PfHEE/rZz372nr7nfwoLMpF2xoTf4wkDwdcU+UiSTxuUzup2MD68Bxm8UeBTv3yEyHvJfSocghDjk+/GCPYpUck0JY4tlUpZpEJq3Fib+QQRQoQcgwuxgaPFpzl6IYioTTZW4NrybCHiqGP0EQx/fb232xvyGEx42n0jGB8t8IYe86CfQ71xSRQW0cY5+Hof5mPO0beVp4YUEci98VsFcF+4Tr6xDd9HQwueC/8zogzJJh6cc/LZ8yl4yQhhs4xr7ht1qzzD3F+eOxr9SI2piFxjn6oIvB+jHUeqX4/5PgRRMlqIoc+9397etmcYYYQgxBGarCN7kNPH31vpbH7xDhI+n+Pw8wrjnrHPWGNeICKI+PCf4Z1ZnDfPK6LcR8q94wQB5dNmuY++ntA/tzhbOG6+J+ncSr4fxzzHwhyNYGe+9vM6YxO7Cyeqr8Hk2Hg2kpkenCu2nnTmzPPPGN/n03ylsxR0LyB9aiwp6cnMBt77Xni/jOtmIARhE4DXlVq4jY0NG4DHx8dm5NfrpxvTk7p36dIlbW5uKpPJaGJiwia+/v5+M1RoUkLKHzUkTDCZTMbSVZlgmQgRE4gPFkIMPiKF3pOGEdje3m4LGcYX34mY2NrasgYwTGaPPPKIlpaWlMvlJJ0ZaNTrLC0tqb+/37pncqxERQ8ODqw5ys7OjgYGBlSr1TQ/P6+TkxOVy2XzmGYyp3sM0Vnx8PBQk5OTJlzL5bIJtlKppFqtZp68hYUFux6k5eAhlk5r6gqFgvL5vAlH6hep+STy6NtSY6jjIfa1SzSQYUHd2NiwDnRARILoLt5LFiyuNbVSpNRyvOVy2epM9/f3be+ktrY2bW9va319XX19fUqlTusfSWd+9913NTY2pmw2q42NDfMw9vT0aHp62s6bbqp9fX127N7I5Rz+U/7xj39oeXlZL730kp599ln97ne/09e+9jVJ0h//+EdNTEzoueee0zPPPKNXX31Vn/zkJ//j7/p3+O5yjCOEAR5jjCGiL16YJIUyBh1GANEHDAbGmP8/19fvI+ojRCzy3qgnoka0y6cKeSHl0xaTIhFBSEMnnm+edYwSonnpdNoyGjo7O22eQhz7Z9xfIx/d82lpGNRegHpvOtkKCBrGMeeHMe9FtU+b844uvpvv5b7wx0ciSF09Pj62NFMfaSS6Q6SHSLI3Dr1Bi5Ajm8Lff46V++yP0x87Kbjd3d1mvHqjlufQG4ysE5wXa1LSUeBplnHto3nAPEv0SDrbZzPpzOF3SSGNY8BHcfwefv4Z9bVdfJ4XUf5ekD3jU3kRILu7u+Zw8JE8/zwnBQhjhDHF+OfYHuRckc6Ehc9akM7mSSJRzEneAcMz5aP6D8pO8NfaR8KS98Kfh0+j9OfIz7xDxwtSL4yYM7gfnAPztT8PXsv1SaVSdh8o3+Ce+62ZiBZy/3Dm+bpO1gg/H/M9vr7RR2uTKc68lig0Ap35K1ni0SzjuhkIQdgEFItFm6hWVlb07rvvWpfRtbU17e/vW5olNVwbGxvmPZZOxRsT5e7urglBJgoaRjDhbG1tWaSPlvd9fX0mFvb29mzbAZrS+LbZ3vDzdSuSrPHA8fGxyuWyNjc3tba2Zkbvzs6O5ubmdP/+fQ0NDdmmrKurq9rZ2dHu7q46Ozttg2v2DywUCpYKiQCk/oHOpogoDLpSqSTpVDDWajXlcjkdHh7q+vXrqtdPay1WV1etnlKSbUSLoVQul3VwcGBpeNyzarVq+yNRCzc8PKy9vT1LNeW67+zsWLML0gQ7Ojq0tLRkHUk3NzfNqGNRPzg4UKVSsRTavb09E7ybm5t27zAGmLxZOFlAvKHqDbu2tjZVKhUtLy9rb29Pd+/eVTabtWt+eHiotbU1dXV1aWlpyYz1UqmksbExnTt3zrYc8fvHnZycmHi/deuWCYGpqSmtrq4qnU7bNfcpeg8yJP9veOWVV/SFL3xBkvTFL35Rv/71r22BeeWVV/TlL3/ZfveXv/zl/4vh6M/Je7d9+pSv9/BeZgwfjBM+A2OGqJcXgP77ECQYCYgODEQfxeKYcSYgGhAFHAvGL0IEA4U6JOYDPPU+1Yj0VowLn5JJR1H+IGJ5rRdD1LxgZBHpxqj1tZAcp78G3rjmGmB01Wo1m1uY63Bm+Ggix8GxeSOf1HCcSN4hhhCWzhq/cI986h3fjcHOvfXGMAYt6cc+OurTxEhXJe0WEUcEwUeefO2gT6PjOlNH7gWnJDMgeZ75nOQY+E94P41r36xFOkubY99J7p2fb30Kok8x9UY44oXXIvJJ4eT1RMu9yEfE82/EC2njjD/uM+mIm5ubNmZwUjKPeAeIj1AxvqSzOY7GWMwXiATGg48OkpbMOdDkiTmALAnGd1KY+X16+QyOWzqzP0ihrdVqtj2Mz4JIpVINcyPbNHDujCHsHq4b4pxrwPEyjzInkIHE3OO7GWOjSGcp/qz3rOkcN85c0nh9l1afQsp5YRdy3DiIH5Q6msxqkNSQ+kumF8+pt/P85/ynvJ/GdTMQgrAJoMbI54Rns1mVy2UVi0WLzmxvb6tcLtuWDNvb29YUxOf4d3Z2WmqaNyT39/e1vb3dsD8awpAaMybmpMcbD3/SIPIRB16HwXh8fKxqtdpQU8jkL8nqWTY3N5XL5Sz6tr29bV0svXFH/RoGEQ1m8Lh7g+bcuXNWN0n6U61WM1HGRM93DA8Pq1AoWM0iEc6NjQ319/fbYomhR3RxbW1Nvb29kmSGmSS7D74hDMLap4ux5xwew/X1dZtgiWIgJr3X7+joyK6tJDNGfPMRUoM4R+9FRsD5FCCuM6/1kz8GP+dK3SfPU3d3t6SzNKJSqaTOzk4dHh6qUChoenpa586d09ramm27QZQTpwa8F49juVzW+Pi4JKm/v1+bm5sNv6NTZ/J3/w1YyL3x71MHMbg9jH1vSEmNm1ojxqTG2hmMcO8EYMHG2JHOxCfPMcZWMjLhU4d8Qwo/1/jz8DWGzDEYE94J4a+Brzni+fQpZYjWpPjw/8eQ9mmViG4fKfDPOc4eb8BLZ/VKvlZLUkMqHPiUU7/XoTfquc4cJ9f7+Pisvtp745PzKeKSOc6nwXIv/D3wQt9HJHiGeC3ztHTWDdQbuW1tbSaI/XOCqCS6yVqBsc69SDa18NfhP+H9NK6lxlREnxLoU4Sls3vuI9k8/8zlPAPcT+nMkZMUJ7yWedzXifmom79vZK94h5KPKvs6Yv93MorJe3l+EU+s0d65IqnhOhDV5DnimiCUEFU+7ZU5wUc3fTaAF9Ss8z7KyvXiuvrMBS9u/Xl7xx3XTzrbnofzZxwmMwe8s4dj5vu8Pcb8x5zBfaCmj9d5cc51xunjPwuYr7j/PBfeZpPOaqs5jqRj0KeJ+nvpn1FopnH9QScEYRMQudFBcMq3v/1tVavVf/u6jY0NPf3005Kkp556Sk899ZQkKZfL2fvpfAv/p9/9N/j973//X/38IPig0Ezj+re//e1/9fOD4INCM43rZiAEYRAETcMvf/nL9/T+T33qU/rJT36ib3zjG3r++ef16U9/uuF3f/rTn/SZz3xGzz//vL71rW+918MNguB/QIzrIGg+Yly/v0j/+5cEQRC0Bo899phGR0d19epVXbt2TV/96lf13e9+V5L0la98RQsLC7p69ao6OjqiHiEIPiDEuA6C5iPG9f9bUifvJYE3CIIgCIIgCIIg+MASEcIgCIIgCIIgCIIWJQRhEARBEARBEARBixKCMAiCIAiCIAiCoEUJQRgEQRAEQRAEQdCihCAMgiAIgiAIgiBoUUIQBkEQBEEQBEEQtCghCIMgCIIgCIIgCFqUEIRBEARBEARBEAQtSgjCIAiCIAiCIAiCFiUEYRAEQRAEQRAEQYsSgjAIgiAIgiAIgqBFCUEYBEEQBEEQBEHQooQgDIIgCIIgCIIgaFFCEAZBEARBEARBELQoIQiDIAiCIAiCIAhalBCEQRAEQRAEQRAELUoIwiAIgiAIgiAIghYlBGEQBEEQBEEQBEGLEoIwCIIgCIIgCIKgRQlBGARBEARBEARB0KKEIAyCIAiCIAiCIGhRQhAGQRAEQRAEQRC0KCEIgyAIgiAIgiAIWpQQhEEQBEEQBEEQBC1KCMIgCIIgCIIgCIIWJQRhEARBEARBEARBixKCMAiCIAiCIAiCoEUJQRgEQRAEQRAEQdCihCAMgiAIgiAIgiBoUUIQBkEQBEEQBEEQtCghCIMgCIIgCIIgCFqUEIRBEARBEARBEAQtSgjCIAiCIAiCIAiCFiUEYRAEQRAEQRAEQYsSgjAIgiAIgiAIgqBFCUEYBEEQBEEQBEHQooQgDIIgCIIgCIIgaFFCEAZBEARBEARBELQoIQiDIAiCIAiCIAhalBCEQRAEQRAEQRAELUoIwiAIgiAIgiAIghYlBGEQBEEQBEEQBEGLEoIwCIIgCIIgCIKgRQlBGARBEARBEARB0KKEIAyCIAiCIAiCIGhRQhAGQRAEQRAEQRC0KCEIgyAIgiAIgiAIWpQQhEEQBEEQBEEQBC3K/wK9DA9lqS36vgAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# lets just try to see what the effect of different disk radii is:\n", + "import matplotlib.pyplot as plt\n", + "fig = plt.figure(figsize=(15, 5))\n", + "one_pattern=filtered.inav[5,5]\n", + "hs.plot.plot_images([one_pattern.template_match_disk(r) for r in [5,10,15]], \n", + " axes_decor=\"off\",\n", + " scalebar=\"all\",\n", + " label=[\"Radius=5pix\",\"Radius=10pix\",\"Radius=15pix\"], fig=fig)\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# template matching using a disk. \n", + "temp = filtered.template_match_disk(disk_r=11, subtract_min=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 6.14 sms\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "07bd31a732bc4a2d9c761dae6eac0bbc", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Ba…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "temp.plot()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 4. Peak Finding\n", + "\n", + "Now we can see what a good value for peak finding is. We can either use the interactive peak finding in hyperspy but I tend to just play with the vmin value with plotting until I get a reasonable min value." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33;20mWARNING | Hyperspy | Estimated number of bins using `bins='fd'` is too large (366). Capping the number of bins at `max_num_bins=250`. Consider using an alternative method for calculating the bins such as `bins='scott'`, or increasing the value of the `max_num_bins` keyword argument. (hyperspy.misc.hist_tools:178)\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:hyperspy.misc.hist_tools:Estimated number of bins using `bins='fd'` is too large (366). Capping the number of bins at `max_num_bins=250`. Consider using an alternative method for calculating the bins such as `bins='scott'`, or increasing the value of the `max_num_bins` keyword argument.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 103.08 ms\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "82515eb7e6014e7c972cde92bc327529", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAAEgCAYAAAC926RRAAAAPHRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMHJjMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy+OBYQFAAAACXBIWXMAAAk6AAAJOgHwZJJKAAAwS0lEQVR4nO3deVzVdb7H8ReYuAZIMmThNuWWibkOHjhCGgzhkuMIWUl5u1ZOt7o+5jo5Y11NGR9T1rVpm7pdpWwP7E77aCFhLKalqZVL5pUGoQyCADFj+90/Tud4QERQfmd9Px8PH+Hv/IDPITzv890DDMMwEBERvxPo7gJERMQ9FAAiIn5KASAi4qcUACIifkoBICLipxQAIiJ+SgEgIuKnFAAiIn5KASBeqXfv3q1ef+qpp3juuedO+3m5ubkUFhaaVdY5aWpq4q677uLyyy9n1KhRTJgwgcOHDwOQnJzMDz/80Knfr6ioiMsvv7xTv6Z4l/PcXYBIZ1q4cGGbj+fm5tK7d28sFss5f6+GhgbOO6/z/gm9+uqrlJaWsmfPHgIDAzly5Ai9evUC4N133+207yNipxaAeK177rmH0aNHEx0dzdGjRwG47777eOihhwB49NFHueyyy4iKimLu3LkUFRXx1FNP8fDDD3PFFVeQl5dHUVERU6ZMISoqiqlTp/LPf/4TgEOHDhEdHc2oUaO49957HS2O3NxcrFYrM2fO5LLLLgNg1qxZjBs3jpEjR/L000876uvduzd/+MMfGDlyJFdddRXbt28nPj6eX/7yl7z55punPJ9vvvmGfv36ERho+2cZGRlJnz59ABg0aBDl5eUApKenM2zYMGJjY7nuuusczzc+Pp4lS5YwceJEhg4dSl5eHmB7p2+1Whk7dixjx4712BaQuIEh4oUA48033zQMwzD+8Ic/GOnp6YZhGMby5cuNBx980DAMw+jXr59x4sQJwzAMo7Ky8pTHDcMwpk+fbjz77LOGYRjGunXrjGuuucYwDMOYNm2a8dJLLxmGYRhPPvmk0atXL8MwDOODDz4wevbsafzf//2f42t8//33hmEYxvHjx42RI0ca5eXljhrfffddwzAMY9asWUZCQoJRV1dn7Nq1yxg9evQpz6m4uNgYOHCgMXr0aOP3v/+9sXPnTsdjAwcONMrKyozt27cbo0ePNn788UejurrauPTSSx3PJy4uzvj9739vGIZhvPPOO8bUqVMNwzCM2tpa48cffzQMwzC+/PJLY9y4cYZhGMbhw4eNkSNHtvdHLj5ILQDxSkFBQUyfPh2AcePGUVRUdMo9UVFR3HDDDbzwwgun7arZunUr119/PQBpaWnk5+c7rqekpAA4HrebOHEigwcPdvz90UcfdbREiouLOXjwoKPGpKQkAEaNGkVcXBxdu3Zl1KhRrdYbGRnJgQMH+Mtf/kJgYCBTp05l8+bNze4pKCjgmmuuoXv37px//vnMmDGj2eOzZ88+5WdSX1/PLbfcwqhRo0hJSWHv3r2t/izE/2gMQLxS165dCQgIAKBLly40NDSccs8777zDhx9+yFtvvcWqVav47LPPOuV72/vlwdYllJ2dzdatW+nZsyfx8fGcOHHilBoDAwPp1q2b4+PW6gXo1q0bV199NVdffTURERG8/vrrTJ06td212b+H88/k4YcfJiIigt27d9PU1ET37t07/qTFJ6kFID6pqamJ4uJirrzySh544AGqqqo4duwY559/PjU1NY77LBYLr7zyCgAvvvgiVqsVgOjoaF577TUAx+Otqaqqok+fPvTs2ZP9+/fz0UcfnXXNO3fupLS01FH/nj17GDhwYLN7YmJieOuttzhx4gTHjh3j7bffPuPXraqqcowtPP/88zQ2Np51jeJbFADikxobG5k3bx6jRo1izJgx3HXXXYSGhjJjxgz+/ve/OwaBH3vsMZ555hmioqJ4/vnneeSRRwD461//ypo1a4iKiuKrr74iJCSk1e+TlJREQ0MDI0aM4I9//CPR0dFnXfN3333HjBkzuPzyy4mKiuK8887jjjvuaHbPhAkTmDlzJlFRUVx99dWMGjXqtLXZ3X777axfv57Ro0ezf//+Zi0Y8W8BhqEDYURaOn78OD169CAgIIBXXnmFl19+mTfeeMPdZQFw7NgxevfuzfHjx5k8eTJPP/00Y8eOdXdZ4oU0BiDSih07dnDHHXdgGAahoaFkZGS4uySHW2+9lb1793LixAluuukmvfjLWVMLQETET2kMQETETykARET8lM+OAYwbN45LLrnE3WWIiLjFoUOH2LFjR5v3+GwAXHLJJWRmZrq7DBERt0hNTT3jPeoCEhHxU6YHwMsvv0x4eDgAWVlZWCwWpk6dypEjRwDYv38/kydPxmKxOPY9qa2tZfbs2cTGxrJ69WrH11qyZAlWq5W0tDTq6+vNLl1ExKeZGgCNjY1kZWXRv39/GhoaWLNmDbm5uaxcuZL09HQAli5dyrp169i4cSPLli0DYO3atSQnJ5Ofn09OTg4lJSXs3r2bkpIS8vLyGD58OBs2bDCzdBERn2dqALz88sukpKQQGBjIwYMHGTFiBEFBQcTExLBnzx4ASktLGTJkCMHBwYSFhVFeXk5hYSGJiYkAJCQksHXr1mbXkpKSKCgoMLN0ERGfZ1oANDY2kpmZybXXXgtAZWUlwcHBzR4H26ZXdiEhIVRUVDS7t61rLWVlZZGamkpqairFxcVmPTUREZ9g2iygF154gdTUVMfpRqGhoVRXVzse79KlC4DjcbDtWhgWFua4NzQ0lKqqKgYOHEhDQ4Pj8+33tZSSkuLYw709I+AiIv7MtBbA3r17ee6550hKSuLgwYM89thj7Nu3j7q6OgoLC4mKigKgX79+HDp0iJqaGioqKujbty8Wi4Xs7GwAsrOziY6ObnZt06ZNxMTEmFW6iIhfMK0F8MADDzg+Hj9+PE8++SSvvvoq8fHxdO/enfXr1wOwatUq5s+fT2NjIytWrABgwYIFzJs3j4yMDKZPn05kZCSRkZFERERgtVoZMGAAixcvNqt031FWZvvvz7OwRESc+exmcKmpqf69EKysDCIiICAAvv1WISDiZ9rzGqiFYL6qthYMA5qabB+LiLSgABAR8VM+uxeQ3ygrO/kO337UX20t/LzS2nGPXa9e6g4SEUAB4N3s/fxnGsaZOPHkx4GBGhMQEUBdQN7tyBHbi39enu2PXV4eHD4M27c3v5aXpzEBEXFQC8BblZXBuHG2d/TDhjV/UY+MhEGDbN099oV2zvdUVtoeFxG/pgDwVvZZPjt2nOzOsb/Y28cCwsNt3T32j+33jB+vbiARUReQ16qstP23Tx/bf+0v9i1f2MPDT/49PBw++cTWDeQ8SCwifkkB4I2cu3/s7/ah+Yv96URGnmwFfPpp8xlCIuJXFADeyN7988knHe/GCQ+HfftsH48dCxdeCF9+2fk1iojHUwB4m7Kyk9039u6fjho61NZVtHOn7e8jRqglIOKHNAjsTZzn/bfs/ukoe3fRJ5/YWgK1tRoUFvEzagF4E3vXT15e583isbci7IPKIuI3FADexP4iHRnZee/W7WsFxo9XN5CIn1EAeIsvv2x95s+5cp4aeuCAQkDEjygAvEFZGQwfbtvbf9++zu+rt08NtVpts4IUAiJ+QQHgDZynfQ4d2vlf376IzL5XkBaJifgFzQLyBi1X/ZpBW0WI+B3TWgBHjx7FYrEQFxfHlClT+Oabb4iPj8dqtRIfH8/zzz8PwLfffktiYiIxMTG88MILADQ2NnLzzTdjtVpZtGiR42s+8sgjxMTEMHPmTKqrq80q3bOcbtWvGbRVhIhfMS0A+vbtS35+Plu2bOHGG29k3bp1APzjH/8gNzeXtLQ0wHZ4/N13382WLVt44oknOHHiBG+//TYXXXQReXl51NbWsnXrVsrLy3nzzTfJz8/n2muv5YknnjCrdM9yLqt+z4a2ihDxG6YFQJcuXQj8eXfKmpoaRo4cSWBgIMnJycycOZOvv/4agO3btzNlyhTOO+88xo8fz+eff05hYSGJiYkAJCUlUVBQwMcff0xcXBwBAQGOa37FzO4fZ9oqQsRvmDoGsGvXLm677TZ++OEH3nvvPbKysrjgggvYsmULd955J2+++Sb19fWOoAgJCaGiooLKykqCg4PPeM3nOW/74Er2rSKOHLG1BEaM0JiAiA8ydRbQFVdcwbZt20hPT+cvf/kLF1xwAQBxcXGUlpYC0LVrV5qamgCoqqoiLCyM0NBQRx9/W9daysrKIjU1ldTUVIqLi818auazb/tgtbqm/7+l8HAYM+bkmIBOERPxOaYFQF1dnePjkJAQevbs6XgB37t3L31+7tKYMGECubm5NDQ0sGPHDkaOHInFYiE7OxuATZs2ERMTw4QJE/jwww+bXWspJSWFzMxMMjMz6d+/v1lPzTWcj3t057tvV3U9iYjLmdYFtGvXLhYvXkyXLl3o3r07GRkZTJkyhR49egA4BnGXLFnCjTfeyL333svChQvp0aMH06dP5/XXX8dqtTJmzBgmTZoEwLRp04iJiaFPnz68+OKLZpXufi2Pe/SErpeyMlsrxBNqEZFOEWAYhuHuIsyQmppKZmamu8s4O0VFMHiwbbvmMWM8oxawBZLGAkS8QnteA7US2JN5QveL88HyGgsQ8SkKAE/kSVsz27eJ2L7d3ZWISCfTVhCexpUrf9srPFzv/EV8kALA09hX/u7Y4Zl97fZ1CRoQFvF6CgBP0hnn/ZrFPhZgtdr+rgFhEa+nAPAUnXnerxnsYwG1tbaQslp1jrCIl1MAeArn8349Ze5/S/aD5EXEJ2gWkKfpzPN+zeZJs5VEpMMUAJ7Cm15MnQ+S15bRIl5LAeAJPHHqZ1ta2zJaISDidRQAnsDVh750BvuW0fZzhLVOQMTrKAA8iadN/TyT8HDbmAV4VxeWiAAKAM/gzS+ezuMB6gYS8SoKAHfztv7/lpwPklc3kIhX0ToAd/P0rR/aw9u6rkQEUAvAc/jCi6g3d2WJ+CEFgJw7jQOIeCUFgJw753EA+2Z2IuLxFADSOSIj1QoQ8TKmBcDRo0exWCzExcUxZcoUvvnmG/Lz87FYLMTGxvLZZ58B8O2335KYmEhMTAwvvPACAI2Njdx8881YrVYWLVrk+JqPPPIIMTExzJw5k+rqarNKl7Ph3Ao4cMB2lrCCQMSjmRYAffv2JT8/ny1btnDjjTeybt067rnnHt555x1eeukllixZAsADDzzA3XffzZYtW3jiiSc4ceIEb7/9NhdddBF5eXnU1taydetWysvLefPNN8nPz+faa6/liSeeMKt0OVv2VoDVajtI/sIL4csv3V2ViJyGaQHQpUsXAn8+TLympoZLLrmELl260KdPHwYMGEBFRQUA27dvZ8qUKZx33nmMHz+ezz//nMLCQhITEwFISkqioKCAjz/+mLi4OAICAhzXvJ7zATC+wH5mwOHDsHOn7dqIEWoJiHgoU8cAdu3axa9+9Ssef/xxLBYLwcHBjsfOO+886urqqK+vdwRFSEgIFRUVVFZWOu5t65pXsx8AY7V67yKw1oSHw6BBMGaMFoiJeDhTF4JdccUVbNu2jczMTFatWtWs376hoYGgoCC6du1KU1MTgYGBVFVVERYWRmhoqONe52tfffVVs2stZWVlkZWVBUBxcbGZT+3cecMBMOfKvrbhyBGdISzigUxrAdTV1Tk+DgkJoXfv3jQ0NPDDDz9QXFzseAGfMGECubm5NDQ0sGPHDkaOHInFYiE7OxuATZs2ERMTw4QJE/jwww+bXWspJSWFzMxMMjMz6d+/v1lPrXN50wEwHeV8jrDGA0Q8jmktgF27drF48WK6dOlC9+7dycjI4ODBgyQnJxMQEMDf/vY3AJYsWcKNN97Ivffey8KFC+nRowfTp0/n9ddfx2q1MmbMGCZNmgTAtGnTiImJoU+fPrz44otmle4a/rBq1j4mcOSIbXroiBE6SF7EgwQYhmG4uwgzpKamkpmZ6e4yWmfv/w8I8J8XxE8/tR0ec/iwbYxAREzVntdAbQbnDr6wAVxH+cJeRyI+RgHgTv74oug8JVQDwyJupQAQ15o48eTHgYH+0wUm4oG0F5C4hn1GUGCgbZGYzhIWcTu1ANzBH2YAtWSfEWT/uKjIreWIiFoAruftR0Cei/DwU7t7/DEMRTyEAsDV7DOAPvnEv/u+nQ+R0QIxEbdQALiLP84AchYeDvv22T7WhnEibqEAEPcZOlQbxom4kQLA1dTn3ZzzhnFqBYi4lALAlfx5APh0tGGciNsoAFxJA8Cnsk8PdT5ARiEg4hIKAHfw9wHglsLDbQfIaFBYxKUUAOI5NCgs4lIKAPEsGhQWcRkFgHgWDQqLuIwCQDxLa4PCagmImEIBIJ7HPihsHw84csTdFYn4JAWAq5SV6YWsoyIjT+4XpFaASKczLQC2b9/OpEmTmDx5Mtdddx319fUMGTKE+Ph44uPjef/99wHYv38/kydPxmKxsHnzZgBqa2uZPXs2sbGxrF692vE1lyxZgtVqJS0tjfr6erNK73z2M4CtVi0C64jwcM0KEjGRaQHQv39/cnJy+PDDDxk0aBBvvPEGISEh5ObmkpubS0JCAgBLly5l3bp1bNy4kWXLlgGwdu1akpOTyc/PJycnh5KSEnbv3k1JSQl5eXkMHz6cDRs2mFV657MvAMvL0wlYHWWfFaQtNEQ6nWkB0K9fP3r06AFAUFAQgYGBHDt2jLi4OK6//noqKioAKC0tZciQIQQHBxMWFkZ5eTmFhYUkJiYCkJCQwNatW5tdS0pKoqCgwKzSzRMZqRf/jnLeNrqs7OQfETlnpo8BfP3117z33nvMmDGDgoICtmzZQlJSEsuXLwegqanJcW9ISAgVFRVUVlYSHBx8xmstZWVlkZqaSmpqKsXFxWY/NXEF526gjz6ydaVdeKFCQKQTmBoA1dXVpKWl8eyzz9K1a1cuuOACAObMmcPu3bttBQSeLKGqqoqwsDBCQ0Oprq4+47WWUlJSyMzMJDMzk/79+5v51MSV7IPBM2fautI0M0ikU5gWAA0NDcydO5fly5czbNgw6urq+OmnnwDIy8vj0ksvBWxdRYcOHaKmpoaKigr69u2LxWIhOzsbgOzsbKKjo5td27RpEzExMWaVLp7Gvjbg8GH44ouTXUKffqqWgMg5MO1Q+Jdffplt27aRnp5Oeno6v/vd71i9ejW9evWiW7duZGRkALBq1Srmz59PY2MjK1asAGDBggXMmzePjIwMpk+fTmRkJJGRkURERGC1WhkwYACLFy82q3TxRM7nCe/bZ1sgNnasLQw0sC5yVgIMwzDcXYQZUlNTyczMdHcZNkVFMHiw7R3soEHursY3lJXBgQO2qbX6uYqcoj2vgVoIJt4pPNw2NgCaIipylhQA4r2cp4hq0ziRDlMAuILeoZojPFyHyIicAwWA2XQOsLmcD5HR1FCRDlEAmE3nAJtPm8aJnBUFgKvoHGDzaNM4kbNi2joAEZdyPkoSbN1tanGJtKlDLQD7ds0iHsf5KMnBg3WcpEg7dCgAcnJyiI2N5e677+azzz4zqyaRjnPeLkLHSYq0S4cCYNWqVeTn5zNz5kxWrlzJ6NGjWbNmDVVVVWbVJ9J+4eG2FcHOx0lqTEDktDoUAHV1dWzYsIGHH36YxsZG/vM//5NBgwYxc+ZMs+rzfloD4B7OYwJqBYi0qkODwAkJCfzmN7/hySef5Be/+IXj+vfff9/phfkErQFwH+cxgcBAW4tAB/KINNOhFsCsWbNYtGiR48V/7dq1ANxyyy2dX5kv0BoA97GPCdjHA8aO1UEyIi20KwAaGhqora3l9ddf58cff+T48eNUV1fz2muvmV2fb9AaAPcID7eNB3z7re08Zo0JiDTTri6gF198kWeffZY9e/Ywbdo0DMMgKCiIGTNmmF2fyLkLD9cLv0gr2hUAN910EzfddBMfffQR0dHRZtckIiIu0K4AWLFiBcuXL+e//uu/CAgIaPaYxxy6ItIelZU6PEbkZ+0KgIULFwLw0EMPmVqMiGmczw7QEZIiQDsHgSMiIgDYtWsXAwcO5KeffiI9PZ3Dhw+f9nO2b9/OpEmTmDx5Mtdddx319fVkZWVhsViYOnUqR37es2X//v1MnjwZi8Xi2GqitraW2bNnExsby+rVqx1fc8mSJVitVtLS0qivrz/rJy1+yHnDuAMHbMd0akaQ+LkOTQN97LHHALj//vv513/9V+65557T3tu/f39ycnL48MMPGTRoEG+88QZr1qwhNzeXlStXkp6eDsDSpUtZt24dGzduZNmyZYBtemlycjL5+fnk5ORQUlLC7t27KSkpIS8vj+HDh7Nhw4azfc6uUVam/ek9jX3baOf9ghQC4sc6FAA1NTUcO3YMgEmTJhEUFHTae/v160ePHj0ACAoK4sCBA4wYMYKgoCBiYmLYs2cPAKWlpQwZMoTg4GDCwsIoLy+nsLCQxMREwLb4bOvWrc2uJSUlUVBQ0PFn6yplZRARcXIRkhaBeQbn/YI0LVSkYwHwL//yL8yaNYvbb7+dEydOMKgdg2lff/017733HrGxsQQHBzuuNzY2AtDU1OS4FhISQkVFBZWVlY5727rmsewLwPLy1N/saez7BdkPlBfxYx3aCmLhwoWOAWGAZ555ps37q6urSUtL49lnn6WxsZHq6mrHY126dAEgMPBkBlVVVREWFkZoaCjV1dWEhoZSVVXFwIEDaWhocHy+/b6WsrKyyMrKAqC4uLgjT80c2nrA8+n8APFjHWoBPPjgg0RFRTFx4kQmTJjAxIkTT3tvQ0MDc+fOZfny5QwbNowhQ4awb98+6urqKCwsJCoqCrB1FR06dIiamhoqKiro27cvFouF7OxsALKzs4mOjm52bdOmTcTExJzyPVNSUsjMzCQzM5P+/ft35KmJv2nt/ACNB4if6VAL4LXXXmPXrl3N3rWfzssvv8y2bdtIT08nPT2d3/3udyxatIj4+Hi6d+/O+vXrAdsW0/Pnz6exsZEVK1YAsGDBAubNm0dGRgbTp08nMjKSyMhIIiIisFqtDBgwgMWLF5/F0xX5mX08oLbW1gqwWm0fqxUgfqRDATBhwgRKS0uJbEf/aVpaGmlpaadcv/baa5v9/bLLLiMvL6/Ztd69e/P666+f8rkPPvhgR8oVaVt4ePMXfC0SEz/ToQAoLCwkLi6OPn36EBAQQEBAANu3bzerNhHXcF4ktm8fDB3q7opEXKJDAbBjxw6z6hBxn/Bw2wv/iBG2P5q5JX6iQ4PAX3zxBbNmzSIxMZHGxkbuv/9+s+oSca2hQ3WMpPidDgXAv/3bv/Hkk09SX19Ply5deP/9982qS8T17Oc26BhP8RMdCgCwTdu07whqX8wl4hOcxwI0JVT8QIcC4Ne//jXz58/nyJEj3HrrrSQnJ5tVl3fTO0jv1HLDOIWA+LgODQL/6U9/4osvvmDv3r0MHz6cUaNGmVWX99JB8N7NecO4wEANCItP61ALICkpiZEjR5KSksKoUaOYN2+eWXV5Lx0E793sC8S0WZz4gXa1AD7++GO2b9/O4cOH+dvf/gbYtnr4+uuvTS3Oq+kgeO+lM4TFT7QrAIKCgujduzd9+vSh18/dGl27duW5554ztTgRt9PqYPFh7QqA0aNHM3r0aG666SZqamr44YcfMAzD7NpE3EdHSIof6NAg8F133cWOHTu4+OKLMQyDgIAAHQovvsk+I2jsWNtmcQoA8UEdCoDdu3d79klcIp3JPiNIrQDxUR2aBTR+/HgKCgqora3l+PHjHD9+3Ky6RNxP6wLEx3WoBbBz504+/fTTZtdycnI6tSARj6J1AeLD2hUAKSkpBAQE0LdvX7PrEfEs9nUBBw7YQkDjAeJD2hUADz30kNl1+A5tA+F77C/4Gg8QH9OuABg4cKDZdfgGbQPhu5xnBenoSPERHd4NVNqgbSB8m7aLFh9jWgBUVVUxceJEevfuzeeffw7AkCFDiI+PJz4+3nGWwP79+5k8eTIWi4XNmzcDUFtby+zZs4mNjWX16tWOr7lkyRKsVitpaWnU19ebVfq50zYQvknbRYuPMS0AevbsyTvvvMOcOXMc10JCQsjNzSU3N5eEhAQAli5dyrp169i4cSPLli0DYO3atSQnJ5Ofn09OTg4lJSXs3r2bkpIS8vLyGD58OBs2bDCrdJHWaVqo+BjTAqBr166Et+gGOXbsGHFxcVx//fVUVFQAUFpaypAhQwgODiYsLIzy8nIKCwtJTEwEICEhga1btza7lpSUpAVp4h7O00IvvFAhIF7NpWMABQUFbNmyhaSkJJYvXw5AU1OT4/GQkBAqKiqorKwkODj4jNdEXK7ldtFHjri7IpGz1qGFYOfqggsuAGDOnDmsXbsWgMDAkxlUVVVFWFgYoaGhVFdXExoaSlVVFQMHDqShoYHq6upm97WUlZVFVlYWAMXFxWY/HfFXmhYqPsJlLYC6ujp++uknAPLy8rj00ksB2xnDhw4doqamhoqKCvr27YvFYiE7OxuA7OxsoqOjm13btGkTMTExp3yPlJQUMjMzyczMpH///i56ZuKXnMcD1AoQL2VqCyA5OZldu3Zx4MABZs2aRWZmJr169aJbt25kZGQAsGrVKubPn09jYyMrVqwAYMGCBcybN4+MjAymT59OZGQkkZGRREREYLVaGTBgAIsXLzazdJEz02Zx4uUCDB/d2D81NdX1W1UXFcHgwXD4sA4R8ReffmpbHKb/5+Jh2vMaqIVgIudCaz7EiykARDqDVgeLF1IAiJwLrQ4WL6YA6Ex6F+h/tDpYvJgCoLNoJ1D/1XJ18JdfursikXZRAHQW7QTqv+yrg3futP19xAi1BMQrKAA6m2aF+KfwcBgz5mR3UG2tuysSOSMFgEhn0pkB4kUUACKdSbOCxIsoAEQ6k/OsIHUDiYdTAIh0Nns30JEjagWIR1MAiHQ2ezeQpoWKh1MAiHQ2TQsVL6EA6AxlZdoTXpprOS1Uvx/igVx6IphPKiuDiAjbIjCtApaWdGaAeDC1AM6VfQVwXp7+gcupdHKYeDAFQGeJjNSLv7TOuRWgsQDxIAoAEbNpbYB4KAWAiCtobYB4INMCoKqqiokTJ9K7d28+//xzALKysrBYLEydOpUjP/eH7t+/n8mTJ2OxWNi8eTMAtbW1zJ49m9jYWFavXu34mkuWLMFqtZKWlkZ9fb1ZpYt0vpZrAxQC4gFMC4CePXvyzjvvMGfOHAAaGhpYs2YNubm5rFy5kvT0dACWLl3KunXr2LhxI8uWLQNg7dq1JCcnk5+fT05ODiUlJezevZuSkhLy8vIYPnw4GzZsMKt0kc5nXxuQl6cBYfEYpgVA165dCXcaFD148CAjRowgKCiImJgY9uzZA0BpaSlDhgwhODiYsLAwysvLKSwsJDExEYCEhAS2bt3a7FpSUhIFBQVmlS5ijvBwGDbs5ICwVgiLm7lsHUBlZSXBwcGOvzc2NgLQ1NTkuBYSEkJFRUWze52v9evXr9m1lrKyssjKygKguLjYtOcictbCw2HfPtvq4BEjNHVY3Mplg8ChoaFUV1c7/t6lSxdbAYEnS6iqqiIsLKzZvW1dayklJYXMzEwyMzPp37+/mU9H5OwNHapZQeIRXBYAQ4YMYd++fdTV1VFYWEhUVBQA/fr149ChQ9TU1FBRUUHfvn2xWCxkZ2cDkJ2dTXR0dLNrmzZtIiYmxlWlt00Hf8jZ0Kwg8QCmdgElJyeza9cuDhw4wG233caiRYuIj4+ne/furF+/HoBVq1Yxf/58GhsbWbFiBQALFixg3rx5ZGRkMH36dCIjI4mMjCQiIgKr1cqAAQNYvHixmaW3jw6Cl7PlPCsoMFBdQeIWAYZhGO4uwgypqalkZmaa+02KimDwYNuuj2PGmPu9xPeUlcGBA7YQ0O+QdLL2vAZqM7jOoIPg5WzY3/FrszhxE60EFnEnbRYnbqQAEHE3583itDZAXEgBIOJu9rUBoNPDxKUUACKewHltwIEDCgFxCQWAiKewdwXpMHlxEQWAiKfQYfLiYgqAc6FVwNLZdJi8uJAC4GxpFbCYScdIigsoAM6W/TD4Tz7R4h3pfM7rAzQoLCZRAJwrrQIWs2hQWEymABDxVBoUFpMpAM5GWZkG58Q1NCgsJtJmcB1VVgYREbb+fw0Ai6s4Dwpr0zjpJGoBdJR98DcvT/8QxXU0KCwmUACcrchIvfiLa2lQWDqZAkDEW7Q2KKwQkHOgABDxJvZBYefdQxUCcpZcGgBFRUWEh4cTHx9PfHw8ZWVlZGVlYbFYmDp1Kkd+nuGwf/9+Jk+ejMViYfPmzQDU1tYye/ZsYmNjWb16tSvLbk7bP4gnGDq0eQh8+qntiFKNDUgHuLwFEBcXR25uLrm5ufTp04c1a9aQm5vLypUrSU9PB2Dp0qWsW7eOjRs3smzZMgDWrl1LcnIy+fn55OTkUFJS4urStf2DeBbnEBg71nY+9YUXKgSk3VweAAUFBVitVpYuXcrBgwcZMWIEQUFBxMTEsGfPHgBKS0sZMmQIwcHBhIWFUV5eTmFhIYmJiQAkJCSwdetWV5eu7R/E8wwdahsXOHzYNjPNPktIrQFpB5euA+jXrx9fffUVPXv25JZbbuF///d/CQ4Odjze2NgIQFNTk+NaSEgIFRUVVFZWOu61X3Mbbf8gniQ83PanV6+Ts4TA9vG+fbaQEGmFS1sA3bp1o1evXgQEBDB79mx2795NdXW14/EuXbrYigo8WVZVVRVhYWGEhoY67rVfaykrK4vU1FRSU1MpLi42+dmIeBj7LKHDhzVTSNrFpQFQU1Pj+DgvL49p06axb98+6urqKCwsJCoqCrC1FA4dOkRNTQ0VFRX07dsXi8VCdnY2ANnZ2URHR5/y9VNSUsjMzCQzM5P+/ft3/hPQALB4uvBwGDRIM4WkXVzaBZSfn8+9995Lz549GTx4MOnp6XTv3p34+Hi6d+/O+vXrAVi1ahXz58+nsbGRFStWALBgwQLmzZtHRkYG06dPJzIy0pWlawBYvI99kHjECNufTz7RAkZpJsAwDMPdRZghNTWVzMzMzvuCRUW2WRY7d9reXYl4iy+/tAVAU5PtDYy2MPEL7XkN1EKwjtIAsHgb+0wh+ywh7SgqP1MAtJf6/8WbhYfDsGEndxTVmICgAGgf9f+LLwgPP3X1sNYK+DUFQHtoAZj4iparh7WrqF9TAHSE+v/FF9jHBFquFSgr0wpiP6MTwc5Exz+KL7KvHrZPEx027ORjminkN9QCaIv9+EerVf3/4pvsXUKBgbY/b77ZfD8htQh8mloAbXE+/nHYML0jEt9k7xKyc95PyP53LSLzSQqA9tAvvvg659/vb7+1vfkB2/Tn8eNtA8b2IOjTx9Ya1r8Jr6cAaIvm/os/so8PgG1foW+/tY2D2YMAmocBKBC8lALgdDT3X8TGHgj2loFzq8BOgeCVFACnY+//37FDv8gicDII7K2C1rqJ7NRd5BUUAKdj7/7R3H+RU7XWTXS6QFDrwGMpAFqj7h+RjjldILSnuwgUCm6iAGiprMw2B1rdPyJnryPdRdB6KICCwWQKAGf2hV+GYfuFdPWhMyK+qK3uIjh9KIBaCyZTADjTwi8R8zkHArQeCtCx1oJC4awoAJzZB3618EvEtVqGAnSstXC6LiQ7BUSrFAB2X36pgV8RT9Oe1kJbXUh2ZwoI8MuQ8LoAWLJkCYWFhQwaNIiMjAy6du169l+srOzkTIVx4yAgwLYxlp/9Eoh4lfZ2Idm1JyCgfSEBJ98g1tZ6fWh4VQDs3r2bkpIS8vLyWLVqFRs2bOC6667r+Beyb/E8bpytzx9s//P37bNtjCUi3qW1LiS7MwUEtD8kWmpvy8K5Tg/iVQFQWFhIYmIiAElJSTzzzDOnD4DaWttWti3Z3+3bZ/rs2KHViiK+rq2AgPaFBJwMCoD334eEhPaHRntbGC7kVQFQWVlJv379AAgJCaGioqLZ41lZWWRlZdn+8u67MHhw61/I/sKvwV4RsTtTSMDJoLDf396WRVOT7U9HWxjnIiXljLd4VQCEhoZSXV0NQFVVFWFhYc0eT0lJIeXnJ506bRo88UTrX0jv9kXkbDm/drS3ZWF3phZGZ7r77jPe4lUBYLFYWLNmDTfeeCObNm0iJibm9Df36mX74YuIuFPLwPAgXnUk5BVXXEFERARWq5UvvviC3/72t+4uSUTEa3lVCwDgwQcfdHcJIiI+wataACIi0nkUACIifkoBICLipxQAIiJ+SgEgIuKnFAAiIn7K66aBttehQ4dITU3t0OcUFxfTv39/kyoylzfXDt5dv2p3D9XetkOHDp35JkMcUlJS3F3CWfPm2g3Du+tX7e6h2s+duoBERPyUAsBJSjt2z/NU3lw7eHf9qt09VPu5CzAM+4koIiLiT9QCEBHxUwoAbOcMW61W0tLSqK+vb/We+++/n/H2k4A8SFu1v/XWW/zqV78iNjaWf//3f3dThc2drt7GxkZuvvlmrFYrixYtcl+BZ3C6+j3xZ93SmX7PPfV3HNqu/ZVXXmHKlCnEx8ezdetWN1V4eqer/ccff2TGjBnExcUxdepUjh496vLa/D4AnM8ZHj58OBs2bDjlnpqaGj777DM3VNe2M9U+evRoCgoKyM/P57vvvuOTTz5xU6U2bdX79ttvc9FFF5GXl0dtba1H/kNuq35P+1m3dKbfFU/9HYe2ay8tLeWNN95g8+bN5ObmMmnSJDdWeqq2av/HP/7B5ZdfzpYtW5g/fz7r1q1zeX1+HwAtzxkuKCg45Z5HHnmEO+64w9WlndGZah8wYADnnWdb6hEUFERgoHv/d7dVb3v+P7hbWzV62s+6pTP9fD31dxzarn3jxo1069aNhIQE0tLSOHbsmLvKbFVbtV966aXU/nxCWGVlJX379nV5fZ71W+oGlZWVBAcHA62fM1xVVcVnn33mce8s4My123388cd89913jHXleaStaKve9j4Xd2pPjZ7ys26prdo9+Xcc2q796NGjlJeX8/777zNp0iQef/xxd5XZqrZqHzJkCHv37mXkyJE89dRTXH/99S6vz2dXArf07bffMnfu3FOuJyYmtnnO8F//+lfuvPNOl9R4OmdbO8CRI0dYtGgRf//7302v80zaOtP5TOc9e4Iz1ehJP+uW2qrdE37H23Km35srr7ySgIAApk6dyp///Gd3ldmqtmpfv349sbGx3HfffWzYsIH09HQeeOABl9bnNy2ACy+8kNzc3FP+JCcnk52dDdDqOcNfffUVf/7zn0lKSuLgwYOsWrXKa2qvqalh7ty5/Pd//ze/+MUvXF53SxaL5bT1tvWYp2irRk/7WbfUVu2e8DvelrZqj4mJYdeuXQDs2rWLX/7yl+4o8bTaqt0wDEe3T9++famqqnJ9gW5eiewRFi9ebMTGxhrXX3+98dNPPxmGYRi33nrrKfeNGzfO1aWdUVu1r1y50rjooouMuLg4Iy4uzsjNzXVnqYZhnFqvvdb6+nrjpptuMmJjY40777zTzVWe3unq98SfdUunq92ZJ/6OG0bbtf/pT38y4uLijMTERKOsrMyNVbbudLX/8MMPxq9//WsjLi7OiI2NNQ4cOODy2rQQTETET/lNF5CIiDSnABAR8VMKABERP6UAEBHxUwoAkXYqKipizpw5pn+fjRs3euRaAvE9frMQTMRbJCUlubsE8RNqAYjfu+OOO9i2bRsAmzdv5o9//CNHjx7lyiuvxGq1MmfOHBobG5t9Tnx8vGPfmTlz5lBUVMSJEyeYN28eU6ZMYebMmY4VoHbvv/8+cXFxTJgwgfvvvx+A//mf/2HFihUYhkFSUhL79u3j2Wef5fHHH6eiooL4+HiuvPJKrrnmGhf8JMTfKADE782dO5dXXnkFgFdffZW5c+fSp08f3n//ffLy8rj44ovJyck549dZu3YtU6ZMIScnhxtuuIGnn3662eMxMTFs2bKFbdu28dprr/Hjjz9yyy23sHPnTm677TYSEhIYMWKE4/5PP/2UiRMn8sEHH6hLSEyhABC/FxMTw0cffURdXR179+7liiuu4Pvvv2fOnDnExcXx7rvvUlpa2uxzAgICHB/b11Lu3buXJ598kvj4eB599FHKy8ubfc6OHTu46qqruPLKKykqKuK7774DYOHChbzyyivcfvvtze6Pi4ujV69e3HDDDaxZs8aMpy5+TgEgfi8gIICYmBhWrFjBVVddBcBLL73E9OnT2bJlC0lJSbRcMN+nTx+OHDlCQ0MDX3zxBQDDhw/nrrvuIjc3l4KCAtLT05t9zurVq3nqqaf44IMPuPjiizEMg59++on777+flStXct999zW7v76+nuXLl/Piiy/y3nvv8c9//tO8H4L4JQ0Ci2DrBoqOjubzzz8HYOrUqaSlpfHWW2/Ro0ePU+6//fbbSUlJISoqioiICABuvfVWbr31Vp555hkA/uM//oNp06Y5Pue3v/0tv/nNbxg1ahTnn38+AMuWLeP222/n2muv5brrrmu2X/zHH3/MPffcQ2BgIJGRkURGRpr2/MU/aS8gERE/pS4gERE/pQAQEfFTCgARET+lABAR8VMKABERP6UAEBHxUwoAERE/pQAQEfFTCgARET+lABAR8VP/D1Z12bFphdQBAAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure histogram Signal\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# lets look at the histgram for just a couple of points\n", + "temp.inav[3:10, 3:10].get_histogram().plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "79f989b02bea49bf81266c2e666083a4", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Ba…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Lets plot the data with an adjusted vmin \n", + "temp.plot(vmin=.4)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33;20mWARNING | Hyperspy | The function you applied does not take into account the difference of units and of scales in-between axes. (hyperspy.signal:5320)\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:hyperspy.signal:The function you applied does not take into account the difference of units and of scales in-between axes.\n" + ] + } + ], + "source": [ + "# get the diffraction vectors\n", + "vect = temp.get_diffraction_vectors(threshold_abs=0.4,\n", + " distance=10, get_intensity=False)" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Title:
SignalType: diffraction_vectors
Array Chunk
Bytes 18.75 kiB 512 B
Shape (60, 40|ragged) (8,8|)
Count 607 Tasks 40 Chunks
Type object numpy.ndarray
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

Navigation Axes

Signal Axes

\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + " \n", + " \n", + "\n", + " \n", + " 60\n", + " 40\n", + "
\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "#display the diffraction vectors\n", + "vect" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
Title:
SignalType: diffraction_vectors
Array Chunk
Bytes 8 B 8 B
Shape (|ragged) (|)
Count 609 Tasks 1 Chunks
Type object numpy.ndarray
\n", + "
\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "

Navigation Axes

Signal Axes

\n", + "
" + ], + "text/plain": [ + "" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "vect.inav[0,0]" + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/carterfrancis/PycharmProjects/pyxem/pyxem/signals/diffraction_vectors.py:915: VisibleDeprecationWarning: Function `plot_diffraction_vectors_on_signal()` is deprecated and will be removed in version 1.0.0. Use `pyxem.signals.DiffractionVectors.to_markers()` instead.\n", + " since=\"0.17.0\",\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "9af3de3285bb44068373a2e76ea21cbf", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Ba…" + ] + }, + "metadata": {}, + "output_type": "display_data" + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33;20mWARNING | Hyperspy | The function you applied does not take into account the difference of units and of scales in-between axes. (hyperspy.signal:5320)\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:hyperspy.signal:The function you applied does not take into account the difference of units and of scales in-between axes.\n" + ] + } + ], + "source": [ + "#plot the diffraction vectors\n", + "vect.plot_diffraction_vectors_on_signal(s, vmax=\"95th\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 5. Determining Strain\n", + "\n", + "First we filter the vactors based on their magnitude. This gets rid of the zero beam and weaker peaks farther out!" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33;20mWARNING | Hyperspy | The function you applied does not take into account the difference of units and of scales in-between axes. (hyperspy.signal:5320)\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:hyperspy.signal:The function you applied does not take into account the difference of units and of scales in-between axes.\n" + ] + } + ], + "source": [ + "# filter the magnitude of the vectors\n", + "vect_filtered = vect.filter_magnitude(min_magnitude=3.5, max_magnitude=4.5)" + ] + }, + { + "cell_type": "code", + "execution_count": 23, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# display the vectors\n", + "lazy_vect = vect_filtered.as_lazy()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Defining the basis vector far from the region of interest" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# get a basis from the unstrained region\n", + "basis = vect_filtered.inav[4,4]" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 524.17 ms\n" + ] + } + ], + "source": [ + "basis.compute()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33;20mWARNING | Hyperspy | The function you applied does not take into account the difference of units and of scales in-between axes. (hyperspy.signal:5320)\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:hyperspy.signal:The function you applied does not take into account the difference of units and of scales in-between axes.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3da446096b3745e8abaa63a8d90ad359", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Ba…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# white for current data, red for basis.\n", + "m = vect_filtered.to_markers(edgecolor=\"w\",facecolor=\"none\", sizes=(40), lw=4)\n", + "basis_markers = hs.plot.markers.Points(basis.data[0][:,::-1], edgecolor=\"r\",facecolor=\"none\", sizes=(40), lw=3 )\n", + "\n", + "filtered.plot(vmax=\"99th\")\n", + "filtered.add_marker((m, basis_markers))\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": {}, + "outputs": [], + "source": [ + "from pyxem.generators.displacement_gradient_tensor_generator import get_DisplacementGradientMap" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## 5.1 Fitting an Ellipse for the Strain\n", + "\n", + "Let's get a tensor strain map. Basically we can determine the best elliptical transfromation to map from the basis set of vectors to the strained vectors. We can also determine the residual and use that to improve the fits or indentify area where we are less confident about the fit.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\u001b[33;20mWARNING | Hyperspy | The function you applied does not take into account the difference of units and of scales in-between axes. (hyperspy.signal:5320)\u001b[0m\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "WARNING:hyperspy.signal:The function you applied does not take into account the difference of units and of scales in-between axes.\n" + ] + } + ], + "source": [ + "filtered_data = vect_filtered.filter_basis(basis.data[0])" + ] + }, + { + "cell_type": "code", + "execution_count": 29, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 9.59 sms\n" + ] + } + ], + "source": [ + "filtered_data.compute()" + ] + }, + { + "cell_type": "code", + "execution_count": 30, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 105.86 ms\n", + "[########################################] | 100% Completed | 105.46 ms\n" + ] + } + ], + "source": [ + "# Lets get a tensor strain map.\n", + "strain_map, residual = get_DisplacementGradientMap(filtered_data, basis.data[0], return_residuals=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 31, + "metadata": { + "tags": [] + }, + "outputs": [], + "source": [ + "# get the magnitude of the residual\n", + "std_err = (residual**2).sum(axis=-1)**0.5\n", + "std_err.set_signal_type()" + ] + }, + { + "cell_type": "code", + "execution_count": 32, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "63f8e40ae8f64450be845c70b39d03de", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYAAAADoCAYAAADmFzM8AAAAPHRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMHJjMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy+OBYQFAAAACXBIWXMAAAk6AAAJOgHwZJJKAAA5GElEQVR4nO2deXSUVZr/v0WAhDWBiBFIAghIQMAgS0tClu5hCZugQDDNomJjBBVQUYaZ1nFp2h45jTIN2jljo43KCOQ0ILYSQQiEBEdEiAIqhDUJIFsRESSA1O8PfqmhnvtN6pJUJZJ6PufknLy3br11t7du3ed7n+c6XC6XC4qiKErAUaemC6AoiqLUDDoBKIqiBCg6ASiKogQoOgEoiqIEKDoBKIqiBCg6ASiKogQoOgEoiqIEKHVrugCKoig1ze9+9zv88MMPXvM1bdoUb775ZjWUqHrQCUBRlIDnhx9+wNKlS73mGzt2bDWUpvrQCUBRlIDH5XIhEIMi6ASgKIoC6ASgKIoSiLhcLly5cqWmi1Ht6ASgKIoCXQEoiqIELDoBKIqiBCAqAiuKogQwqgEoiqIEIIG6AtBQEIqiKPi/SaCiP2/MmjULCQkJmDBhAi5duuROz8/PR1xcHJKSkjB8+HCcO3cOANCxY0ckJycjOTkZa9eu9VvdysMvK4AeDgcirrluDOBHAJ84HNd9r/r16xtpdep4zlvXNnQZNp0l71MebGkYFBTk9V6XL1820hyiDeQ1YC9GyXzsfaxcwcHBHtfNmjUz8rA6s7LK+3///fe8sF7uxcp5yy23GGllD861yHo3btzYyMPGUUlJiZFWt67nIxESEmLkYf168eJFI00ix0x5abI+7PNYX//8888e17IuAHDhwgUjjbW97J8GDRoYecLDw400OW7OnDlj5Dl//ryRVlpa6rUMrJxt2rTBtm3bjPTKUNUVQH5+PoqLi5GTk4M5c+YgMzMTaWlpAIAuXbogLy8PAPD8889jxYoVGD9+PEJDQ5GdnV3Volcav0wAEQDW16vnvt7x/7+gY68ZkKyx2RdM06ZNjTT5ULIHWT4MgDk42ZcCKwObYGQZ6l1T3zLYl5XNxMHKzsol87EvbVZH+eD27NnTyMO+dNiXlaz3unXrjDwMeS/WfgMHDjTS9u3bZ6TJerdv397Iw76svv76ayOtSZMmHtc333yzkYf166lTpzyuWb+yyYSlyfr8+OOPRh7WP/LLvVGjRkaeY8eOWZVBjrfWrVsbefr27WukyYnwq6++MvIcPnzYSDtx4oTXMsgfLuWVqzL4wgSUl5fnHrMpKSl466233BPAteP7p59+QqdOnQBc7dukpCS0bt0aCxYsQPPmzatUhutFTUCKoii4OvF6+yssLERqaipSU1OxfPlyj/c7nU73D9bQ0FCcPn3a4/U1a9agR48eyM7ORocOHQAAubm52LhxI1JSUvAf//Ef1VPRa/DLBNAYV3/1l/2Zv8cURVF+OdjY/10uF6KiorBs2TIsW7YMY8aM8bhHWFiYO6JoSUmJ8Ws+JSUF27dvx6hRo5CRkQHg/1amo0ePRn5+fjXU1BO/mIB+BHDtYqoAwAEL+z8zMTA7plz+MhONzZYulod9HlvOM1uqzftsdAdWLlu9QsJMR7KOJ0+eNPLcdNNNVmWQJhlbTUPWkfXhxx9/bKTdddddXsuwf/9+r3kArhVI3cFWV5HltzHtANy8I82ezCxw/Phxr2Vg/cps8qyOkZGRHtfM5HT06FEjTdbb5vkFeF/IdmbfD76kqiaguLg4zJs3DxMnTkRWVhbi4+Pdr5WWlrpNWKGhoSgtLcXFixfhcrkQHByMnJwc96qgOvHLBPCJw4FY0Vnsi0FRFOWXQlUngNjYWERERCAhIQHR0dGYOXMm0tPTkZGRgTVr1mDevHlwOBwIDw/H4sWL4XQ6MWTIEDRq1AjBwcFYtGiRj2pij/oBKIoS8PgqGNzcuXM9rstMPSNGjMCIESM8XmvUqJHPdjBVFp0AFEVRoLGAfIbD4fBqr2M2Zpt98wy2j53ZSCXMjs+2EDJ7blFRUaXuL7c72voPMFuqhLUV2zondydER0cbeVj7sb3uxcXFHtc2e8oB056bmJho5Pnpp5+syiC3NjLbNNvHzvr64MGDHtfsS0FuFQXsxmnDhg295gFM272t34Fse7blk8HGaVhYmMc102gKCwuNNLk1mW3vZWns17dsZzaWfUWgegLrCkBRFAW6AlAURQlYdAJQFEUJQPREMEVRlABGVwA+wuVyGcKVdGZhAp9tfCAp6DGRzAYmrDJHGYYUMW1iDwF2AdxYmk1AMCZWM+FMlpV5IEZFRRlphw4dMtKGDRvmcZ2VleW1nIAZEIw5RLE4PDZtw8YMi4vDYvocOHDA45o5KLH4VFI0tRU6bZBxhgAuAksxl40ZNkbK4tJUlI+Vvczr9VrkeGPiMXvGbJ4VttnDZnOEDSoCK4qiBDA6ASiKogQgqgEoiqIEMLoCUBRFCVB0AvDVTevWNUQ3Kfqxg0qYqMTEVSnA2kbwlDDPTOYVaeMpy8Q1Vh958lFVIhzKNmT3Yu0gvbCZ5+yePXus7rVixQqPa9YXrA+lWPjZZ58ZeQYNGmSksQihUuxkfcHKwLyd5QYDW09tOd6ZOYGVgYntUvxmnsfsFClZVja+W7VqZaSxPpNtw8pw9uxZI02OebYJgYn77FAn2Rf+NNGoCKwoihLA6ASgKIoSgKgIrCiKEsDoCkBRFCVA0QnAj9gsr5hoJUVTwO6oONaZUhxknqBMJLMRMZngy7xBpcjMPCVZ6GKGvD8T6li7yxDOzLOVieGsHWSarSAvvXVZO/zzn/800hhSlGUbDJjnOSMmJsbrvVgocNle7H1sTLJ2thE/5ZGNAHDkyBGv92Ze0syrWOZzOp1GHvb8SNhYZsJwixYtvN7L9kjNyqAisKIoSgCjGoCiKEoAoisARVGUAEYnAB/BooHKxmW2fWY/ZvZpaVeUR+gBZvRRwIxCyCJEnjhxwkhjS8PWrVt7XDN7P7M7S9uwTRREgNtupf2d2WnDw8ONNKm1sHKGhoYaaczeKu3Mtv0q68PKyRy6mFYg+5odVWgTTRUw68Ps4+x9cpzKoyUBXnZ2f2kPt400KyOSMm2MtQOLeCr70VbTkBoa0/WYdsDub+Pg5ysNAPDNBDBr1izk5eWhbdu2WLRokft7IT8/H1OmTEG9evXQtGlTvP/++2jUqBGWL1+OV199FQ0aNMDf//53qu34E+/usoqiKLWcMhOQt7+KyM/PR3FxMXJychATE4PMzEz3a126dEFeXh42btyInj17YsWKFbh8+TLmzZuH7OxsvPjii3jppZf8XU0DnQAURVFwdVXl7a8i8vLyMHDgQABASkoKcnNz3a9dayH46aef0KlTJ+zduxedO3dG/fr1ER8fj6+++so/FasAnQAURQl4bFcAhYWFSE1NRWpqKpYvX+5xD6fT6TYFhoaG4vTp0x6vr1mzBj169EB2djY6dOjgkR/gpj5/oyKwoigK7DSAqKgoLFu2jL4WFhbm9gcqKSkxtKmUlBSkpKTglVdeQUZGBu6++24P/6GqBIasLH6ZAIKCggyBVc5urLGliAWYkSsBU0RiQhA7di4iIsLjmkUzZE5LzJlFOlMxmDAsYbM+E3xHjRplpEnhlAnff/vb34w0WW828JizDhPkpVDHlsmsHWSbsjozBg8ebKRJwZWNme3bt1vd/9ixYx7Xbdu2NfK0bNnSSLM5QpEJsCwKps24uf322420nTt3elwz8Z2Vi4nAclyy56Jz585GmtxQwIRvW0FePsPsSEhfUlUROC4uDvPmzcPEiRORlZWF+Ph492ulpaXuZyo0NBSlpaXo2LEjvvnmG1y8eBFffPEFunfvXqXPrwy6AlAUJeDxRTC42NhYREREICEhAdHR0Zg5cybS09ORkZGBNWvWYN68eXA4HAgPD8fixYtRr149zJgxA8nJyQgJCcHf//53H9XGHp0AFEVR4JttoHPnzvW4zsjIAACMGDECI0aMMPKPHTsWY8eOrfLnVhadABRFCXjUE1hRFCWA0QnAR7hcLkNEkh6WTOhiXpFMcJMiEvPeZZEx5fuYSMYGARNqpSjG3seEVNkO7H0LFy400piHoBQCmdelFDUB4IMPPvC4lsd1AvZepFL8ZH3IkPdi/VW2p/pamHAv38s2ANx6661GGjsKU45LJjweOnTISJNjkPUXixjLxG85Jtg4Zc+F7Gv2PjZG2PMjPcFZ37P7t2nTxuN69+7dRh7mgW/zjLEjPG0Ecxv0QBhFUZQARlcAiqIoAYpOAIqiKAGIisCKoigBjE4APiIkJAQ333yzR5oM2cxEJSaaymPuAFNoZO9jApUUYJl3IxM/WYhjKd4xMU+2AQDs27fPSJMwz0wmbEovS3YE4MyZM400KRauX7/e6vNYyF6Zxjw/bTyBmTi5detWI61r165e72Ur5KekpBhpe/fu9bg+cOCAkScqKspIk+OGeaezOjJs6sNCKtscjcm87dm4kZ/JvMDZ8yOfV/Y8sXDd7BmWgj8T0Zm4XxlUBFYURQlgdAWgKIoSgKgGoCiKEsDoBOAjLl26ZNjrpP2THe/G7Jos6qa07zP7LovgKe30zDZdVFRkpDHboLzXLbfcYuSxOR6xX79+Rp533nnHSHvqqaeMNKmFMCcsm2MVR44caeRZvXq1kcbaQTqRMbswsx9LWNlZ/0gbPQD07t3b45rZig8fPmykMR1KHsfI6sz0EXkvFkWU6QmsDLL8TBOyOT6VRUVl/cPySQ2D6QmsnaXNnzl9sWeaOdzJePrsmfYVqgFUwJ49e7By5Up88803AK6GgR0xYgQ6derk18IpiqJUF7oCIDzwwAMIDw9H//793dHs9u/fj4yMDJw+fRpvv/22v8uoKIrid3QCILz++uuG+aZTp04YPHgwjSGjKIpyo6EicDmUffk7nU6sWrUKTqfT3VBPPvmkf0unKIpSTegEUAGDBw/Gb3/7W0RHR3vNe+XKFUMAlaIVcxiyjUBp4wBlE4mTrWCYQxcTh6TwzCJLsntJYZMNuhkzZhhprN1lGZhoytIef/xxj2t5uHV5MOFRHgHIYA5Q8l7McYo5XDExcsuWLR7XMpJleezZs8dIk+9ljntSnASAbt26ec3DNgUwkd7pdHrNwxwkpcB76tQpIw8TUpmYK9uebRRg95dOXqycbByxjRwyH3umfYWKwF4ICwvDtGnT/FkWRVGUGkNXABUwadIkjBo1Ct27d3f/sn3uuef8VjBFUZTqRCeACnj55ZcxdepUtGrVyp/lURRFqXZUBPZCu3btMHnyZH+WRVEUpcbwhQYwa9Ys5OXloW3btli0aJFbg1u9ejX+8Ic/oF69eujZsyfmz58P4Oppdj179gQA/OUvfzG0JH9jPQGcP38egwYN8jABvfLKK+Xml4KUjOzHBFImdrFOkR7DttEfbWZ4djRhSUmJkSbrxzwsmRekFDuZGB4eHm6kMQFROuKxI/OYsC4jQrJyMvGYie1SpGf99f333xtpUhhm44FFjYyJiTHSpBcpO7KRicdMVJRRa5mXrMwDmJsAWH+xvq7sRgE2JmXbs00ObHyztunevbvHNetDJh7LZ5NtEmDPOfPUjoiI8Lhm45RtEqkMvlgB5Ofno7i4GDk5OZgzZw4yMzORlpYGALjjjjuQm5uLunXrIi0tDV988QV69eqFTp06ITs72wc1qBzWE8Ds2bP9WQ5FUZQapaoTQF5envsc65SUFLz11lvuCeDaXXz169d3/2Dct28fEhMTcfvtt+PVV1+lk6M/MX+2lkNSUhLCw8NRp04dOBwO+stFURTlRqVsFVDRX2FhIVJTU5Gammpsn3Y6ne54TKGhoXQr8NatW3H8+HHceeedAICCggJs2rQJLVu2xMKFC/1fSYH1CuDee+9FcHAwIiMjAVxduiYmJvqtYIqiKNWFrQkoKioKy5Yto6+FhYW5zWIlJSVo3ry5x+tFRUWYMWMGVqxY4U4rM/eOHj0af/rTnypb/EpjPQH8+OOP+Mc//mGV1+FwGLZn6dTBGpvZmCsLs4e3bNnS45qtYlgas6NLGyx7H7PBynp//vnnVu9jtk5ZBqmzsDzl3UvCnHUY0rGIaS8s0qd0uGKfx2ztn332mZFmo8ewiJosAqW0WbMxaRMZk0UMZWWwSWPtwDQaWW82jlg79+3b10iTegXTVWwcs5jdXkZvBfhzIJ8VX9n7y6OqInBcXBzmzZuHiRMnIisrC/Hx8e7Xzp49i/vuuw8ZGRnukwLPnTuHkJAQBAUFIScnBx06dKjS51cG6wmgffv2ePfdd9GjRw/3l12XLl38VjBFUZTqwhcicGxsLCIiIpCQkIDo6GjMnDkT6enpyMjIwGuvvYYDBw7gscceAwC88MILCA0NxaRJk9C4cWM0a9YMixcv9kVVrgvrCeDChQv49NNP8emnnwK4+ot30aJFfiuYoihKdeILP4C5c+d6XGdkZAAAnn32WTz77LNG/i+//LLKn1kVrCeAt956y5/lUBRFqVEC0RHM6y6g8ePH43/+53887JAnT57EkiVLMH78eL8WTlEUpTooCwbn7a+24XUFsGjRIixduhTp6ekoKiqCw+FAZGQkRowYUa4J6OLFi8YWKClQMTGKCVs2UUNZxzDhVjqzMLGQCYMM6VDDnGKYE4wUi3/7298aedhqi4mrsr1Ym65du9brvVg7sIiarD6yDKzdpVMRYAp67N7Hjh0z0lgdpVDL8rBoo2zPtUxjxxey98n+Z4IlOxqTicVszEtYe0lRlrUD+zwZfZTdn91LOhQC5nhgEV1ZFFE2BuVzXXYi4bV07tzZSKssgbgC8DoB1K9fHxMmTMCECROqozyKoijVjsYCUhRFCWB0AlAURQlQAnECsA4FUebM43K5sHnzZj0PWFGUWoOKwF5ISUnB+vXr8dxzz+H48eP4z//8T6xevdr6g2TjMc9ZdnQgE8SkwGZ71J4sg60QbXN0JBP9WBlGjx7tcb1q1SojDyvX4MGDjTQpnDEXdfarRnpnsrIzUY61jbw/8/xk9ZF93bZtWyMPE/hycnKMNOk5a3vc6FdffWWk2fywYXWU7cW8hZlHNBNzZXuxvrB5fli/MjH8wIEDRpoMY8AEbHa8pExjfc+eC/bsSw9o1n6+RFcAFhw8eBAZGRl0ICmKotyI2ASCq40ThPUKoHHjxkhLS0NcXBxcLhfdlqgoinKjUhu/4L1hPQH84x//wOHDh3Hrrbfi0qVL+Nvf/ubPcimKolQbZRpAoOF1AsjIyEB6ejpmz55t2B0rOhFMURTlRkJXAIS77roLADBs2DDrmwYFBRleiXJ2tQ0HzcQ0+V4m8FXWRMUOcWDI+9sekJOZmen1fY888oiR9uabbxppUuSzrTMLGy1hQh0T4aQwzPqLCZ2yr9nRi/v37zfSmKgohVuWx/bhlh7QtkKqFGrZ5zGPW3nsIbsXey6YMCzzMUG7Xbt2Rhp7fuR72b3YMZFSzGfiLmsb1s6yH5kQ7Ut0AiDccccdAK42TnJysju9vEMRFEVRbjRqq8jrDetdQG+//TZmzJiB4uJijBs3rsbDmCqKoviSQNwFdF0TwOXLl9GmTRv8+te/rpHjyxRFUfyBOoJ54aGHHkKDBg2wc+dOPP3003A6nXj66adp3itXrng9vo3ZHdl7mN1Z2j+Z7dsmQqitzZyVS96f2WRtYL8qXn/9dSON2dal/Z0d0cfaz+YYR9vjOWUZWrdubeRhOoe0h+/cudPIw9rdxmmN1ZmNB5sjDRlMY5DOZ2w8sL5m/SrrKJ2yAN7OUpsoM99ey3fffWekMW2iR48eHtetWrUy8rBjIuURpLbjiEUplZFE2XeGL6mNv/C9Yf2tdd9992HBggWIiYnB6tWrjXDIiqIoNzKBaAKyXgEMGDAA+/btw5EjR+ByufQ8YEVRag219QveG9YTwLRp03D48GFs374dsbGxcLlcSExM9GfZFEVRqo3aaOP3hrUJaNu2bVi5ciXatWuHVatWUduloijKjYivYgHNmjULCQkJmDBhgocutHr1avzqV79Cv379MH36dHf6/PnzER8fj7vvvpueKuhvrFcAZWJfw4YNsX79enz77bfl5nU4HF4dY5iYx8RCG2GTiXI2YiFzUGIRDtkvAymcMiHVRuhmETZZO7AIl7LerAw2TlG20TOZuCpFPuYcxJzKpFjIYGVgaayOEluRXraNjUgL2P16tN10IOvDjl5kDmSyrDJKKmDnxAaYfcZEWjZOZfvJiJ4AH2979+410uTYYlFYfUlVTUD5+fkoLi5GTk4O5syZg8zMTKSlpQG4Ksjn5uaibt26SEtLwxdffIG2bdvigw8+wObNm7FkyRIsXLgQs2fP9kVVrLFeASxYsAClpaX485//jJUrV+LVV1/1Z7kURVGqlaquAPLy8jBw4EAAV8Pn5+bmul+Ljo52T+z169dHnTp1sHXrViQlJcHhcBj5qwvrFUDXrl0BXI3R/l//9V9+K5CiKEp1Y2viKSwsRGpqKgBgzJgxGDNmjPs1p9OJli1bArgaUoSFldm6dSuOHz+OO++8E0uWLHGHtygvv7/RIyEVRVFgZ8aLiooqNwxOWFiY245fUlJi+G8UFRVhxowZWLFihTt/QUFBufmrA2sTkLQB1oRgoSiK4g98IQLHxcVh3bp1AICsrCzEx8e7Xzt79izuu+8+ZGRk4OabbwYA9O7dG5s2baL5qwvrFcC9996L9evXu68nT56MpUuX0rwul8sQymy8+FgD2xwDZ+t1KY+OZAKsjdjKPpOJhSyCovxMFuGQTa5MDJdtautJLduG1Y8ds9msWTMjTQqBTFhn5ZL1ZuIkExm9eZgDXPxk7cfaXkavZO13/PhxI02KpqdOnTLy2ES2ZWlsnB47dsxIk0doMu9q5sDJ6igjsUZGRhp52DiVbcO8jNnnsb6WnsZlX5zX4ssIoVUVgWNjYxEREYGEhARER0dj5syZSE9PR0ZGBl577TUcOHAAjz32GADghRdeQFJSEoYOHYr4+Hg0a9YM7733ni+qcV14nQDWrl2LTz75BAUFBXjmmWcAXH0I2QBUFEW5UfGFI9jcuXM9rjMyMgAAzz77LJ599lkj/xNPPIEnnniiyp9bWbxOALfddhvq16+PwsJCDB06FMDVXyQvvPCC3wunKIpSHeiJYOXQpk0btGnTBg0aNECfPn3w/fff47//+78RGhqK22+/vTrKqCiK4nc0FEQFzJ49G59++imef/55JCYmYsqUKW4BQ+JwOAz7tLTx2Ub2Y7ZB6VDD7MLMbuqtTOXdi9mPpWLPoh4ym7k8ccpWhzh8+LCRJm33zJbP7i9/6TDbKqsPs91Km7Kts5O0+bN7szHCHlKZjzmeMds363/ZZ0ybYI5ZNqdX7dmzx0hjDnHyXkxPYHXctm2bx7WtHsO0CdmPTPdgY+TcuXNe38dOCWN9Letoo/9UlkCNBWS9C+jChQu4cuUKzp8/j7S0NL+HZlUURalOAjEaqPUE8Jvf/Abx8fEYN24cLly4UOlY6oqiKL9EAnECsDYBvfTSS3jppZfc12vWrPFLgRRFUaqbQBWBK3eMFYBx48b5shyKoig1iq4ACGV7/6/F5XIhLy+v3Pc4HA5DfJSOU0zoZDBRUYp3TPxkIpkUkZgZiwlbLE0KbExkZGKh/JXBRED2ee3btzfSpEB59OhRIw9rGynClcUvuZYDBw4YaUyolaJfZY8AtP31ZROBkkWujImJMdKYGCn7gwmpDDm+WeTK6OhoI42J+1KUZRE1WdgA+Uwx8Zg5TYaHh3vNx778bKKIsufcxjmxvDR/UVu/4L3hdQJ47733sGTJEiN9w4YNfimQoihKTaATAGHixIno3LmzsVVw4sSJfiuUoihKdRKoGoDXCeDll1+m6dOmTfN5YRRFUWoKXQEoiqIEKDoB+BBvyynmSGbrRSo7igm+rDNlmZjAxzxnWbmk2MnuxQQwGUGReWGyMjDBTQqbd911l5Hn66+/NtK2b9/ucX327FkjD6PsUKBr6dChg9f3tWvXzkhbsGCBx7UUk8uDRViV/crE3eLiYiPNZqMAE3OZ0C3FaeZBzMYkE+nlsZpsswLzipVRUFlUVNtIqbINWdnZuJHlYmI1izTLnrHqPHdcRWBFUZQARicAQu/eveFwOPDjjz+iqKgI7dq1w/79+9G2bVv661JRFOVGI1BFYK+OYFu3bsXnn3+O2NhYHDhwAPn5+Th06BBiY2OroXiKoijVgzqCVcDevXvdkSybNm2Kb7/91m+FUhRFqW5q4xe8N6wngGnTpqFPnz6IjIxEcXExpk+fXm5eNlvaeO8yYZgJqTbhoJmAJNOYoMjKxUQyWS5WTiYWNmjQwOvnsfowb1Dpaczet2PHDiNNth8TsJn4uXv3biPtu+++87hmxwQyUXvgwIEe18zDl4mMrAyy/Mzj1taj18abtkePHkaa7IstW7YYeVh92LiRzw7bAGATGpndm4UoZ0hP8IiICCPPrbfeaqTJDQZyvAPATTfdZKSx55WFkvYXtfUXvjesJ4AJEyZg3LhxOHHiBFq0aEEHpaIoyo2KagAVsGvXLtx7772YMGECXC4X/vSnP/mzXIqiKNWGjf2/Nq4QrCeARx99FG+88QYuX76MoKAgrF271p/lUhRFqVZ8MQHMmjULCQkJmDBhgocJbs+ePYiNjUVISIiHj0iTJk2QnJyM5OTkGtlVeV1+ANdGjazIaSsoKMiwm0vnD/Z+W4cX+V5mP2TLOWZnljDTVlRUlJEm68Ps/cy+L+3AzCmG2W6ZDXvdunUe1yz6KLPBSlgbM32EPQCyz1geVp+PPvrI49r2hDnmeCbLz6JNsr5nTlFybN15551GHubcJMfbsGHDjDzffPONkcYc1GT5mS2cRfCUzmcsD9NoWF87nU6v92J6DGt7CTsukxEZGelxbesoWlmq+gs/Pz8fxcXFyMnJwZw5c5CZmYm0tDQAV+uyceNGjBgxwuM9nTp1QnZ2dpU+typYrwAGDRqEBx54AEVFRXj44YcxZMgQf5ZLURSl2vCFCSgvL8+9uSElJQW5ubnu1xo2bGicBw4A+/btc5+xbhtK3Zdc16Hwu3btwu7du9G5c2caFkBRFOVGxUYELiwsRGpqKgBgzJgxGDNmjPs1p9PptpKEhobi9OnTXu9XUFCA8PBwvPjii1i4cCGeeuqpSpa+clhPAE6nE1u3boXT6URhYSE++eQTPPnkk/4sm6IoSrVga+OPiorCsmXL6GthYWFuE1tJSQk1FUrKTGujR4+ukY011iagwYMH4+zZs4iOjkabNm3Qpk0bf5ZLURSlWqmqCSguLs6ty2VlZSE+Pr7C/OfOnXPrGjk5OVaBFX2N9QogLCwMjz/+uFXe4OBgtGjRwiNNikpMjLJ16LJxZGL3kqKsjbMYYHfMIYsseeTIESNNOlgxoZg5yjDBTQqwtuKa7AsmkNpEvARMEZsto5kjmHyYmFjN3ldQUGCkSVhkUVZ2JvjLfKwP2YMtHaU+//xzIw87llL2BWD2P3NsKywsNNLkc8Cc+W655RYjLS4uzkhbunSpxzUb34cOHTLSpLDOxoONExtgPhu247uyVFUEjo2NRUREBBISEhAdHY2ZM2ciPT0dGRkZcDqdGDNmDPLz8zF8+HA888wzaNmyJSZNmoTGjRujWbNmWLx4sY9qYo/1BDBp0iSMGjUK3bt3dz8kzz33nN8KpiiKUl34Khjc3LlzPa4zMjIAXPXAlrv2AODLL7+s8mdWBesJ4OWXX8bUqVPRqlUrf5ZHURSlRqiNjl7esJ4A2rVrh8mTJ/uzLIqiKDVCbfX09Yb1BHD+/HkMGjTIwwT0yiuv+K1giqIo1YlOABUwe/Zs65tevnzZ8EqU4hoTdJjoxwReKVAy70Mm8EkbH/M+tY3OKfOxPOxoQpt7FxUVGWmsbSS2AqwUj5mHJWsHm33NrD5MgLWpDxNzbQRlJljaeIGzezEvZhvPTVZO1q9NmjQx0uR4to0OK8vOxjfbvScjeAJAUlKSx3VOTo6Rh3nIy7Znz4CNdzpgRmK1fTYrgx4I44WkpCRERkaiTp06cDgc1g+UoijKjUAgBoO7rvMADh8+jO3btyM2NhYulwuJiYn+LJuiKEq1URu/4L1hvQLYtm0bVq5ciXbt2mHVqlV0v7yiKMqNSKCGg7ZeAZTZNBs2bIj169frkZCKotQqauMXvDesJ4AFCxagtLQUf/7zn/HGG2/g1VdfLTfvpUuXjLDHNisGFhqZCXo23qesM70dUwlw8c4mlDArOxOoZFjdkpISIw8T71gZpEjKRFMWItpGnD569KjXPIApIDOhjgmpsp1Z+7E+ZB7Kso7s89j9GbKdmUjLwifLTQesHdgzwARROW5sQzjLNmXeyGzzBdto8dVXX3lcszFZWQ/vTp06GWlsg4F8L/OQ37lzp5FWGQJVBLaeALp27YqzZ8+icePGmDlzpj/LpCiKUu3oCqACpk2bhi+++AKRkZFwuVxwOBzlRsVTFEW50bCZAGrb7kfrCSA/Px95eXn+LIuiKEqNYCvyBuwE0KtXL+Tm5iI2NtbdCDa25DJs7O82Rw6y9zKdgCHt1cweyuy0MtIjuxdrC2aLltoI0wlYxEamFUgbKdMAmH3X5n3Mhs2o7DGbNvZW1hfM6c9GT2BlYOPG5thBmy8K9nmsryvryMT6x+Y4xqysLCONHe4k20aOWwA0LpjUaGRU4PLu1b59eyOtX79+HtfLly838vgSmzHJ+vVGxnoC+PLLLz0i1zkcDqxfv94vhVIURalOaus2T29YTwAbNmzwZzkURVFqFJ0AKiA7OxsLFiyA0+l0N5SuABRFqS3oBFAB06dPx9KlS2kAKEVRlBsZNQF5oXPnzujUqVOloyoyMVLCBBbmkGRTBiauSace5sjCBFgmRtqIuTfffLORJp16vv/+eyMPE6OY44888q9Zs2ZGHubAI48Y3LFjh5GHwe4lYe3AhHwpYjJR01Y8lv3DnLeYA5mNE5btkYayrKy/bPtVjkvbqLXymbMVmNmxlPL+ycnJRh7pLAYAoaGhHtcyoifAxXd2LKV8xvztqKWOYBVQVFSELl26uHcMqB+Aoii1BV0BeOG9997zZzkURVFqFJ0ACK+//rrHdYMGDdCtWzf06tXLb4VSFEWpbgJxAvDq1dCoUSOPv4sXL2L+/Pn4/e9/Xx3lUxRF8TtlweC8/Xlj1qxZSEhIwIQJEzwcQffs2YPY2FiEhIR4nJY4f/58xMfH4+6776ZB//yN1xXA/fffb6Slp6cbR8Z5/SALz1ImWtlExmQzNxMCpYdo8+bNjTzsXjbetCwP8wSWHo9Hjhwx8jCvXyakHj9+3OOaeTa3a9fOSJN9wdqYCd+sf2QdWT8z71oboZO9Twrf7DOZRyzbOMCEYenRzcrA0mTbMM9w21+Ysk3Z57HxYNMXDCYCy40CUtwFgO7duxtp8thLOUYBICYmxkg7ePCgkSaPle3du7eRx1fRQIGqrwDy8/NRXFyMnJwczJkzB5mZmUhLSwMAREZGYuPGjRgxYoQ7/8mTJ/HBBx9g8+bNWLJkCRYuXHhdR+/6gkr5NbtcLiuXeUVRlBsB2wNhCgsLkZqaitTUVCM0RV5eHgYOHAgASElJQW5urvu1hg0bGpPo1q1bkZSUBIfDYeSvLrz+RHj66ac9fj1duHABO3bswOTJk/1aMEVRlOrEZgUQFRVV7u5Hp9OJli1bAri6YmJnHMj8Zat2m/z+wOsEMGzYMI/rkJAQvPDCC3TPuaIoyo1KVU1AYWFhbjt+SUkJNTHL/AUFBdb5/YHXCeB6bf1lyMb0dl0eTHixicjHbPLSTnvmzBkjD4v8yZB6ArMnM1Hnm2++qfA+tp8HmPVhUT337dtnpEk7OnPCYbGfmC4g7c5MJ7CJGsvs9szOzfpetj0zT9pGz5TjhrU7cyCUn8kcvGxt8qzeEvZcVPaUNaZVyXbIyckx8rD6SO1AnpwHcB2H6VdyPDOnMl/hixPB4uLiMG/ePEycOBFZWVmIj4+vMH/v3r0xb948ALDK7w9qV2xTRVGUSlLVQ+FjY2MRERGBhIQE7Nq1C6NGjUJ6ejqAq+ae/v37Iz8/H8OHD8fHH3+MFi1aYOjQoYiPj8eSJUswderU6qimB9aOYIqiKLUVX3kCz5071+M6IyMDwNUwLevWrTPyP/HEE3jiiSeq/LmVRScARVEUBKYjmE4AiqIEPL7QAG5E/DIBBAUFGcKfFOrYbGvj9MXyMfHTJhIiE4qPHTtmpLEIodLBhQluNhEhbURNwK5tbIVUeS8WDdRWfJdH/rHopkyUlfdn9WNlsBHNWbuzsts4/dlGv5VlZe9j/cPqLcvPRHSbI1VZHtam7PmxGd9lWx4r+kxWZyb4sudVji3m3MnMKpVFVwCKoigBik4AiqIoAYiGg1YURQlgdAJQFEUJQFQE9iHBwcHGcYjS65Z5yVZWGGYdx9KkByITo+QxdOXdS3pPsvfZRKVkdWYetwwpbLJ72UZKlTBh0OZYTxsvVsD0uLaJsFlemmwvFqVy8+bNRtq//uu/Gmn79+/3uF69erWRR0apBMy+YKIzS7M52pGNP9Zecmwx8ZhtMGDlkkI0Owv8pptuMtLkuGndurWRh220sIn0aTNuq4KuABRFUQIUnQAURVECEBWBFUVRAhjVABRFUQIQXQH4kNLSUnoU3LUwL0Um8DEh1UYkY+KaPMaRlYF5PNoI1raerCEhIUaat3sDXPSz+TzWprJtmDDIBDeWJj+TeU23bdvWSPO2SQAATpw4YaQxTp486XH97bffGnkGDx5spLEQx/JoQha6mI0RGw9v1hesz8aPH+9xzUIqL1q0yEiT44aFeWbPBSuXHKfsSMhu3boZaVlZWR7XrF//5V/+xevnAabwbPPsVAWdABRFUQIUnQAURVECEDUBKYqiBDAqAvuIK1euUNv9tdjYtAFup5e2TWZvZe+TTirM9m3rjCbrx/KwowNtBpntkYbyXuzz2Dmj0smHne/MbL42kUVZNFBWdqmrsL6wiegKmE54CQkJRh5mi87Ly/N6b+aUx9pUjhupNwHcWXDIkCFGmtQ+jh49auRJTEw00jZu3OhxzcYk6wvWr1J3YLrHkSNHjLR+/fp5XLODznft2mWkOZ1OI02OU6bH+ApdASiKogQwOgEoiqIEKDoBKIqiBCCBGgzONJ4riqIEIGU6QEV/3pg1axYSEhIwYcIED63y559/xqRJk5CQkIAZM2a405s0aYLk5GQkJyfj66+/9ke1KqTaVgCy8WxETcBOELV1BJNpVRGipeDK7sUERFlWm+MSAS6IynKxPMyJTbbDqVOnjDwMGxGYiYVMgJWwsjNHMFZW2Re5ublGHrYpgYnmElYfJlhK0bxjx45GHlZH9tBLAZk5grGND5MmTfJahoyMDCONRQ2VgnWnTp2MPOxISCkMMwGb3YtFG929e7fHtU002sriCxE4Pz8fxcXFyMnJwZw5c5CZmYm0tDQAwIcffohWrVph0aJFmDx5MrZs2YK+ffuiU6dOyM7O9kENKoeuABRFUWC3AigsLERqaipSU1OxfPlyj/fn5eVh4MCBAICUlBSPHyLlvbZv3z4kJiZiypQpdCecv6kVE0DTpk2xadMmHD9+HF26dHGnP//88/joo4+QkZFBVwSKoihl2EwAUVFRWLZsGZYtW4YxY8Z4vN/pdLrPGAkNDfXYAlveawUFBdi0aRNatmyJhQsXVlNN/49aMQGcP38e9957L1asWOFO69q1K1q2bIkhQ4Zgz549GDFiRA2WUFGUXzJlIrC3v4oICwtzm1xLSko8/EXKey08PBwAMHr0aOTn5/ujahVSKyaAy5cvGwHB+vTpgw0bNgAA1q1bh1/96lfu1+Lj47F06VK88847yMnJQefOnREfH4/MzEx32j333IPMzEysW7eOOkopilK7qKoIHBcXh3Xr1gG4GhQvPj6+wtfOnTvn1gBzcnLQoUMHP9WsfPxiF6lTp44hGMrGY4KYzTF3gCk8luWpU6cO6tSpg6CgIDRt2hRHjhzB5cuX4XQ6ERYW5hbOHA4H6tWrhzFjxqB///4YP348Pv74YwQFBSEtLQ0PPvgg7rnnHowcORJTpkzB4MGD8c4773h8pvw1wAYHi8Yo62NTv/LubyNaMRFYprVv377SnyfFSNavzDtYCnrMc5aJx6xNJexeTEgtKSkx0mR/2B5VKdtm+/btRh7bYyJlpFTmTcvKVVxc7HH94YcfGnmYNy2rjyzD+vXrjTxMRJf36ty5s5Hnu+++M9L+93//10hr06aNx7U/t2n6QgSOjY1FREQEEhISEB0djZkzZyI9PR0ZGRkYNmwYVq5ciYSEBPTo0QN9+/bFjh07MGnSJDRu3BjNmjXD4sWLfVQbe2qtYbykpMQdvrhp06bGzo0yd/Ti4mKEhYV5pB09etR9HumRI0cQHR1dTaVWFKWm8IUj2Ny5cz2uy3Zd1a1bF2+//bbHa7Gxsfjyyy+r/JlVoVaYgBifffYZfv3rXwMA+vfvj88++8zjdW+/cK/9n/1KVxSl9uALDeBGpNasADIzM9G9e3d07NgRixYtwrvvvovjx4/jk08+QWFhIebPn2+171tRlMBEQ0HUIIsXLzZsftfLmTNn0KRJE0yfPh3Tp093pzdr1gx5eXnGL/lro0HeeeedADxPK7rnnnvc/8tTmmwGi8PhwP79+zF27Njrq4iiKNWOTgA+IigoyBDivDVu3bp1qamFpdkIsOx9Ml9VTDs2761Tpw7q1q3rcZSidPZgAhwTgZnoZ+NdbeOhzOrCQhczwZJ5etq8T5aLibuVbRvmMcra5qabbjLSZAjisr3bFeUBgIiICCNNwsrFnH+k+M3ajyH7zHajBfMEtvWSl0jPaebpzIThsu2Q1yJF7R9//NHI065du+stIkXDQdcw6enptIPZl5N8aGzd/G3i59vsMgHszgRmD5aiKL9MdAJQFEUJQAI1GqhOAIqiKNAVgM9wOBxeHZ5YlEVmb2VI2ybrOGbesQm2xN7n7XjL8sogj6AE+HGCEuagZGOuYuVkTlEyH7MVs74oKCgw0qTpq0WLFkYeGyc52z5k40bC2p1FZmX+HeyYQwkzS9rY6a/VgspgEVZtCAkJ8ZrGtArWP6wMso424wio/LGN7F6yPkVFRZW6ty06ASiKogQgKgIriqIEMKoBKIqiBCC6AlAURQlgdALwEbfddhuNMKnc2DAHntoGO+ZQ+WX0fY8ePYy0ffv2+ez+OgH4iG3btvnjtoqiKH5BTUCKoigBjIrAiqIoAUigrgBq7XkAgUR2djZmzpzpvn777bexYMGCGizR/9GrVy8jbfPmzYiLi0O/fv3cwcJWrlyJ48ePA/Bd+Xfs2IE33njDa77S0lKMGzeu0p9z7tw53H///ZV+v/LLoKpHQt6I6ApAqXb+/d//Hf/85z9x9uxZPPLII/joo4+wcuVKdOjQwTiKsCrExsYiNjbWa76lS5diyJAhlf6cRo0aoXnz5vj2228RExNT6fsoNUtt/IL3hq4AajEHDx5EfHw8xo4di27durnPdU1OTsaTTz6JxMREPPbYYwCuhu1NSkpC37593WnZ2dkYNGgQ7rnnHtxxxx1YunQpBg0ahD59+uDUqVMAgD/+8Y9ISkpCYmKi+9f8O++8g169eiEtLc2I8PrTTz8hKCgIzZo1Q3R0NE6fPo0DBw5gzZo1ePDBB/HMM88AADZs2IDhw4ejd+/eRshpVtZPPvkEkyZNAgDcf//9WL9+vXtldOnSJQwfPhzJyclITk42QoKsXLkSAwYMAAA88MADeOSRRzBgwACMHDkSLpfLqh0GDBiAVatW+aDXlJogUE8E0wmglnPy5Em89957WLZsmYdZZeTIkdi0aRO2bduGkpISdOjQAdnZ2diyZQsKCwuxd+9eAFeFsRUrVuDRRx/F+++/j6ysLIwbNw6rVq3Czp078d1332Hjxo14//338fvf/x4///wz5s2bh9zcXPzlL38x4rc4nU6POEN169ZF69atkZKSgrfeeguvvPIKACA0NBSrV6/GpEmTsHz5co97sLIOHDgQISEhePTRRxEaGorf/OY37vyHDx9Gw4YNkZ2djQ0bNtAYM9euPOLi4rB27VoEBwe7J7WK2gEAbr31VuzevbvS/aTUPGoCUm5IQkJCPIKkXbhwwR28q2vXrqhbty6ioqLgdDrdecr2VLdu3RpnzpzBuXPn8NRTT+H8+fPYv3+/Oyha9+7dAQCtWrVy/9+6dWscOnQIu3fvRl5eHpKTkwFcDQx34sQJREZGIjg4GMHBwcaBHWFhYfjhhx/c15cvX6aB2srKFxUVZWwrPnDggFHWjh074vHHH8ftt9+OQ4cOeeRv37494uLiMH78eLRp0wYvvvgiPb+BfXZZm1XUDsqNj6++4GfNmoW8vDy0bdsWixYtcgc0/PnnnzF58mTs3bsXPXv2xGuvvQYAmD9/PpYtW4bw8HC8++671gExfYWuAGoBt912G7Zv3+4+xWnz5s3o1q0bAM+ojuUddO9yufDGG2/gqaeewsaNG9GjRw933mvzyffExMQgKSkJ2dnZyM7Oxpo1a9CiRQsUFRXh4sWLbvPOtTRs2BCXL1/GmTNnUFhY6I6OWq9ePY9TqMorNwBaVpfLhaeffhp//etfMWvWLI/8paWlePzxx/Huu+/ixIkTyM3N9Xg9MjLSLUCX99kVtQMA7N+//xfhLKVUnqquAPLz81FcXIycnBzExMQgMzPT/dqHH36IVq1aIScnB+fOncOWLVtw8uRJfPDBB9i8eTPGjh2LhQsX+ruKBroCqAU0b94cDz30EBITE1GnTh0kJCSgT58+OHjwoPU9hg8fjunTpyMmJsba1tm9e3d07NgRSUlJqFOnDgYMGIB/+7d/w4wZMxAXF4eYmBgacvkPf/gDhgwZAofDgddffx0AMHjwYMyYMQP9+/dH69atr7usf/3rX5GQkICHH34YBQUFeP/993HLLbcAAA4dOoSHHnoIQUFBaNSokfv85zJGjBiBtWvXVmkn0Nq1a/Hwww9X+v1KzVPVFUBeXh4GDhwIAG6TZlpamvu1oUOHul/Lzc3FmTNnkJSUBIfDgZSUlBrZSeZw1UbDlqJcB6WlpXjwwQexZMmSSr3/3LlzmDJlChYvXuzjkinVxe9+9zsP02R5nDp1yn1+8ZgxYzBmzBj3a3/84x/RpUsXjBw5EgUFBXjuuefcY+rhhx/G1KlTERsbi3Xr1mH9+vXo2rUrjh8/jhkzZuDy5ctITExEXl6efypYDroCUAKe4ODgSn/5A1e3geqX/43Nm2++WeV7XKtvlZSUeBz+xF4LCwtzH7Ik81cXqgEoiqL4gLi4OKxbtw4AkJWVhfj4+Apf6927NzZt2kTzVxc6ASiKoviA2NhYREREICEhAbt27cKoUaOQnp4OABg2bBgOHz6MhIQEhISEoG/fvmjRogWGDh2K+Ph4LFmyBFOnTq32MqsGoCiKEqDoCkBRFCVA0QlAURQlQNEJQFEUJUDRCUBRFCVA0QlAURQlQNEJQFEUJUDRCUBRFCVA0QlAURQlQNEJQFEUJUD5f5/5iz4YArvtAAAAAElFTkSuQmCC", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "#plot the error.\n", + "std_err.plot()" + ] + }, + { + "cell_type": "code", + "execution_count": 33, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 105.76 ms\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4a2d70cd3eb6401c942e11b6cc757e30", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Ba…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# visualize the error and determine how to better fit the data.\n", + "m = filtered_data.to_markers(edgecolor=\"w\",facecolor=\"none\", sizes=(40))\n", + "basis_markers = hs.plot.markers.Points(basis.data[0][:,::-1], edgecolor=\"r\",facecolor=\"none\", sizes=(40) )\n", + "\n", + "filtered.plot(navigator=std_err, vmax=\"99th\")\n", + "filtered.add_marker((m, basis_markers))" + ] + }, + { + "cell_type": "code", + "execution_count": 34, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 105.59 ms\n", + "[########################################] | 100% Completed | 105.60 ms\n", + "[########################################] | 100% Completed | 105.60 ms\n" + ] + } + ], + "source": [ + "# get the strain maps.\n", + "maps = strain_map.get_strain_maps()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 6. Visualizing the Strain" + ] + }, + { + "cell_type": "code", + "execution_count": 35, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "4a7141b249934eccac5f79f1c38abf51", + "version_major": 2, + "version_minor": 0 + }, + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAGkCAYAAAB+TFE1AAAAPHRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMHJjMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy+OBYQFAAAACXBIWXMAAAk6AAAJOgHwZJJKAACI7UlEQVR4nO2de5hU1ZX23+bSAcGmQOSmkFYUUbw0EoyA5V3CCJoYhWiM14hE43hJMEwmk5nMJCSOJkT84oXRAE7USZAkCBglQQURMAIRVIx3WhRFolCgCKFp6vvjrLfOW7sOrWDTfSqu3/P0s6rPOnWue9dea+21967I5/N5OI7jOE4z06K5L8BxHMdxAG+QHMdxnJTgDZLjOI6TCrxBchzHcVKBN0iO4zhOKvAGyXEcx0kF3iA5juM4qcAbJMdxHCcVeIPkOI7jpAJvkBzHcZxU4A2S4ziOkwq8QXIcx3FSgTdIjuM4TirwBslxHMdJBd4gOY7jOKnAGyTHcRwnFXiD5DiO46QCb5Acx3GcVOANkuM4jpMKvEFyHMdxUoE3SI7jOE4q8AbJcRzHSQXeIDmO4zipwBskx3EcJxV4g+Q4juOkAm+QHMdxnFTgDZLjOI6TCrxBchzHcVKBN0iO4zhOKvAGyXEcx0kF3iA5juM4qcAbJMdxHCcVeIPkOI7jpAJvkBzHcZxU4A2S4ziOkwq8QXIcx3FSgTdIjuM4TirwBslxHMdJBd4gOY7jOKnAGyTHcRwnFXiD5DiO46QCb5Acx3GcVOANkuM4jpMKvEFyHMdxUoE3SI7jOE4q8AbJcRzHSQXeIDmO4zipwBskx3EcJxV4g+Q4juOkAm+QHMdxnFTgDZLjOI6TCrxBchzHcVKBN0iO4zhOKvAGyXEcx0kF3iA5juM4qcAbJMdxHCcVeIPkOI7jpAJvkJqY733ve+jZsyfat29ftP3xxx/H0UcfjVatWmH69OnNdHWOky4+/PBDDB8+HH379kW/fv3wL//yLwXdhAkTcNhhh+HII4/EKaecgtdff70Zr9RpDLxBamLOOOMMPPXUUyXbe/XqhalTp+KrX/1qM1yV46SXsWPH4oUXXsDTTz+NhQsX4qGHHgIA9O/fH0uXLsUzzzyDc845B9/5znea+UqdT4o3SHuQe+65B8cccwxqamowZswY1NfX49hjj0X37t1L9q2ursaRRx6JFi38lTifXsI685nPfAYnnXQSAKCyshJHH3003nzzTQDASSedhL322gsAcOyxxxa2O+WL//rtIf7617/iN7/5DRYuXIjly5ejZcuWuPfee5v7shwntXxUncnlcpg1axZOOeWUku/+8pe/xD/90z815eU6e4BWzX0B/6g88sgjWLZsGQYOHAgA2LJlC7p06dLMV+U46aWhOrN9+3acd955uPrqq3HggQcWfe+ee+7B0qVLMX/+/Ca/Zqdx8QZpD5HP53HRRRfhJz/5SXNfiuOUBQ3VmcsvvxwHH3wwrr322qLtc+fOxfjx4zF//nx85jOfaaIrdfYUHrLbQ5xyyimYPn061q1bBwBYv369ZwE5TgPsrM7827/9GzZu3Iibb765aP+nn34aY8aMwcyZMz368A9CRT6fzzf3Rfyj8pvf/AY/+clPsGPHDrRu3Rq33norfve73+G+++7DW2+9hR49euCyyy7DD37wAyxZsgRnnXUWNmzYgDZt2qBbt25YuXJlc9+C4zQpYZ2ZOHEistks+vbtW/CArrrqKlx22WU49dRT8eyzzxaShHr16oWZM2c25+U7nxBvkBzHcZxU4CE7x3EcJxV4g+Q4juOkAm+QHMdxnFTgDZLjOI6TCppmHNKrFZFcLtv2NcnZPt4T3XqTeyUc60OTPU2+Ibq3gn31mG1Mtks45rPBPkeJ7iyTB5vUsXc3mtwn4Zg899gEHe+rk8k/iq6HyddM/kV0fGYvR2Ld07Gqy4X2gffQKdYVngtlD9FtNXleA9/j+9B75zH+bFKf63EmDzP5qOg4ppEZ8M+KriX3j/JsLrvsMmzatAlJVFVV4a677krU/cOwrWLnuspekVy1Ot5WZ7LPMfbhkFi38FeR/Jv9vz5WYZvJqoTznBDs8zfR8Z2zLOioBm5rbfJD0e032K5pUSS1DvP4tktReeT5WA+0vrMcZUweJLodJmebfDnhmLy/fUXH3xg+q8+KjudmmdU6xbr7OZN6f6TSZH/Z9pzJE6+3D21Eycq3PeFgZCGA8q43PjDWSS2bNq3HtGn/m6gbNerSJr4axykPyrneNE2DtNnkvgk6WkAvyLaWwT4Z+UxPJcnSo0GxNUHH76nXFJ6P1lyd6HgMegLPiY6eUdIx2wS6JC+KDJXP/2fyCJObS3XLN0ZSDa8z+IHP8zWUQt1W2UbLkhbeWSiF32uToNsaSAB4v4H9+RxeMbm36EIPF/XBgT+l6COoMs8o6eHyubOQvi2zyq81ucKk1sXQS6gUHcufvifCOpsxWS+61sW7Yj91IWxGhSGXRHLelJ1/T+G1dLEQQw9xu/h7kDOpdZ/XN8Lk3AbO8VWZluhdq0R8HupZLTXJTg+9PXpnvKYa0e1HN5QXtTbWnTjGPtAL0sliuS1pNoq/B/+Xb73xPiQnxWwH8MFO/hpm3LhxyGazuOCCC1BXF1sY9fX1uPTSS5HNZgvT0KxatQrZbBYnnHAChg8fjo0bNzb+rThOk7H79aa58QbJSTH1iMzipL+ds2LFCqxZswYLFixA3759ixY8nD17Nnr06IEFCxZg8+bNWLx4MTKZDGbNmoX58+fjzDPPxJ133rnnbslx9ji7V2/SQNOE7BiK0Q5Khr7oWSZ1/DEqcXTCNoYZ7hMdQxanJhyLbnSnBB2PyevsJrowEUAnGn450GnI6cCEbSFfstDDKgk93G42wkrrif287P+FSLS2sNoZ2nHLa0l61oQhBC2XDEd8iFK+bPIPKL0Wvi9+TxNQGN5kSKen6N4KtmlosXgSZ8SW3q6xaNEiDB0axUGHDRuGKVOm4Lzzzivohg8fXtAtXLgQgwYNKny3srIyPWtSVZ5mUrZt/1MkGZLSyAzDcLPspfRI0DHR5CHRheG44+RzmASk4WwmC1huQmK968iL+HqCsnckjk4I2bE8a2SS574uobDmTH43OA4Q3zv30VUqGL4r1FOp/J35BVvd+QhJIHkgOPaJp8W6TfaOWM92xCpssWSD1iZb6cttaD2nribfMakvJgzZ7V69SQMpqXmOkwRj4Ul/O2fDhg2oqopi9R06dMD69es/li6Xy+H222/HxRdf3Jg34ThNzO7VmzSEuZvGQ6I1rVbZ4SZpYfQW3Zrg+wejFPbtHZ2gS0rt5u9OjwQdYXJDB9mWlAhAmCrNRIRvi46GFi0pvSbe31/N0ntfdDvMnKJ1pQkelvnZj97IYNGFSRtqWfLcTL9+XnRMnmBygxqfT6IY9azYOd4jQfdesE29RHpdfH+aRKEd0QAasvTeeOMNjBo1CgAwcuRIjBw5sqDLZDKFtNeNGzeiU6dOH6mrq6vD+eefjwkTJhTt37y8GIntq0s2FRII9NkyLZl1Qs1NZg0zmSRpSAXLUJhUtDNYd3msotRubmSnvb7HIHW5SvLN/908h/9KukCrhEftKPoXQPwccia1vjEy0IWF7cVYN1KzqQC8uyj+XLgfK5jqSV4R7vNq6fmS6jAfR8bk1m2xrh+fC5+VXKem8AMozrGvDXS77iFpmHv8+PGYPn16IarAMPfkyZMxevRoLF68GH379sWsWbOQyWQwadIk3HnnnRg7NmmMy67hHpKTYnbeOduzZ09MmzYN06ZNK2qMAGDw4MGYOzeKxcyZMwdDhgz5SN3ll1+OUaNG4bjjjoPjlDe7ntQQhrkXLlzYoK5jx47IZDIAGjfM3TQe0hMm1WqnNcyYtg462zfYJyM6Wh30sI4Q3b+YzJlUK4nHoEWvVgtTkZO8IVpA7Gb4rei4/zeD6wVio4X7/BmlcKDeYbKNFiyvQQ1FXmc4CBaIrTdKfZ5kTsL3aFnyeWpqa89gn9miozWdMykDeOvNe6+1/6v1Gmwwb8tf2v9/EB2f379xw3bsTkdsTU0Nunbtimw2i169emHs2LEYM2YMJk2ahBEjRmDGjBnIZrPo378/Bg0ahAULFmDatGlYtWoVpkyZgrPOOgvXXHPNLp+30fmteUZaxhltYPnQ9G162oy2qEXPPhW+J32sfL9JkQh68/uZ1AjD701y8Gyt6Lh/IedZfwx15HnAf9FbOjxBuTwSF9u/PxKXjP2bGZPqrfHeV9oF50THqE0YsQHi3w/2ba4QHe+dDs5/S2coj8FIhL4H1j16Ufo7/u6sSHbmj4Y+A7rE7Gd6N1attovgiIAG6s3OIgsbNmwoLOOxO2Huhx9+OPF8u4oPjHVSzO6Pp7jpppuK/p80aRIAoFWrVpg6dWqRLpvNYvPm9GcgOc7HY+f1hpGFkLSEuT1k56SY8h1P4TjNx67Xm7SEuZvGQ2LGos5WwBRRutMa7no/0GmYgK4uPeR3REfXmn2X2u9HA5jXkBMdXWxGErSjmA0/wxnqRa8PpM7Y0NDMDOTNQOr5iM71Fs50cYt8zpj8jkkNrzF8wfCChuzCWS2eEN152DkM7fE+5dpa2vn21RRh6hiCvLFUVzrjRfmmrzYKDBnpDAiLAp2m1PN5s/xquLfa5K0mvyQ6HoPhOU3vZ/lgEoo6kqxnDElpH/xqKwS9am1DV1HebTJpKo/2CdsCOEzifNnGew5nbNDPrFt7J+j4G6O/J32D/fXeeazwvEBcFxjmXyq6NoFU+DvQmRteSNjJvrj6wwQd2fV6k5Ywt4fsnBTzKW+QHGe32L16k4Ywd9M0SLSidSAnO91p1an1HyYz6GzRTHVeYnKx6NRaBACd8JZp5cyeLEkxRmz16HFCS0a/t3Un+wCxtU9DRj0fHiMczArElhp14T0Jr8qAu33tmFVMXNAQsnbGBmyx62tLK1zPx8HLvBZNT/8wkJpAYhb2bPO29PF8GcVsEKuahy/0zWIHynVOrkaBz10TcOi9cDxlUvlg9CAn2yqDfR6Uz4wkXGtSkyguOMk+2I9PZ7Ha3w1mlNbBqExv3mwF81B50b81V723yZqEacaZft1Z3LyVVthYJPT3kDPfcyLrGxKui89FvRlGPvj9WtExGsLhDzrAlZGI8SYlW7zgmfLY+o54fF6DeqNMzT/cnlmrPqLkTVtDo3Onno2A8q037iE5KWb3suwc59NN+dabpmmQaA1oGJmWNQeQPpmgo7cwXHIvOKUODa6kNVGIel0c7Jo0RREtGA5s1dRn9kvda3KU6OhBsG+moT4ktcrClF29B3oqrwcSiGcFN5ejtzyWGfZYDn4skurI0dDjJfTpHOu20kPihlr5Ir1XWnx6nWFaujzreXOLz6dZ7QWPzJ6xju+mUR17SA2FHj7u6M0yhgNcX0/QMcKg7id/g7oGEgAOOD6S7z4eyaTH97Oki6gJ/pcOz877R3KT5Tcfc2Sse/cZ28dcs/slLTqc0Xu5eFoHBl7XPOkrYXlMSuhinyT7e24W3feCfbVysNwyelMyfRXicq/POhxC8YDo2D+eVAH4e8fvaf8Sb5X32UrT482l/a3tpO+W/b6HckP51hv3kJwU01DF6rCT7Y7zaad86403SE6KKd+K5TjNR/nWm6ZpkJI62tm7zTCDzrBNl5rhtd9IbyI9znAWAYWdg5fLNn6v1qR2wjNUkTOpaeb8XisLR7SXBbU6rYtk0jLNjFAwdKcdokuCfdT9tmvfYG57Rw1vsOP1f0xOjFVfsgmG87bmmU5Xx8Ho7D/dJoO8OzKdl+9G58djyIjh0aTpxRIiAIx6ZE3Wio63vN6eh2bglvbPl+9CY40C64GGkZab5MPSUHA4r2DRu7EpQBgqat8lVrVZV/y9IvgFxtSlos6waR8sTIwWz8S6nMk3LZ49PlaVhCA1u5nVK2lBwHAxyJNEx8uSqeEK8NxJkz/w95kFU38XGJJnPdD6zd8mi1oWTTXHkCLfnw5/yJjku9JwHvdrq5WQ2Htok5Du/flwQ/nWG/eQnBTjad+Os+uUb71pmgaJ1od6HvRicibVpKfVQItc18yhZchU5qSUa3ZQqpHATs9vopSXg//VoqF1erBZfy/L9OJ7m2XZ3XY6QDp8ZySZajyWyQRjZ5MtbULHr51cSyUtWN67WsA2n1jFDyPZTxIs+nF9OlrT+szCdZ7UQuT5OGBSvbxMICWlvxffmyVo9JblWrZZwkPlMcH3E+FCY59SeOtajjlvXK8kd9UGlb5s5fJITae2TJb21fa/ePr9TK6z7+lA3GU/iST717VusEM+acA1ywrL4fdF9+/BJWRER++CHohGTngN3P9t0V0cHDOp+rEeXCLb3gn20XtnwgPvS4dP8Dz0TtRD4vtiXZJ5HgveVkdLMsHJomQoIimLxUbpDl9u/+v6Ur8M9i3feuMekpNiytfSc5zmo3zrTZM0SBvME+ioFv1vTNL60HRsWh/MCV4uuotMdgv2BeKYMi0UTcWkQUknRle3pJVEbyEnOqaSF4xNOeGXTE5WF86g5USrSvu63gqkeI5V9rkfvcTPxLrCTOA0pNR6ZF8T70stRMay+azV4uZnnu9zojML+L2pkVwgKg5ivYDH1Dg2tyUMPq7kdCph2n8i5RsLbxROSNiW4YeDEpTWGVMY2DpAdJwHZ36pbsP9kWQZ+l3CoVl3/1m20UinF6SvivWNHYnLRcf9GpqPkx6WzkDOKAq9mFPkAH+wQneNVSrtW/uGSaZ/nyO6cBjIXPlMD8dWasYZUlHzdh7+juXkeyzbvM7EFXj5O3KKKNkhtcykumRWwT6wEbjtteP5X1FM+dYb95Cc9JLfAdSHyzM7jtMgZVxvvEFy0kv5GnqO03yUcb1pkgap4KWqi850aLrMGvViZyI703V587DDEAk69hMmrQPGhcN04Q3ulzSLQ8YkO/2/+lapjv2HGqJiokRS0kV43qQF8+yYr0oIoTc7Tl8u3gdAHMo8hZOWyTLRPS3+wfxvnRuQ74GhSZ2x2UIOjH58SZ7ZMjvkCxZV6KupyQwb8jozomN4J+n9hZTvlFyNQ3fGvTKycbhJzoqtVdji0RXU7S869inwgcYrgqKjhaJ+a4VPZzhheVxuMic6hsBYjnVRSJYrlu2s6Fg/k4ZsEIanp8s2RswKyUAJ09ZPtGf2iGQMMYTJZYBy8jX+HjAlPGmFAIa/t8oFvxbsr8ckNcH5i7BQ3YPyYKpNsi7qtYyz+swEieNFVxRnR1nXG/eQnPSyA8VZXY7jfDRlXG+apEGqZGfp/8lGekvh3E5KxqS29uH8atopTlOeno5aerRSKu3Em8SdYd8hB+Np+DVMh1YvL8y81esMO2w1OYHny5lMunc7Vm89h3kcL5h30lcHzdaYPIOvVKYA3moPnh3E6llx8B8NSp1bywzCwoBVGcQ3oNY+0MDTa8mYpEWrniOvYT4+mk8Qehg3bhwWLVqE6upqTJ48Ga1bRxdYX1+P0aNH4+WXX8aAAQNw8803AwAmTpyIadOmYZ999sE999xTWLK5WXnVXkpvTfHlwmkrE77Ad89K8aromNvdO0FnD7k64ZAcjM13qF5NGFm4UHQ5k/R0tD5U2LPd1+at07Ro9tUzGqCJULUmWSfukIs51iQTCdQDz6D0PITH5/Wql8dlypn0pAN4eWoe84sJx2ZEQSMvvU6L5I9vj+RA0fG3jRVOh1mQ43nQP8rGIMGljEN2vmKsk14Yekj6a4AVK1ZgzZo1WLBgAfr27Yvp0+O4z+zZs9GjRw8sWLAAmzdvxuLFi/Huu+9i5syZeOKJJ/CVr3wFt956awNHd5yUs5v1Zty4cchms7jgggtQVxe7WPX19bj00kuRzWZx7bXXFrZPnDgRQ4YMwZlnnllY4vyT0iQe0lq7t24yy3TJtCh/T9DlTKoHwT6IpPA6+yzoGalVVhgoagfXl8OUZVoy2h9CK4XXooNoeV20xjT1mfvVmNRVYcPzaV8XPQh+X9NXmWttsfD7xS0fyVTd882qPmBNrDzUXJUVZtbps9a0WqDIq8xbDLsdrdWc7MeUZD4DnQLFpjEqZBqrtcpUfFqGc0QXToGym5beokWLMHRoNDX6sGHDMGXKFJx33nkF3fDhwwu6hQsXIpfL4YQTTkBFRQWGDRuGiy66aKfHblJ6c9lfTd+m90PX4zsohR04JUvwClKpVlmHyADzXJ6UH5f+JlkPpsWqwizTXDlWZ7inF84+mqL3aF5e5Z9NJy50ODRB6zC9klqTWk+ZRV2foPsvk1eYVI+F+2dMqkf2XRSja0rR++cgXz0mowWsr8ecFuv+n1UORmw0WpEzqRnd5LSnIvkneu6ytPN2m8G91VciuRv1Ro248ePHY/r06YU6QyNu8uTJGD16NBYvXoyDDz64YMTdd999uPXWW/Hd74YPbNdxD8lJL4yFJ/y98cYbGDVqFEaNGoX777+/6GsbNmwohNw6dOiA9evXN6hraH/HKTsaqDc7IzTiFi5c2KBuyZIlRUac7v9J8KQGJ700kC3Us2dPTJs2LVGXyWQKIYSNGzeiU6dODeoymQxeeeWVxP0dp+xooN7QkAOAkSNHYuTIkQAiQ6179+4AmteIa5IGqZv5YVtklmlOwvCeeaL9NEM1XP5b58ALD6Dp4kzdpDer00cfE6zhPFimMuDLS0r7Jr82mTSFWFKEhGEqHnO56LiN16e/f3TheV86ytu+x8dRFJBheSjM8fd4rOteWXydSjifnjzrikxwIp0tObxnrQDsN+ez0vAJ75VJDRqmOy+4lt0M2Q0ePBgTJkzAhRdeiDlz5mDIkCFFurlz5+L444/HnDlzcMkll+Cggw7ChAkTAKBk/+aFqfsa76012TmQQCHN+23L7++uiRmMaVmVX5Mwu8gHFqrTedmY6MMwlIZfT+GCfIwxaSzYsng+/FPRpQEA3rXrY9nTsFW4GJ7OnMCZGloG+wBx+edMIHqd//FPkVxl59X6xu/xcQyT34nt9hvB+poUSutnhbzfF2RjziSzIeQG64JdFN4Pw/SahMHnt8HekdYL7scRAQ3Um50Zcmkx4jxk56QXVqxd7JytqalB165dkc1msXLlSpx99tkYM2YMAGDEiBFYvXo1stks2rRpg0GDBmHffffF8OHDMWTIENx333248sor9+htOc4eZTfqDQ01oNQoS9INHDgQjz/+eOL+n4SmCdmZgdJWOujbmofTrbBAjuzPB0eLQRtfbqNlXis6WjDsgFXPaptZO1yHKZwgF4gHm6nlxbWHtgUSKO2w1TRz3g+9BPVEeD98HurqMMmAFumcUl2Vzdk3ZEmprnDeomWatxWfRz3Bhgaohn3imgBBSzbJy6OhHFp8uv/VJtV7CmPcn2A8xU033VT0/6RJkwAArVq1wtSpU0v2v+6663Ddddft3sn2GMz200nt+FJY+HQuNCvU3WlnyuDoAvZS9pPKsSYYoaop/P14LHPV3xXPuzBmgCnlmp1j11ljiQs62ecmq6DMy9AyWBtc7vqEzxy8/azoOIM3b2WIZtnYcziA2RfS3/GhzXDO+rlaKngvzuLPi8rEujwvRj0jwjDFGJNy7z1sLjomNehvjdZ1oNhTZUSBIwByovt28L3dqDdqxPXq1Qtjx47FmDFjMGnSJIwYMQIzZsxANptF//79MWhQ5IbSiOvYsSPuvffeXTvhTvA+JCe9lPGIc8dpNnaz3qTBiGuaBokpvmqI0TJgdvLMBB2NOO0LorXNPgxdFRaBTuELus+kxq3PNDnDZJK1r5Y8WZ6wjfBeeb064I6elFp4JIxpa6if92UGWL0YXi35HDn4WMfK0aKk0ajPhwZs0jAC3jP7efT90Yrmc31OdHsFOrUCGf/nMXX9GbXMqftUN0h8qbpoD70Rzgh9X6yi50EnqlLc8v2sA3fbatOJB7Ffxj7kbB990eyjsn6sztovxU4LFjD1yHTgLYBnEkZ5Jq2HxLLJMqTdUuEAcv1dYNcPy9cmWWCtitdJl6xvrDvQPCSWs/djFT6wykcPriIX67hfFef30c5QHt+e+a/vRAm8Fz3flXTzrFJ+IPfAV8nZxXUAOyMlPFYZ1xv3kJz0UsYVy3GajTKuN94gOellB4otZMdxPpoyrjdN0yAxDKVpwwzH0fUcKrpwgTfthGfLr+46YaSBL+PPoqMXzWNreOjm4Dgb5XMYRtJQXxhe0M57Rij2DiQQ33PGZNKCeUTCFNv+N5KVFv5rqe4+750hvvMTdDNM/kZ0OZMWFXpVQgG9D7UP7KPVCQx4P+yI1ZAd+8HHmdR74jXzOR7wU1FegyJ2IHkp6k8NrJ76ADmHHbOaamNVlRXE98JcfgBv2zaW2W0SDqq0eNemhIddyIJmfHiMKCeaZMXWmJqF7ziljJyuUB4ZrtURGZy4OmNSF9O7KziNpmH3CGTRCt7FfSNFsH53tELb8VhR5kza898k8XMev+qV4n0AFEJ1D1oCg4bIGYUNFxsEgBpmLlg2w1vy0Jgv8otI5CVpYYd9LkwyUcb1xj0kJ72UcejBcZqNMq43TdMgJY2ZovfCZl3XDAkHeSaM4St4QboUCC0RvgxNGaVXkLRGUib4f3PCPuFgXd2WNGUY75nJDPo9ZuzSu6gVHa/dPJVNYglV2TI3m6wftUq9Nx6fg0vFe9pssxa3seQNXaF65MX2wRJPequXR0+RyQ06YzmTIBJS8zdb/3c7nuhr8j2+k8Lz0FzXIH+1jEMPjQNdABlRrh3y4f+bbBBqtf2vs1MfqmMgAGyXxIVHzJzmO5FpENHTOv2HWzLDOvE2urBg1JocpSeIRJtnIql1McGBK8D9Bibo6C3ZsIeiR5EzyfKrdSMczN5KU8KZW80fm94oxRJJtv1LvKk7Czyzh8RdY0JFOA8mEEcW6BmtFd1v7YfuDJOaSMW1zEZEYuvNsaplIMu53riH5KSXMrb0HKfZKON607QNUpJldLRJmby2YG1bevSaV0pVbRtaeTTJSqJlwlkz1KvhZLw0IrVvhsdI8proHfD61PvibC9hGjcQ94lZyLheVmlt2R5FFHUvfVB8qPV1pft9mWFoGUvZ7phIcpom7e55bGokb/uZbVAPiZmsTK3X98fnnrDqZzs+R6a3a9cCPdqCR6UdfRwI+s1IlHEsvHGgi6qLftES5zTT4j2x7y5nUt/loTyGFUzNwk6y5AkLSxtziXXA5WYrifRmev041r1t+7NPUusPPW0WZK03LB/cn307ANDCLvRQ27ZNboLuAQdvV6h7keFNmNxPdDmTrEFaHjno+A+R0Oz7zvyePf9VT8U6Olt0vooGqZukh6TOGn8XGH3Qd8TfL4sktdUVUsJ+7jKuN+4hOemljEMPjtNslHG9aZoGKWlFVPb30CBJGnhqlvZ+/WUbLbRak+pC0Crg+VaIzs6TN4utQvtD6OEwHJw0kHPv4H8gzgykEXe76JggQ4ttSqxa3tC0Hh8U/6uXsiDYVcfG0Sn5clJ/1uBI0EP6J1EVHJXrTeosNbxXeox6MbxnerjaRcHKwOQrnVKJz6OQ7SUjciv/1T6Yh1TGoYfGYW3CNnOnt9gAVy1LtJTpGWkm6l9tBk56tJr1+XwgdYFaesW1Jl8XHc9d8MTkXdL74fnU8WB/Mb0hLVf83hDr+FktbnkvK3QvmeugZYMOYBULoh6Unz9I0NkaQoWON3U9+ANiP5OaEbfMroFeYlJUZX3wv25jPVXnl31irNjqOYbZg1qnwozjMq437iE56aWhKVAqmvJCHKeMKON64w2Sk14amiSycifbHefTThnXm6ZpkOi268BYdhBmEvZnOIGd6tra0+VlOGm+6CzSg4Sxamt/X3yKbhp6Y5iAc8udLjqmwDLMoG77901aNGSWhNvoia99LJJJ0+NNRilMOmU0Y7boGGhYG/wPxI94k11D1T2itGvvc7b9L7G+BRaC6cOQgM65F3Z2a2iAN8hnrGn7bwU6DS9kTFZaHFHX+tlkYShOl9ZQ6CHlFatxsA5zPhcAqApi260TPh9gD+cp6dlmiJTvQjvaGRLnWkIZ0fFz0ntg+I6RLe2EfzQSk6wuFo3OsG1drU621bRsZv6/aKE6vd3NdoI77H8NE7PcnssL1sSFsLDq+lIPmuQPklaAXCSWP196LfzdYZ3QkB2jjBr+Jn9O2EY4AoKXoO+oPthXk0Q4bWCN7Fum9cY9JCe9NBR6qNrJdsf5tFPG9aZpGyRNm6TLwHRvXRk1TLFWj+XGSKy0jNi+Ms1PS850fVXpqbuxg9A6E98TI2mfcNoRGTm6xtyZ/WitSGZroYPeZmA/42eiW86D27/SGZwx+ZXgfwCwyUYSxwIz4XciEwrUK2EnKb1KdZ+4DAxT3sUIzNLqYwHWaU74jhpaM6kheA2aLt6WBzXr/yWx/nkNXIi0jDtnG4Xl9uBqdB3N2ki05baE6XrWmGekTgKh06Terh2y0K+vQzDC72kdZpoyB21qopDVr6Rk6pAxUj5asj7ztqbLjiw6rKfqHbJ+zTBv5mSd7dsK+V8TEhB47TmTry2KdRmT9ByflO9xkC6PpdEfpsonDY2oNqmj0wnvmXWwn8RVXg6WCNd7zwbHKeN64yvGOumFsfCkv91k3LhxyGazuOCCC1BXV3yg+vp6XHrppchms7j22msBAKtWrUI2m8UJJ5yA4cOHY+PGjQlHdZwUUcb1pmk8JK4Hr/FL9hMxB1mtMjaTtDAyojNrvx9dCE1DpcdCc0zXG7Jr2Gbx7qKxZElpskYhK/O6YF+9Lhovl6AUGxxXowaOpVgfZhm876AU3koH2fZcwn4FvhNci56PnVb0QjWdlP1ttIA1VZ5xa/YN6Iqx7MjiXJT6rPn++I71ma2yC2tjUifdZAyd6fONvEDfihUrsGbNGixYsADjx4/H9OnTcd555xX0s2fPRo8ePTB58mSMHj0aixcvRt++fTFr1ixkMhlMmjQJd955J8aOHdt4F9UQOZMLE9YSqja5nzygdbbfy/a/9s0krb9DWM+sL7RoKiv2tfI3SN8X+y6sLOTlMlmd+eq1C6TaJB2dP4juwFsiyUPpvMqnm2eftzpfoR2zjAzwYC+L7s3XivfR8mh9reusHmhdpMPXh/2xSUMiWJfUC+J1VVh87D1Jh+cK1KxL+jxZX2osRPDuM7GO0RBGNHREQM5kF5NlXG/cQ3LSC0MPSX+7waJFizB0aDR4bNiwYVi4cOFH6jt27IhMJgMAqKysRIsWXmWclFPG9caTGpz00six8A0bNqB79+4AgA4dOmD9+vUl+qqqqkR9LpfD7bffjocffrjxLshx9gQN1Js33ngDo0ZFk+COHDkSI0eO/MjDNWW9aZoG6e+BBOJOeHbgaQyN4Z+MSZnrrfC9cL0hAHlbL4iPQ99JziS7LDUIcqqFN3szDHhqrGvJeboYBtQwAT/LXHslMISgqc82W3GFdYx2k7hcJwu9MVTRbf9Yx47ilXbx/USFx4Lz6hLmvOmMSY39MeTA/HJNYAiTS3QWiEOCbRpWZmf6h8E+ep0McWhHeNBvizx2GvduqGKtXbsW5557bsl3hg4dik22Ps/GjRvRqVPxNPSZTCZRX1dXh/PPPx8TJkwo+c4ehc9IM5GrTRbqiyQ1dLHPc+1BatlhuDzph6o60L1eussLFmrq2znettnyUpbb/3+U/flaGarTURYM1fG0CUW8gIb6vhtel5SXf7PkhHZMQHhI9mOY0sJj9XNjVcv9i1RFkT5e8zSrb6OkjvXhF64wqXntGZNPWahOuyNyJjmH3Wmau86l1h9BCb2PDjb8Jf7YJ5jOvIF607NnT0ybNi1Rl4Z64x6Sk14asPQaqljdunXDvHnzSrYvX74cEyZMwIUXXog5c+ZgyJAhRfrBgwdj7ty5OP744zFnzhxccknUKXj55Zdj1KhROO6440qO6TipYzcjC2moN03TIHGlx8tlGy02dqYnpUY+YFLme9pkVlkVc6DFOKi4NpL70Bv531jXxrwsDjzVeeFoaLUzC6ybrkTJ6woHwgHFGQdAcco0odelXhStIw5QlQF3lfaMetOrENNy4BL7wJtQz4PXzDnzviM6no+WolpPHDBMj+qHCcfk99WboWGuJiVhYkTOpOb8hoMFZ8rngwJdI4fsampq0LVrV2SzWfTq1avQyTpmzBhMmjQJI0aMwIwZM5DNZtG/f38MGjQICxYswLRp07Bq1SpMmTIFZ511Fq655pqPOFMj8VWOAH0w3rZuViQLroNW4Vwk2Hn/qKjYkV9tUiMSLBesNw+IzrxkLq30hkwuzoxsBgF0WjYOe6Ydrz9JdNh5KepAsLiH40CB2PHm0mbqOBaK4WK7TtHRB+GxJbEb1eaSMdCiwQPm2PDadWx9nWU/9PxBJC+SqEohTZy/FXqDrLO2dBWOkh++uXcWf1/raeegInTvFX/ebkMnWBTKuN64h+SklnweqP8EqapJ3HRT6XLWkyZNAgC0atUKU6dOLdJls1ls3py09ojjpJNyrjdN0yDRWtdWm30QNFvUQ6L1Vm3y1VjFbokq3qseM2OSL0O8mRXaD4WibqJCNwovZYssbdKWXgzTNCWDs+A1MQiui00yZMrvqSdhn+uXFp8XQGzJZoLj6DazsuqfjlUteXx6M1ogee90BZMSXmwxzCdluMCB9k7esvPUaE4sU7P5jCWkTe9prVnTmtmK30biZDNvl8l1Dgj64hqakuvTAT0jKeRdOMqZc1qpO2/ZTx3sRasXFM6SrzClmO/wnFi1/NbiXZMcK/bHajY1PRQWOX21dMR+F/yvx2KV0j4l9XqA4nG/tSZZBXXfcMku9ZAaGrBLz4qen5ZjeoB8M3+QfinoZxT/RPHnoMfjkdxHb5Cvkq6fupyr7eyMCHWW0FCrLlDKud64h+SklkYeTuE4nwrKud54g+SkljKeAcVxmo1yrjdN0yDRBdXYVNhrqVmN9DeZECBPtxtDdUxPTppRlzE4iSGcbJ9nWIe7RvAYBuTl6aS+Wy2G0LdNsJPumDOpSQZhlqMmPNj+LcOkCMSj0P9mUtPTmQK+zdx8ne/uszbLd1uG1TQWkQlOojES65F+z0J1Gnnj8flqlksogq/owFWR1PXeXrNrSYogMzt2k93fhaI7zA56v/1fzhWrcWDgarts4xB9BqxWis5W1utscbbBMkkcU6YZv9LyyWQZVgqJ94QTtmuEKUxE1mLF0zAKpRML8JjMZ9KpDhkBXhz8j4R9amUbP3NaN014KAqJI+4J0OtkGK9Hgo5Sv8eoN+unXguvj2FDnYqTIc/COon/F+sqL7YPHIIxONYVIrRfNvlXeWoH22dZR7Bc6417SE5qKefQg+M0F+Vcb5q2QcrJ570DqU+QjT+NQB0w2SnQHZ/wPaJzr9VG4gvmIb1TqirkA6wRXY3JZ+17R7RPOF/SmC96KEzB1UQCXlcuEhtkfaKMSXoneutHv1n0tSKvpIRMAzpNsLCD0ZlU75DWHx2/IXLvPw2WWldrmaemhaivgfdDS1SHAJ4SXGY5d842Lm0StvEFHCLbWJDOj0T1nbGKLgPrmXa8MzshV3oWejZPl6oKZYWjOXSKRJane00mjX9Omlav1iS9Gk1O4OdwikUgrl70dLQOZwOdel1hwoN6U3RQuL8O4E2YXbDkOonO1cc6e5pJjSJUcuAt14R6QZScVIBDKjQrq9bkAfG1lWu9cQ/JSS3lHHpwnOainOtN0zRI7D/RqT/CWanVFaAZQRNMTQ6mqNLEVuORn7cGEiiYPm3Nyt8qFj6tOTo8mtpKR4cZmK3le30t83K1pTdXyqBB0o3ekwbYGbMPp8pJQLuZQo+o26HyD4/PZ53ktdH8W1Kqohfzl1JVgXq5d45hHTiq9Jivriq+BL0UvqJKG/y3dXGsqw3OV86hh0ZhleXWHyDu9RqzzfdLWg+JSwJbqa3sE6u+/FIkOUhd3RO+fPZdSAcMd2Od0End+W4473OlvOiOJr9nZXxOrCqMu+XYePVm2EdFL0i7UbiNPwdJHlK4NJAev2ewLxCPQeWxq0VXG+gSZlQqHPOthG1Jg3szJu8z+VVVHh3spBWHIR26mtopF1DO9cY9JCe1lLOl5zjNRTnXG2+QnNRSzrFwx2kuyrneNE2DxLhXLkHHVNNtso0p3YwXaC8kw3jaUx7C/TOyjee2Ac+nytDxcDIFTafmpXDuOz1kvcX42M+oURCuaNzVeoMrDhClpVjnLZyhy9wzDMFJxtXtr7Re1XZJoT4+F4bldPZhbmPcRMOHFotpaftoCIGzNvB5/EZ0heW57KGtXRXrmG9SzSQISTbZwhvM2D7SJ78ymE2jnC29RoGxqXckOFXIvOE2ebj72TQYhadWHesY72Vh1ywUbguHVAAYYfWEc7xl5GssmyyO3bQCWFmttPJVLVlErHqMOmm4i5cVhuf0M8uXRq1Y5cPwHBBPJcdtmrgThgY1nMckhqRQXUhSenqYbg7ILP6UhyfsRLSes84yuUF/pIKTl3O9cQ/JSS3lHAt3nOainOtN0zRISTNC0yqjifJawj608nOyjdYAO16TzJdak2ph0OqrjkQ/1dk19NhYekga8CdzHRh507+wTv6GVvooTOgtHsQ+wReSBsjSFG1ZX7qt4D6pqcdj0tRLWthl30ACgAzMCwnvS7LTC1PZXWYeoFaAwsTStObEgmvLHWmKioVYHZSTehQvofWpo3fCtqRcabLGvCVOc1YvlYrZAsxO0AHltSb5nsT16GhL9Bxn0+qpY8W53Qop3TKtXt7KO6MHGkLqb5ITvWsRDxMBalEKi05S0gAJ07mB2DtRz2X/YB+dHy9M31ZCj6i2AV0STEV5VKYXP5kPlz9AOrqXD5vPuO/Oj13O9cY9JCe17EBxJNdxnI+mnOtN03pIBydso5mjJlSbQHeE6Gj9dTc76XmJrzOFOGdyUKwqmeFazX9LIe9oXtPp4j29ZKbWGkvp3k9ywrlOCg1KNV5p+JyEUuqDPqB6mWG7kv0uvPeM7MjPfHZ6D/sGOvWCyIEJOg7cpTEtHtPBG3d+yJxJpgFrCi67OVbbO+11mCj5kPiA1MvT/VDeoYdGYT/rXVwnU8x/nN7qnEkdKF7DGaGtIH9X3pitm7TNZrmv1HpjVJwZyXbiegwMoxRSASrM69/XypAODmX11tnBCR2BL5hsyAtST4fezGcT9qPuKw0cq2cgk3RJHlPSNEZvBDqdjoiOKq9zgLpoHIGeNAaDoRr+xunCTfwBuicS5VxvkhYicJxUwNBD0p/jOMnsiXozbtw4ZLNZXHDBBairK7aK6uvrcemllyKbzeLaa68t0i1evBgVFRX44INgaped4A2Sk1po6SX9OY6TTGPXmxUrVmDNmjVYsGAB+vbti+nTpxfpZ8+ejR49emDBggXYvHkzFi+OR7vfcsstGDBgwMc+V9OE7Bjr0UHl9Gfp5if1lja0njEstvV5CWfQV2avqb4B+s02zVdR5kLYey++eR+mrDNXVUJ2NXSxLTTygkRBaEO0Cf4H4iSGtRbO0JWmu5khsZfJB2R65Z/YPdxpYZPXxW3/0c32ganTSSE7bktKJ2WY4KpYVfFfkdzH9tfoWnh4XfRsoPVyt/tawjXwQTCZ4X8T9jH2RCx83LhxWLRoEaqrqzF58mS0bh2/0Pr6eowePRovv/wyBgwYgJtvvrmgW7x4MQYPHoz3338f7du3TzjyHmCLle0uOl/Bk5F4yQqbrhrH8s6yroXu/XWR7BrsCxTqQiXrjdY39vIzjKeTQGZM1pjUCev+aF+3wt07oW4wr0JD3ayKST+e/2SSVUJ/Thg6ZuT586Lj0+Oce3psnUEiJCn8R8LwXc8EHX9ikua940/2AEmxL1leXqdmYah0hMm7RafvBI1fbxYtWoShQ4cCAIYNG4YpU6bgvPPOK9IPHz68oF+4cCEGDRqEJ554AkceeSTefvvtj30u95Cc1NLYoYemtPQcp7loqN688cYbGDVqFEaNGoX777+/gaPEbNiwAVVVUX9mhw4dsH79+o+lnzhxIq666irsCk3jIbH3Xw093hNNbbX02LnNjjxdS4iD97aZ9ajmlR5fj637UQ4UHXNT6fHo+U42SWu/aLEkk7b89yHisVSotQgUWav0jOjbac4Gb69lIAEga1bSqcG+ADDh2kh+i7Of68rWfA401aQ8vWozC9OaO3lUrGPa/T52EfskzBLOC6xWc5XPJak3mJYek1PUi5JVmXm5jRmea0pLr1Foa7O9rRL/8wDzITg6Wpe5Zh3iy9TedJZtmv1aV3oG22pFx3fHiee0XFUH16vfY2e9LYd+siRDnGzl6MqcbRAvYZndFqup/izQowoz2IG4OvNyNS+Dt8Ucj3ZihmetTjAvIMnTSfqfj3EjSuExWN2SBvdyn9tkMPiVXDqeFVt/a/gjQRfwMtEFC481VG969uyJadOmJerWrl2Lc889t2T70KFDsWlT9Gu1ceNGdOpUHFLKZDIl+vnz5+Ooo47C3ns3uCZBCe4hOamFI86T/tJu6TlOc9FQvWmIbt26Yd68eSV/p59+OubOjdYrmTNnDoYMGVL0vcGDB5foV6xYgUceeQTDhg3DM888g4suuuhjXfvH9pA2btyI0047Dc8//zyefPJJHH541AnQUEy+QJiSrNvoOWjQt9YkPZW9gedeBH76P8DU+60N3WD2h5lS+TzwpbHApveBG78NLH0GuOIaOSYb9aQRc7Tm6oHn3gR+ej8wlSsz9gikNvj8/MtIVMwWHX/raArJNMnd7J4LM4FXy/fsGAtsvhOdmJuOI61BnTqFRuZ7j0dyHzXLaMZZLu2zktpNC5QG9MtiPI2h80Bz8wuxruAhcYSs9jvw3q0Pqsjs5D1zunB970E6fENzcqXd0iOfqN6QAyrlH+tc5O46VfZBKOYI4LnngZ/eCkzlGjuB2Z/PA1+6D9i0BbixM7D0r8AV+k546h4ohd7Sa1ZvHgam0nLnoN6kZYPDPi7prBnA/hBzCk/MyffMG+cc5ifrUlDGLIuyniHdfJvtkfFQbaRTZ59jTIZrqQHoZ/JZi3yo9c4ubxZZfazhPAD6itglzeWo+ovuvPGR7Pg9Xpwo6Qnz2WldSfCQGnMuu5qaGnTt2hXZbBa9evXC2LFjAQBjxozBpEmTMGLECMyYMQPZbBb9+/fHoEGDMGjQIFx99dUAgBNPPBF33313Q6co8LEbpL322gsPPvggrr/++sI2jcmPHz8e06dPLwqBhGyrAyoqgNZ7IFC41gY1PPZHAGuBgUc1uPvHoq4eyG8HKn34cLOwuyE7Wnohy5cvx4QJE3DhhRc2aOkdf/zxmDNnDi655BIsWbIEjzzyCJ544omCpffb3/625Ng7o1HqzbZ8VG9aV3zs835c1uYi+dj3ARwMDOyHhqco+BjUbfd605zsiXFIN910U8m2SZMmAQBatWqFqVOn7vS7SXVxZ3zskF3r1q2x777FuVVhTH7hwoWJ3135BvCtqcDJ/wls/BCY9xww9rZI99wrwMX/DsxbDAy7EDjrcuCoS4HnXgO2bwdGfRs49avAz20dl3w+j3/+5x046Uzg1LOAN81NuGY8sOhJ4MujomON/REwbwEw7CzgrPOAowZF1mI+D/zzz4CTvgmc+s/Am+vsPP8BnHoD8POH4+veuBU4+WfAt6YBKz/ODItOo7K7oYedoZbeypUrcfbZ0fpBY8aMAQCMGDECq1evRjabRZs2bQpW3mOPPYaHH34YRx555Me29Mgnqjcrd+Bb39qOk0/ejo0bgXnzdmDs2O0AgOf+Clx8dVSXhv0IOOvGoN78R1Q/fm4ebD4P/PONwElXAKdeBbxpLvE1U4BFLwFfngDMWwqMvdmO+V/AWTcAR90IPPe2fX8ycNJ/Aqf+MPp+4Tw3AT//Y3zdG7cAJ08BvvUQsDJp9KuzR2nsetOUfCIbZsOGDejevTuA0ph8XV0dpk6diunTp+OzO4BLTgIm/MCU2xAN0z4CRWtY19UBD/8v8NAfgMmPAYM3AAf1BH78c+COXwJPPgU8+GBndOz4dzw2cxP+vBS44ZfAL34I3PhvwNjxwPRbgHkrEeWEtv0M6nbU4eFZbfDQHR9i8q3AyUcAHfcGHvs58OfngRumAiceAhy0L/Dj/wTueAB4cgGAvYHOewNPXAMseg2YOBN4fR1wzjHAxSeZl6cpm0BxBkLQQV80SwVjbQwTqFlwbSSyFia7XwwTnu5Vk/ozR699H0spXyNz53GU/A4L1akBzBm8GR3Q6Nrdtv9AkxOvF2WQJJKXkEeFLRy45a+RbPseSmFRkbT2cGKxhmYtrtzJ9o+iqSy9hvjY9eazO3DJJS0wYQILSB74cAewbltcZroBda2Bh28DHvozMPkRYPApwEH9gR9/H7hjCvDkUuDBRUDHDsBjtwJ/XgnccD/wi68DN34NGPtbYPqPgXlPIzKvt1td/C7w0DPA5BXAyd2AjvsDj/0I+PNzwA0PAiduBA46QOqNxaM67w08MRpYtBqY+DTweg44pwNw8QFA6xaICxnriDqHjCEzx1vjX5xMkXVJw4gWwjzj9Ehu+n6sqrLy2I7n1QSccKFPjXXZMY+wVOsj7hJddSS6WNhy3wdjFQPBrBI5+VrGZNLsEeHPSVHWxn4MVFo8tfWvYl1gLO+JetNUfKIGKSnmTt5//33ccccdOProo3FFH6C/ZIxUSOQhn48/11gnSc9uwIZNwCurgQEWyB14dNQgPf98HX7/+y14/NHouz27oEFqaloUHfP5WuD384HHn46//8rbwACLvw/saw2SMPhAoO0BwG0PAnf8CTj7WKDT7nUpOLtAQ6GHqp1sLwc+dr25ogX694+tlZ3WG/ut6tnV6s0qYICFrAf2jxqk518Dfv8Y8PhSK/cfMZSqptqO2RnYsFm+/xcgb+d65U1ggE3yObBv3CCRwb2Atq2A254C7ngNOHt/oFOYfeo0OuVcbz5RgzR48OCdxuQ7deqEZcuW4emnn8Yv/+MurLwH+OLpwBXnAh27AG9acsGK9YjGuK4FKt5HlNCQA/JbgYM6Ak//BTj7L8DSmQDWA30/m8OoLwHftz7runfsO28jMklqAbwEYB2AVX9HxXsAVm4HtgP5eqDvQcCoL8j3twMPLAOefgk4uw5Y+jyi9ZcPB/6+Dbj9HuCBp4F+VcCVRwP9qxGPauPgTlpe2kdO64/WnFZWDrLlbOZJ6xuZ+1Mllh5ujQRtpQ3yPRp2yyyBQQfjMe2V/aJq6F1hkmvGqDPDHAammW8Q56IjV8u266xQj9CeR1uaf/NFx5pCA0W9Iu3ERXkvNNYQH7ve/OIurHwR+OIw4IpLomL55tsAWgArXkTkkbcCKloisqbXAvnNwEFVwNMLgbOPApY+AuADoO8xwKjTgO/bnHR126Pv4kP7rs443xWoqEKUbLDa6s02YNShwPe/Hn//gYeBpx8Dzv4AWLoMkbf8CvD37cDtfwEeeAno1w248higvyYYcZjFF01qQoF5OAW3vlofnMmMSR1Mv7z4WFXXio5ljpVCR7yyHNLL0OdAl4Xf17kWdawGgH0ul89TIrnOCq+OTOHhWdQ1osn1zgou1bALRGvTrjPjS12dYG24cq43u9QgnX766Vi+fDlefPFFjBkzBhdffHFi9oXSv39//OJKYOs24HcvAps/BI7oA3y4Bdj3YGDHDqC+Hpj3KPD+lijssHUb8N5G4Km/Am/+Dfj5/cBnWkf7PrUKeGcdcMNPo+N3aBeF4LbVAe9sAPpdBGzeEh1r0QvA4Jri6znjBODRJcBJ10QW5/mnAReNBH49BzjleqCPzD+/eSvQpQp46NtAGw5B+YQdvs7Hp5wXGlN2u978N7B1K/C7B63eHGb1pq/Um8eA9z8EHnoC2Poh8N77wFOvRX2jP/+V1Zs88NRzwDvvATdMjo7foR3QsT2wbTvwzkag3xnA5s3RsRY9CwwOfnDPOAJ49CXgpO8DFQDOPwG46Cjg18uAU34F9BFjYnMd0GUv4KFzgTZNNKmFE1PO9aYin1fnfw+xxWINgSdw5iXAq8yJ1CfIFGJaNBpL5baGphWyO+q9DzCT/R4Zk7Qm1GzhuXmenOj4mV6NZu/xWHQr9B7uNZmwCmchLs570LVpaLHxmHq+40dG8pqEcTfWsfSwxbKHNbRIk8be7Z3MSEiH5+vipMO/UG+G987vaayfrhXTh9VcY4O+OdhHuT56gR0qKkrWqyH9Ro7cadr3PwzvWr15s3jzmdcAr9baPzpHDK3mhszM7Sa1TjEUaHWpdydg5jjbxvcbjugE4jqUNE9N4O0W1VOma7Osq7XP62J5Uu+pNjjmP/eSfzh5p91gXqYUuzG4huqE83HssQ5GzZh8K5BAnK+dlOwUzqr/LdGFfVX6PPm96xJ0lQyV8OEtE2XOZGRtlHO9adbEzJlTEI9l0OnU6cfyR0tfTKH33mRSh/nfG9A5ZUM5W3p7kpkTEQ9u0R9EhqLCqQKAOAnirWBfIDaMcgnHdMqOcq43PlLASS3lHAt3nOainOtN0zRISZ32dJVvMblCdAz5cOR5Q6t0aWiAbyFnUjPheIxwCW0gDkew0zIjOmYChB2cQOmqXqMTzpc0nxvDac8l6MJ71XBN3kJ1E23Cui88jpBC5nnSyPqcSU1AsM9fsmf9qhySxnRhRghJz73bEhwu4tLu2rHKMByTPjQ8yvfO56ihzM+hiHJeaKxR4LxlGkZi9kk4PyEQezbUvSK6YPHDwrF1f4aTNDTFssmZRjQ5hzN48Hv6shidYOKBjlHgVCO1KIUJMK0DCcShNpbtt1fHuu76kABUSG73OAvnzbD4XybhvOwz01kPeD+M2Gi94Rx0YfgRKG0NLpHPXLf9zIRr4Ow6STP1F3LeyfL445bHItk2CtmVc71xD8lJLeUcenCc5qKc603TJDU4zm5w2WWXFcbrhFRVVeGuu+5K1DnOp5lyrjfeIDmO4zipwJefcBzHcVKBN0iO4zhOKvAGyXEcx0kF3iA5juM4qcAbJMdxHCcVeIPkOI7jpAJvkBzHcZxU4A2S4ziOkwq8QXIcx3FSgTdIjuM4TirwBslxHMdJBd4gOY7jOKnAGyTHcRwnFXiD5DiO46QCb5Acx3GcVOANkuM4jpMKvEFyHMdxUoE3SI7jOE4q8AbJcRzHSQXeIDmO4zipwBskx3EcJxV4g+Q4juOkAm+QHMdxnFTgDZLjOI6TCrxBchzHcVKBN0iO4zhOKvAGyXEcx0kF3iA5juM4qcAbJMdxHCcVeIPkOI7jpAJvkBzHcZxU4A2S4ziOkwq8QXIcx3FSgTdIjuM4TirwBslxHMdJBd4gOY7jOKnAGyTHcRwnFXiD5DiO46QCb5Acx3GcVOANkuM4jpMKvEFyHMdxUoE3SI7jOE4q8AbJcRzHSQXeIDmO4zipwBskx3EcJxV4g+Q4juOkAm+QHMdxnFTgDZLjOI6TCrxBchzHcVKBN0iO4zhOKvAGyXEcx0kF3iA5juM4qcAbJMdxHCcVeIPkOI7jpAJvkBzHcZxU4A2S4ziOkwq8QXIcx3FSgTdIjuM4TirwBslxHMdJBd4gOY7jOKnAGyTHcRwnFXiD5DiO46QCb5Acx3GcVOANkuM4jpMKvEFyHMdxUoE3SI7jOE4q8AbJcRzHSQXeIDmO4zipwBskx3EcJxV4g+Q4juOkAm+QHMdxnFTgDZLjOI6TCrxBchzHcVKBN0iO4zhOKvAGyXEcx0kF3iA5juM4qcAbJMdxHCcVeIPUxHzve99Dz5490b59+6LtEyZMwGGHHYYjjzwSp5xyCl5//fVmukLHaRpyuRxuu+02AMC8efMwYsSIXfr+1KlT8dZbb+2JS3OaCW+QmpgzzjgDTz31VMn2/v37Y+nSpXjmmWdwzjnn4Dvf+U4zXJ3jNB3aIO0O3iD941GRz+fzzX0R/6jcc889uOWWW7Bt2zZ8/vOfx2233YaWLVsCANq3b48PPvgg8XtPP/00rrrqKixcuLApL9dxmpRzzz0XDzzwAA455BC0bt0a7dq1Q+fOnfHcc89hwIABuOeee1BRUYFly5bhW9/6Fj744AN07twZU6dOxcKFC3HxxRdjv/32Q9u2bbF48WLcdNNNmDVrFrZs2YLBgwdj0qRJqKioaO7bdHaFvLNHeP755/MjRozIb9u2LZ/P5/NXXHFF/u677y7o27Vrt9PvfvOb38z/8Ic/3OPX6DjNyapVq/L9+vXL5/P5/GOPPZavqqrKv/HGG/n6+vr8sccem1+wYEF+27Zt+UGDBuXXrVuXz+fz+V//+tf5Sy65JJ/P5/MnnHBCfsmSJYXjvffee4XPX/va1/IzZ85swrtxGoNWzd0g/qPyyCOPYNmyZRg4cCAAYMuWLejSpctHfu+ee+7B0qVLMX/+/D19iY6TKo455hjsv//+AICamhrU1tYik8ngueeew2mnnQYAqK+vR/fu3RO//9hjj+HGG2/Ehx9+iPXr16Nfv34444wzmuz6nU+ON0h7iHw+j4suugg/+clPPvZ35s6di/Hjx2P+/Pn4zGc+swevznHSh5b5li1bYvv27cjn8+jXrx8WL17c4He3bt2KK6+8EkuXLkXPnj3xgx/8AFu3bt3Tl+w0Mp7UsIc45ZRTMH36dKxbtw4AsH79+gYz555++mmMGTMGM2fO/FielOOUO3vvvTfef//9Bvc55JBD8Le//a3QINXV1WHlypUl32fj07lzZ3zwwQeYPn36HrxyZ0/hHtIe4rDDDsOPfvQjDB06FDt27EDr1q1x66234tZbb8V9992HDz/8EPvvvz8uu+wy/OAHP8D111+PDz74ACNHjgQA9OrVCzNnzmzmu3CcPcc+++yDIUOG4PDDD0fbtm3RtWvXkn0qKysxffp0XH311di4cSO2b9+Oa6+9Fv369cPFF1+Mb3zjG4WkhtGjR+Pwww9Ht27dCqFyp7zwLDvHcRwnFXjIznEcx0kF3iA5juM4qcAbJMdxHCcVeIPkOI7jpIKmybJ70qbv0OZvH5McKvCe6F4zubfJOtGtN1kfHAcAWpv8YgPHbGfycNHxGv5m8sOEY/Y02bZKlAeZfNekTAW0xi50bXBs3bbD5OdFx2f0d5MdRHcAzz3c5BBR/tnkShN/iVWfNclnkJGvdTI5x6Te+8Emt5nUW3/Z5IEm14pumsnnTeq0fJtNHm1yb9Hx3Q6I8mwuu+xSbNqUnBZcVdUBd911V6LuH4Zqqzf1so3lyMrOFqkbfHzctC1WFYpa373sQ49Yt+2V4kPvK9/jsdodFGwAgJxJvkMpO3m7mIokk9dOUPtOJDeLitd5iEmdqa6NyWdN/ll0vCzeVmvR8fPvTeropGdRzBEJn0cF5wcAlkrest7mXJPhTxUALAmu92TRsZqySt0qOlbTS0xuFN0sk/fky7/eeNq3k1o2bdqAadOmJOpGjbq8ia/GccqDcq43TdMg0cr/u2yj+UZz4A3RdTNJM0Itc5opNHt2iI6mD2fdESuwcCyaf+tRCo+lJhu9hLY0LfWRLTfZNxIfrI5VNDfVVCP00mhWqal3lkl6M+pZfbgpku//XySPXSnKE0xeGol+L5Se90g+2G6y0ey/sydH8lfPxCp6MTmTaq4egp3D506zTk1uvr93Eo7ZMjzQdhR5nZ82cpHYLOZwu8DjaCvl62Ur4yyyWqX4tW1m0leKuV9ppvl+jCjIe6jkZ5ZZLc+sEu8H/wOosPr9nr2+ffS6rUxXW/lYLXWRVTBpjgUePmNSAwsvmuRIJnX0yQ0m/yjbOFS91mS16PgzQM+qk+hYZXMmvys6PjLe8mdFx58hBhTUjwkdTf35YoCGPwv6GrR6RZRvvXEPyUkx9Si2YhzH+WjKt954g+SkmPK19Byn+SjfetM0DRL9Uk1AeNQkQzbaY0hfmZ3i6pvTV2UIYa7o1pisTjgmQ4P0g9Wn3xRcr0a0Cj2SvIhXRTnApGVRtP9trNr/sUjy3kv9amAYL0pXj81F4kUL/2n4kPfDcNlyCa/VMDacC3aWz8+Yw3/Ea7Gq4mr7cEokDpNjMup3ZGUk35NucsY6EsI1OM4k37eGazYHUp+LhicBlHPFahQsbqXJCe347vkKJWQ92CQjYFoCmJNQqIoacuWOTFTRMCpjZ4wnaXlsF+i0p91OlOP5DhadxRLr7UJ1hseMyWorT3VST3ms/0q4FB5jhsnlCcdMqor8OWGR1SmNrdQXQqA6sdHS4NiPiY7XyYQFTZw4z+QKk8+LjlFsVoN2otsr0Om71R6NiPKtN+4hOSmmfCuW4zQf5VtvmrZB+pN8zpikWXCY6HIm2Ss7SHS0xnYE+wKxZ8NtagqFHbZqtfNYPYJ9AKAzN9KLyYiyL3cyKTZbZ5ttuM05kdxPvlZwsngsVdp59pIECdLfJO+rs7ol9HToDSWYlnw+apb1o71pqetqyfKZbTAb/WnR0eTmLWs68IHBNu2Bpdm3Ndg3PAaAyD39FC8hYM+qo74TPg4WPXHYK63XvVuYk4z40XZhz7w4yYViSFkpOpYBRgqShmDQ29J6Y6Y8O+97vhirKlsUH3pwrAJXL7rpw9LThSMw1PNgleD51LvImfyCySdE922TfKy9RcfaxZ8hDaow34c/WzLIolCk6WgeJbpaFKOjOuigVptUb433w2vRYJN6SxHlW2/cQ3JSTPlaeo7TfJRvvWmaBolp2GrptQm2qTfDPp3PmdTYNB0WWmyXiG5OoFPTgcfntRwtOuZl0uzIia7gVrC/6B3R0Qqhh6SF4N8jQWtTPTI6RMvMrhrQL9Ytn1V87Zr7STOJCTTrxGaj59jatumzzplMyhktpIubbdhibKzirTNwrV5s6HGqScrPvAftBOF10orXa9ERhIUNm8ONnx5KV2OInze9XC1XwfPrpia2uRpLzKvZLKnWJ9Jr4mBxNa7fT9gW6ugKyDE5MJZVt1Kc+foPi7/eRa7zDybXWhnXW2JJuM3KzIniPjGlm1UjI99jkeOgVHXKeVsssrqKEos4a8Qi0S0wSY9Fu7l5Wfy+OIcFeH1vyjY6u+wPSyr5I4JjA0kp7uVbb9xDclJM+Vp6jtN8lG+98QbJSTHlW7Ecp/ko33rTNA0S/WHt9GQ4J2dSfXPmMTLMpmnYDEXRZ50jOoa32L//XMK1HJawjaG6ql4mt4uSn22CtnclI6AzuysZB8zEurw6+DuBvv2TvyrV8VA6EwVDIgytaE8qYyN8ZprvwOfOzmc9ZmEePgs7tpcY4Za3ir+vYZs2wTYNvTEExOvVa2GchqfRcKzOawegnDtnGxWJvqxbFUm+wm7ybNfaq+Sr0JkaMiZZdDSMxPDdgscjqfOrMcrL6lYjOp6Hsz6slnRxnrsQiZeY1hzLkWYx6SljOJmY0dC4zmVWb34m28Kio2Es3gOL/5ADYt1me54MwWkCQvh9neeOo1YYzdYiXghTBv8r/J7O/sCkhr1QCpMfGM7TkF3piJLyrTfuITkppnwtPcdpPsq33jRNg5QzqZ20/NwmkEBselG+jFJotmjGNM0Nmo/H9hElE0L5ojKis21vW6q1emQVOftQEwmdfKrzMvtgg0p1grfC98yjaiW5tG2sl5/JFHrvNPVaXRDJZeI9MTmA5qemb7N3lJao9txygCtNX/VU8/cXH7NXl1jX1nrMuxa5VBHLg2PlRMfPnYJ99HNnUy6WnvAS77V8K1ajwHeZiTd14XuaGYnN4grQkao2qU4rH3vbYyJZo/WG+dM26/ejomJwgw7tGtHx1Ae+VfT1omsp5Nb0jHWsJW8EEgAyVhyY16QpRKzB9FTUu2AV4rxzOu6Xnwt5N1K/29lN7Hin9Hv0luhNyi3gquC8Otk980xyJvX+9g5ktegYMOFr13HitcH+WlX0+BHlW2/cQ3JSzHaUa7aQ4zQf5VtvmqZBopmkwdRDzY541axv9TwKplcgdT9Ot6tmBE0mmnNVGVHqkDegOMZqAeuc9fto39P+djGH2v8HaIQ37AjTY64NVJL7HM6Crffe6kf2waLEA86KdU/9HkXo86Q5x34lHYT8ZZOM8Wt/XTj1z6x1sY63xwC2BtFrTGpqMeG8KHR+ThIdzcDlplTzju+y8Kp2YOex8KQT/4PxFZP6CPhsrR+mnXjXndjlZ2Orq3RUKcta1qQOJzBzfZi5AJtkHpxccEladAqT8Vv348k1orTi/oL1S+GeWNXbXLecHUBvj8dkt64W8YzJpP4XxigYBFAvjzWo4BglzFp/Ol1IvUGLYBzLZy7Pem+7MPYUaz8OvTpen74GHp73oPf+veDyakVHb5evTT3H0j6k8q037iE5Kaah0EO6K5bjNB/lW2+8QXJSTEMVa5+dbHecTzvlW2+apkFi5712pL5toTp6lhrypD/KUJF23rN/nf5w6URO8f4HqNt6QrDTfaUXeKglEhyq8w/zom80+WPR0ZfnY9R08Uwk6iw0VbL4HIBW5oB3PF82stuYcavaWMXQJ+MEGnZh3ip7bnU+Mg5RZ7hGJ9BiqI9h0qWiY+II4wz6WDgxGENuGj9hGJC9wBpfYPyiNtgXKL4fAOXcOdsosGx/NkHH9ya96R25H9+TRpdZdjImtWowwcjeYWsJ2fWybdusGGtEi539v7B0871l5n0GqC33Aj+UvJi97DM36fqUnECFt6Xp3AxNMdz1Lwk6FnVNQGDVu53HlHL8BfvMXgGdUaJkJUAJL1fZ89vPov3qdzA0yKKtE5XMDq5Pexx4r5x5XEN9nLqw1qRWYU0BjyjfeuMekpNiync8heM0H+Vbb5qmQWLTv58kK24xN4a9dRnZnxbaawk6WtF/CyQQd6IX5qkT8/GvZk8dyi5OXYOIJ2DutHo6nGHqbpO3ic5Myw3msmiebfu9ii9BU8npjeyw7su9bop1ra4IziuviMen160m1OeDbaorzHMXfB+IEzjUjCO00GtN3i06Wuj0bPU9ZILzJg2opbWZEx3Nxy9xQ/lmCzUKfH46yzqr0NdMzhYdzWa6C1oG+Bjp4qhJz3diedvqXPP90MtQh1aLNJA8+zbX/zlXdPNM0mnTwagc5878mRdER8eGxfgc0TF+wWKoAYnnA11GdCyGtdRJGv2x9PiYKRHeMIDDbGBty87xtifNY2Sx18ACX1+1SfUAcyb5OtRZC69dq1RpEK58602Lj97FcZoLhh6S/hpm3LhxyGazuOCCC1BXF/8y19fX49JLL0U2m8W1115b2D5x4kQMGTIEZ555JjZtCldsdJxyYvfqza7UmVWrViGbzeKEE07A8OHDsXFj0nwUu07TeEiHcoCqjIxtO8TkykjqVDuhta4mQLdA6hwoNDfYZ7FIUpgL1/KIfZgcb3vSbK1jR9oGtWkIpweSTqs77Pg1Cbvva6YWvTb1ngoLxZq7t1LyUP9ikW5awBXiVdKc4yWcKsekV8lypP0OtPp4qArp8KnJRJKrySasaVMI9ut0LuEIRO3L4zX0CP4HSj1iGRdbFPgHANQD+V239FasWIE1a9ZgwYIFGD9+PKZPn47zzots9dmzZ6NHjx6YPHkyRo8ejcWLF+Pggw/GzJkz8cQTT+C+++7Drbfeiu9+97u7fN5Gh+9bH8GjwT6fk880m/nbkBOd9sMCcR8gEC8QxJnAdT9796wR/y2qe46P5K8stTvBgShckuq6fT+S9T+MpBY5BjcyJpeIjuPjWUw03Zkp0xck6Lg/fyr0EbJnmT8dOtv33nbv/XhiHX5i5b2lPYNXH49VPBa7c/Va+Jk/UeoRZExWWR05WupNWAvWoyF2vd7sap3p27cvZs2ahUwmg0mTJuHOO+/E2LFjP+IsH417SE562YGoMUv6a4BFixZh6NChAIBhw4Zh4cKFDeqWLFmCE044ARUVFSX7O07ZsRv1ZlfrTMeOHZHJZAAAlZWVaNGicZoST2pw0stu9s1u2LAB3bt3BwB06NAB69evL9JVVVUV6ZK2OU7Zshv1ZlfrDMnlcrj99tvx8MMPf+LLBpqsQbrcpMYwMyatJ1VSRgshJja6mlKcM0k/XyeRoq/Mjtus6AohMyYzSEzr2OvsA3v4NUbI5ILlkXhbpkDg5F3M0NawHHt/eb2nqQVh17DNQnV6DzwGO6sXSayFGecV7HY+KNadYQkZq63/I2lJ8Qp2k0p8LW+hOmawFy3eZ/BedDFE9jbzkY0QHSsDy63mqPK6+E4zossF521gwPkbb7yBUaNGAQBGjhyJkSNHFnSZTKbQD7Rx40Z06tSpQV0mk8Err7ySuH+zwnzonGzjKAS+J02przXJCLDOgsGw6/oEHeNpFpXW/BSWlCPsfN2kXD1sYSoWL70UvWQAuEP/sWO0tCpRLynhvC2mMuty4+8F+ygsJr81mREdfyp4L5oowQkkOAu6hvP4+H9p8coqPTGfwyvFxwbiUF03O+hmmfml3f6R7GLv4U5Johho8nU7dk6OyZwlJn3obOaHI2A36s2u1hkAqKurw/nnn48JEyY0Wp3xkJ2TXmjpJfz17NkT06ZNw7Rp04oaIwAYPHgw5s6NLJw5c+ZgyJAhDeoGDhyIxx9/PHF/xyk7dqPe7GqdAYDLL78co0aNwnHHHYfGook8JNoaCQNO1z0W7hx7DDRtakXHHkqaJLoUOfMiMsFxAJkelynd2hvMXmB6Tw8kXIyZNltfi1X0HGhSJllQdEq2iBlYZ14MTT7Ne73VJBMCdN4tWj1teQ+anh6cT9dGpvdTY/eg8zLnTNLAUTP3kECq1UWTjSP2NEeVr5k9uEnLlPN7msgQJrMwFr6L1NTUoGvXrshms+jVqxfGjh2LMWPGYNKkSRgxYgRmzJiBbDaL/v37Y9CgQQCA4cOHY8iQIejYsSPuvffeXT/pnoC5z+qy0CnmJQ4SHfNuwpR8IPaC+C4Wi8569umpqLVfGAhrRYdpzkBs0ZcOzIyLCqtIURe7JQmss/NpvgWLQ5gXA8RFjNentZSDJTImDxYdr4EBFE2woMPIopoRHe+dXklPqTbVPJale++nSUQ08/ctPg4A1Fu95KvSPCH+svD1aWCB90BvVANKtSYHcMNu1JtdrTMLFizAtGnTsGrVKkyZMgVnnXUWrrnmml07aQLeh+Skl4bmiPwIbrrppqL/J02aBABo1aoVpk6dWrL/ddddh+uuu65ku+OUHbtZb3alzmSzWWze3PhjnZqmQXrV1txRc6fWJJ0TXfOIZkvStEJcTTbsiwBiD4l9R7r+EmPm+1mqduWXRUmbyxJDtz1Tep31DfTN0JRJCiTz2rWAdLQvcjbybbL0Kx03eirab8P7O8FMy9xLsa4zL2ZT8bUB4qEkLD7V0bzC4eZtPSMd+gxUM7Cu987ANU037ZMIg/V6LfTcaAbWii5jko5q+Q44bxw4EPlrso0BBXqT6l6wvNOV0NmyWJ7CtcaAgkXfcqip/hirCrvZ9y8Vbz6/onifPjI4tMYGhzK+oF4C60aSEc/bYeAjJzo63vQO2onu5ya/alKLI8/DgMtA0XFb6J0AcdHm99WZZ43tafd5+LsoocKqadXx8bZnrd+Nr0h6gQv3nLD6WKEnm9dwuuhK1qYu43rjHpKTXnagwaWsHcdJoIzrjTdITnopY0vPcZqNMq43TdMgsQdP/XaG6Nj7mDSan3605jj+wSR7ITUvlB28fwv+B+JwUCuL8U2Vxe6qTbIzUjuRw95VHaLC8FrPBB1DdQxXdRS/HWeatCBEpaTDZy0Mx2emYU4+B95DZ319Fgtjxrr2NFcxrsnz1IiS2yzmcKTOZGaxtw4WBpwiKsYzthbvWgSfnSZm8H5K112Oy8RwkzuQPMfepwWG2fS5Mz+IZU4nlwvX/dZEEyb1sGxr3OqN4m1dNAZES5sZAWfGqgqrX1XhNNwA2tm7/9svI6lV453/jSSriM5kwDAco8RarNYGslp0PHWtSY1I8jwcnaG5ToxyclZyvRZWXc4WofPO8Tr56DTBgsc4yqr3sXIxrJasGtpuMDuckVa9Th6Ts6+/Jw90TDhLfhnXG/eQnPRSj7INPThOs1HG9aZpGiT2ANYnbHvI5OWiC5fV1vxHmiY0+jXdkmYHrQdNfe5slv/9pvxiwvd0xBxh6m04WzJQnHIOFJs7vGZaqwdodylz/JkZMCpW1VtGBpf9bi9ZG+/atb9tUj0PmnO0xtTj5PcKHpVO9WwPdIslcrRVD8luiIkkmmDBZ8vdtSc27DhX05ImL81O/V5S2neZhh4ahVqTfytVrbH8G3WQ+vK10rRWD6naJOtP0hAFWto6z127YNu/JnyP5UKLzv9EgtVHc5b0M1B8D6y6GZOfFx2DIfytlQEYhRpE504THljz6J3o9JcMcrD61IqOxZaelc5mzsBOwqspnKeQbyLp4rwuVoM1sapQK+l16evrw3/sgvfRZBZNGgLKut64h+SklzKOhTtOs1HG9aZpGiQ+HLXaGRRl2rd06RTMoqTv1Zqkx1KdcD4OulTz47Nmfp8T7gzgFpM0l2pEx2PQpNFgOKcGzphUq5P3V8gVXSFKekjMk5XVazseFuiejHWdT7MPyyLRvVqOaS7LunWl10leMd2xWlrt4tvSBNOJSGojsdW+p+Oa+fxppmqwP5zuWL9Hr47Xp/2Dh6CY3RwY+4/CSqsbrWVm/3DUg1rob5jrcFou2AmI3RIOqtcB0BmTjFpo/x5PQItch2CMMfmLhPPZMevtPSfN8MXuTq023I9e0+0ohV3DWopZnKpNanGkM86ipufjo2X6td4e9+Mj0K4a9vfwkWmghj9lnOlLzzeA1cw6r47QespgCKeHUs+Hn+kCar0J63oZ1xv3kJz0UsahB8dpNsq43niD5KSXMg49OE6zUcb1pmkaJIattBM+nKdL8y0ZHuCkU+p+MpzA8I762OHEWdqZTmpNqpvLhe5ywTmA2N/ntairHE4wpR30meCYW2UFrz7MePh6cFFAIf26ELzQ4faMffG16fcMhgS0p5jXwOfyK1kR9UD7zHDBjqdiHcM8HM6eNLEYn4uejx3gfI7a+8xrYYU5SXQa1wHKumI1BnxsCZEw9Depj6zwqPgFnTqZMSyG6jSvhVkCfF9axkN0uoL7Ap3WYStPz1o906rIQ/A0feU6l1gd4k+FTlLBKsvkAo06MizG4qjRehZfFlnNveD3mDChRZXJEDyWjiJhdQl7F/RYrBKaYFFg34Rt4QoB+tuWC/aRdTs1FR9AWdcb95Cc9JJH2cbCHafZKON60zQNEkefac8fW3DmT+pATno/NKF0TjpaCEtNJg0cpTWo5g7Ty2mZJHlWodUPxAkOTPfOiY7H4ORamQQdEnT1syJZZ1KtTl4LTbD2+oo4yRtzrlVnD5TmoM7xp/mjQLGnGg5o1YJMKyxnUp8LrWm+t76i4zF6mfvTSWZ0Dwd26jFDq7GMLb3GIGdSHxGLIb0FzRcpPL6MSX23jETkgn2A2BNOmrSNA2hZZrRcV5tktEMXE7LywSQM7Z9vFy5oJGW15zvFmzSQwaLAS/pDgo5SR2fwGfHnR1c740iPdsE+QOkceOo48p2was0XHVPQ6YRmkADrebVs2xzoND+d7mA4clj3v95kGdcb95Cc9FLGFctxmo0yrjdN0yBVm1Rzh/0tDIKrNUdTj9/7s+iYlcz1XPTB05NiLqb2a/wt2PaQ6L4dnE9H7tEU0qxt0jL4X8e+8hiZhH2pY2Bd74/WIzO82y8TZS4ST24r+rcIBrXVyqV1y7459Ub5Ttgp8XPRMUWYgXwdjBc+T+2v4P31WxlJvXfeH01gWYC3YIJ+y2QZZws1Bnw1SRPMc0FhdSr5Sv5kXzxNyn+9HYSvRp1mFvFKzm6liwmFnSRaBniBdEekzG36aySP4OgFLQMZk1b310lnUCFIYeXkLbl5Vhd6I+pohTNmaXdumCK/VHQMsPBY+4nuNybZxaw/UTzPYJNa3fhu6JnpePtXrYwP4T1rhxZ/P7iMrUR/Vlueecb+r9JpwsMlY8u43riH5KSXMh5P4TjNRhnXm6ZpkGhJqUnDz0w4k8F/BeuZUjNK2F/DVBu19hlfTbLa2Z9Eb0SDzLRIaOboNEY0KXms2aLj/hmT/yM6ToNTE5wXiAfg0nNRc5XxeGb3rVkX67h/zqTGmGlNDeN8RmIi9bYvLLADVMv3eEzOLnmh6GgN04tNWs+K70gnuaU1vMSuXTtBeFl8/7qOjGZ+AWUdemgM6BFotXkrkLKSVuFVcKqb1gk/ShmT2ldSyefOE2pkgSNAWR41re+M4ODiQnCpr0Id0czVYBEidZ5YrZ+oKzlkoSrS89Bqw+fBNZHV8eAl5ExmRMfzXWpSPc7/DM6rE6hytiSOU10gOvZx8XFqEWYVesl+E/uokr9lrC8y6pnPgcesl+mIWuZQTBnXG/eQnPTSUOjBS67jJFPG9Sbll+d8qmnI0mu/k+2O82mnjOtN0zRIDJcdKtvYe8gHp347O7cZOtCOVKZG0q1Vn57p4vS79ZgMmXGcqYYQwgG4M1EKfXudPMziBGvMfdbwCfMBOj4dXBsQhz3mBOcF4jDcqcG+QJzowEQADa0UnhG7UIeI0h7SYLtgnbaYA1PZC5yUS8vwgMaOMiZzxacAUJrwoDm/fDdMEkmaPIzsgVj4uHHjsGjRIlRXV2Py5Mlo3To+aX19PUaPHo2XX34ZAwYMwM0334xVq1bhwgsvRIsWLdC+fXvcd9996NChQwNnaDwYmtLocs5kODoAiF8h70iLP49Ra7JGwqN5GxhbwUQfiYW990Hx+ar1hCzwfBzas3+1Sb7nU0XHumjlsE7C9Sw6DE3pCAWGzjjCIGmKSxZVLVbMy+D+ScWYRVSj/PwZujzYF4gTHpibcJro+DgYPNfrZDUt9EJIw7HBRnOw56FSEhf2faX4fHqdXf6B5rJr8dG7OE4zwdBD0t9usGLFCqxZswYLFixA3759MX369CL97Nmz0aNHDyxYsACbN2/G4sWLkclkMGvWLMyfPx9nnnkm7rzzzk90S46zx2nketOUNI2HRItLTbZw7RtNNQ0XFFETMZweSI1V7s80ZU1AoMnFJljXfKGnQiv/d6ILp81Rr8Q+54Jdgdiy22Ef3hdTr5qeIgtIdcIXOWWwppLTdLIlkxJX/Zxldt1ayace3SuSfAY6GxHH2DJlXt8DzVV6aZqcwN5jWmda2MNBweo98SGFZiRQPJAZaPTO2UWLFmHo0KEAgGHDhmHKlCk477zzivTDhw8v6BcuXIhBg+IJYyorK9GiRdPZcHxduoArXwU77XOiqzYZVhEgTk+m1b9BFnDjK+ydiWReLG5WXZ5ni+ja0tXg6Fe11G81ycd7suj4+aZIdPtBrOprM++zqF0pntyv7Jo1P4jwUpgTlDS++4JBCcpwqi2tGzwovXp5Zhf8dyTrzYNsKcVik+aco/g98GeEP2lbZF9eAi/vdUlc4GWGXjAAdAkjC57U4Dh7gAYq1htvvIFRo6Ix8SNHjsTIkSM/8nAbNmxA9+7dAQAdOnTA+vXrS/RVVVWJ+lwuh9tvvx0PP/zwbtyI4zQh3iB9BLT6Mwk6Wv06GJXmA7+nXgnzVdsF+wKxdc8U5HBaHCA2MebKNppQjInLHCGv2v45TUsPLiFpzCwdAN6Whtdb2KBBOiDr5QDh7EW91frh/eRMHiG69wOpOap1q+1E9r9OaErYYaHmZ9gHpN7ooTSLbXJW7Xfj93iepJTfGpPqxYaTqzYwJ1fPnj0xbdq0RN3atWtx7rnnlmwfOnQoNm2Krnfjxo3o1KlTkT6TySTq6+rqcP7552PChAkl39mT8HFnZBsfR2gxA3HVoJGftERVFQ8q7nxHi1a8kDAR6n7WCd7NPIG2B4iSJ+DknurhnmXyXB0rQDKRWG0hjW/Hmr4T7c7etUoodfECGzB9Aa99TqxbbvUzfD4A0I/lkJVQl6Flf+rrgdTr6pSgOzYSLblcmUydVWXPodaeZ7U61Xw59tv2kgzd4OXxp0bvgVWKVUlHwswyz62QhV/Gc9l5H5KTXmjp7WIsvFu3bpg3b17J3+mnn465cyNLZM6cORgyZEjR9wYPHpyov/zyyzFq1Cgcd9xxcJzUs5v1Zty4cchms7jgggtQVxe3aPX19bj00kuRzWZx7bXXFrZPnDgRQ4YMwZlnnlkw5D4p3iA56WU3K9bOqKmpQdeuXZHNZrFy5UqcffbZAIAxY6KlT0eMGIHVq1cjm82iTZs2GDRoEBYsWIBp06ZhypQpOPHEEzFx4sRPfl+OsyfZjXrTUMJPUrLPu+++i5kzZ+KJJ57AV77yFdx66607P/gu0DQhO/bqafr2gYH8X9Ex9pAzqa4y4wlvBvsA8ahy82/zEgpjtIqRLI129VhaeijCKAQvQSeG4PxZ7N/XdU8YjmO/5JsJOo1SEloItE++szjWDWB44SqTGspcFGyTmRNq/xjJaiYuaGiM4QyeUOM8nFGCYRMNWz5jFlHO/tfOYIZRWQE0rlRtkg9SnQ4Nv/J7f0ejctNNN5VsmzRpEgCgVatWmDp1apEum81i8+YwS6NpYJn9XMI2coV8LuQYsBDptAOW1bDOkmV0xuuWFsbrywQanV3fjtEuaWI9JqTwe+f+kyhtHsMtFi5uK6HOLfZD0KuPbegc61igOm+3fV+KVZZIUCgnv6kqqGousfJo5b5WEgJKZsDPiY5hPy7HrvFKlt9DLexYLZlJ/N2aYlLD0va9rnxmGrUMJlLR4s05+vg7oq+Bl8VHrZFuVvVCyG436k1DCT9JyT65XA4nnHACKioqMGzYMFx00UW7dsKd4EkNTnop485Zx2k2dqPeNJTwk5Ts01AC0CehaRokWg9Z2RbOHqwd5hmTdE90dByXb6wxqb179Kxs9NjL4iGxr55j/3Q5EVqLvCTNUH0h2EeNfRr5tJ+TJiynlaO5AtyPORi6uiX7OJOmiFtqHcuH3BBJXYKom1lhq/VZBcdaY89lPzWv7jZJy01NZz6QcOZyILYQOceZvttw0KsOJqZHVMOLEp2mnAPRww6HB3yKGGfl+VcSIag2SW9oH+n5rjdPlqnELWUW7Zx5RqxSOg1idoR9YCKCTnnNgstCpF/kwj+H2rACTXDOry6+0FXyg3VA7NlEFyyJ7W27RHL1uuLz6rXwnveWfosfm7SyVq0/yHx+dC90fMZlJr9h8nuiG2AVjd5eWwkt9LGC+0P7AdMkIstIapu0Npn9oGyxyIdeJqsekxvUL2cVYsBEgwka7QHQYL3ZWXbqzhJ6dqbLZDJ45ZVXEvf/JHgfkpNadgDYtiP5z3GcZBqqN8xOnTZtWtFQiZ0l9OxMN3DgQDz++OOJ+38SmsZDogWmSy4yrpozOVh0NAfY6Gp8lk1o6wQdj2lWSB/xusYHads6GzANLobHfyI6nfEEKLZaaJnQGFFHgF5QOLk1EHfz8HHo+ix0RqpRCj2icPwoAOQSPCMS9mf1eL10n0OislWUwl5vVjW9Pe0jI4xtt5kab9uHnirflQ6o5eKxtB41Hz7oqtkDXUhlxS/sPWkXBMsOvfO9pE7xMbPaaJGnI5pYTDjcgYNYNXzACETSNFA5k+vMG8qsjnWsFPyeVrjCz84rxfsAwGvmGbEs6KhgbjswQUe+nLDtmMDufkksmi52g79DAjZKF9af9dK60l1Yjr8o2/iZHp32S5nX2tb6gQd+K1attuEg/M3QatPbBgi/YhVCpynT3x1g9+qNJvz06tULY8eOxZgxYzBp0iSMGDECM2bMQDabRf/+/QuDxYcPH44hQ4agY8eOuPfee3fxjMl4H5KTWrwLyXF2nd2tN2HCT0PJPgBw3XXX4brrrtuNM+0cb5Cc1PIp70JynN2inOtN087UoLGHnEnGyTR0w85tetZJMy6EmQF6TIYZJDT1NYtfcJZedXMZYeLpRomOORe0ODRiwc8MoSUtcVyToKO7zWm69LGwX5neviZYhHN4afiFt8pwjR6TUU1GPDQsx3BlxqTmiHAkAvfXZ8YQJO/rHNHtwx3DJAUgzvLgPhoeqjZpkyx82kN2tQ3o+IOjIykYFWNZ0FWu+RwZYdIs/cJLZ4+5xpfZe66JMKGOJ9bQGwsgK1d7jdnZVAmrLcVIhyGEUxIkxYlrTWpBZs40Z9c/S3QDMvbBQm99tDZyRUo+Lc1O4FoNdsLqh2JVpd3PQnsTOoM+f8s4w/83RFcd6DKxipG9ougmsedwjr1Ird9zgl3Lud64h+SkFg/ZOc6uU871pmkbJG36aeIxG1RntabpTxdCzTlaIjRydKQqoVUlnYncnamV2uFLz4jGu3oJnFCb3oJ+j94FvRK9lNDK0dujYck+2QxK+XyCjsfnPcwXHXNC6HgkTbCdZGyGYwV12SZe8/pgX70GPmLNLenHPuRwbjrdxnW2dSzlz0z+IhLlXLEaE82MZ0Y2y5cmHNKx4ePXjm++L46D7qjDLPgSWSf1RbPwfNOkDNQuuOws0Jq0xOwcejxHSxDpNCvJzJbRckL3jjdRKzoei78P6pXwOllJinr6q00yrUczEBDoqmVbzmQmEpWSY7/JbjZp7bW9g20/FB2fH+/5O7GqI7Op6OXtH+tYedvZjOVHPRirwtyOcq437iE5qaWM54h0nGajnOtN0zRItCIayovWGDXNOZp8arYzeMoOkaoGdDKrbw+bVoiRYrXoZ5nkjDxq7PBQHDeq4XUegx6EeiC8PRqPYWomEIeatR+AYXF6POp18Vb5yHRwHK2kg4N9gNhw5eNpk6DLJHyPaeYvoBQasPQmn03YJ28prhVqcdO6Zc68vPfNptOJ3MvV0msMaERrVxyfB9+hVg0+0lqTmm3Mfs4sjXyNOvCBs0DqEIzCwl4mdR4jeln0lJ4WHU9+uElN6d/3qUjW2CDYvSWdmuMs2Lcog3sLN8F7UI+MN8/z6rRJhVxwm0MLl4ouHAOhHVN82o+YlPW/c3pyxH1lel1/CyQQX/u/mq/65GOxjs+alUoLP+uQuchdZLalI94tvpRyrjfuITmppZwrluM0F+Vcb7xBclJLOVcsx2kuyrneNE2D1C6QQOzGcturouPU2OxV15APwwq1JnVCN8akwnxsAL2th7fN0yWqwvRqDINosgDDJuxP1YQHfuYt6MhqdigzrKaRRZ6Hx9Tv0aNngdJY8IEN6PiIGKnQMNvBwT4Ko6OMOCQV5L4J2/j6ksKA22zOvUoL6bwn05jtw5gnIyOSv9quf/E5yjkW3hgwcUGrTRjG0/Aykx9YBjQsneEHFiKN5/Ez35NOoMh3UmNS48ssPAyr6cztPCZDb6eJjqG+vIXqdMgHr4Ez9+t11ppkxRkhOu4XTlcBIA65MYZfjVJY6zXbY3kktjUwQwPlh6W7FHQ6NyCf318tVPd90fHaGbrTeGzYZyAT2H1Zf7BQ3vXGPSQntZSzpec4zUU515umHRirMLuAFpH23udMsiNUR4GFOczaecnvzQn2BQqduPuZhTJGRo6xg54WqRp67HOnAabeAr0Qegea8MDbOTD4X0lK32amJx+L3gKPwVuuFh09Kz5W9Vh4TDXUwu8RHdvIYzCDVzvXj+AX7QYzz8W6lkzXtweyj47QDBNc1AoMcuXLuWI1BoMSttWa5ONLKlcZk7ogQMHRYF38gii5I9+TTv3GZAbO9aY5ACycLCiavs33+v/CC0C89hlTydW74DF4Y+qREXoSmvPOysTzHqBD2BmnYO+/Dn492+RCk8tEZ55V0hTUYcHUilMbnFYrMZ/1TJOS7LHAJrVkTklLTYbg8TlM4mjRqSuM8q437iE5qWUHyrdiOU5zUc71pmlXjFVPh+PQOBpVO1L4NGlNq+XMY7B/abroOG02rXcd/0b35fRIVKs1lzFJS0N055lRlTSodKBZTivNUlODhlm1SSnh7CJLWjGWXSt8BNpnFRYy9YLovdDxU8+HBujLCTpC70kdTt4PjU81AkMzvOUBouOOtIr1vfNiaD2KZ1V8gqhilWssvDHgCqA68JHFno6KrkQcerRadgqe1PvBzkD80umq65pHYQqyTk3PY4TzTwGxZ8OU8GrRsc6zXquHxELH/bVM0OlhgTxcdPsGuqI87BqT1rlZ5AUxf3pjgs5y3Au/knLzHNi9zAb8qjvKa+bvnnqVPISNk1gtae38Ws5kUWSBfWJ8VuohnYkiyrne+HpITmph6CHpb3cZN24cstksLrjgAtTVFVfb+vp6XHrppchms7j22muLdIsXL0ZFRQU++OADOE6a2RP1pqnwBslJLQw9NFbFWrFiBdasWYMFCxagb9++mD59epF+9uzZ6NGjBxYsWIDNmzdj8eJ4npxbbrkFAwYM2M0zO07T0dj1pilpmpAd40kae2DmAJ+ShnWYk003WJfVZujtrQRdmNKqx6RLz6W2dersrihG4msdmbbK63xF9rM4yGsWN9GoI0Nv9LDV+641yeiEhlYYyaKHrpEVjulOyhFhgILnPSlhHz4CPSY/fxhIvQZeU1HYMjRlMvKZcUMOiNcO7XCOswWi28NJDYsWLcLQoUMBAMOGDcOUKVNw3nnnFemHDx9e0C9cuBCDBg3CE088gSOPPBJvv/12I17NR9PNwqAnrYq3XR/so/3lLP5MvPmN6ApZwqw/Wv4ZcmP8TzrJX7DyztetiTFBhLUo3LvNQlNtObnBVaKkY1plJ9ZZDxjqY9hQx2dcZJKFXbOBmKTBh/CBzIDQvjqSL02JpIbrj/8f+8CEB82yIRZz2y7z8YWrZMpq6iUzNGjFYWWyF/KchOyYcL7PMfZBx4qEU6Ikzf0ppyiHxicJ95Cc1NLYoYcNGzagqiqq5R06dMD69es/ln7ixIm46qqr4DjlQDmH7JrGQ6o1mTRHVjgoD4itCHo42mzS1PtDgo6LB+VMapYB3RdaUGrO8U2x51ctdQ6+K6zVXfq9M6bZ/2I1HWaDC2lTZeRrbwRyuehoPHIIn14mjSJerhpGHIhL61jXQ2HaN51JfSy9+PzsAlfKe2BWbdL8fyWztGt3DLdxsLM+M14E9z9DdMGqYg0N8HvjjTcwalS0ctXIkSMxcuTIgm7t2rU499xzS74zdOhQbNoUmbIbN25Ep07FQ4UzmUyJfv78+TjqqKOw9957lxxvT/MH84zukm284mqT6txzfCkDETrXYeHR8n1rRg073+2d1ko6dX0gdQZxGu0c7LxWXhadrpYcJK0d+8y6vt08I320zAaiu6BjDWwW+ELlUHee0Vd6ShWx54tXp5TuT96tiGTnn9oGTaRnf6FlMLTaHqvmmyvH+9JZ61nBeD6dHi8YtayRjHtMDqGXmIl1L82NZB9WZlmaqeAxWpEv54GxH9tD2rhxI4455hi0b98ezz0Xp0Y11EncmDz3BnDx7TvX5/PAF38GnPQjYMnrwO2P7+Z5VgMX37x733Ual4YsvZ49e2LatGmYNm1aUWMEAN26dcO8efNK/k4//XTMnRvV7Dlz5mDIkCFF3xs8eHCJfsWKFXjkkUcwbNgwPPPMM7jooouwKzR3vVkDYEoD+nwe+OIm4KSNwJI8cHt+987zXB64Zve+6jQynwoPaa+99sKDDz6I66+Po9jaSTx+/HhMnz69KCZfwKyCbRuBigqgdUvEsWxmW+qMHScXfw9/Q2Su5xGPVKU5aNbc2hyAvwOPXQbgBFvHKCndmOdVnabCbkW0DlMnoG47kN8LqGyN2FpRa5+xaC4xK1ZgO0vLbEeTUkzZ0bZtNL2Fq+WYFhcf98viSwNiQ5aOpo4ZpONHA7P6M6Lkecxs3UcPar+Fa8061tujRxQOyAWAtfY8u9UlKJmOyyloqkvPV7AotRMksGAbOxZeU1ODrl27IpvNolevXhg7diwAYMyYMZg0aRJGjBiBGTNmIJvNon///hg0aBAGDRqEq6+OXtCJJ56Iu+++e5fO+UnqDYvXMJOtEL8fFn/1ktmNwXJysH2nCrFDmzejv4Ln2AHUb4uq1VZE5UiLB50l7XYh9NY210WvzqoN6gC0bgdUVsgFJ62oyouqFR0HzV5hUvpYNll/1t9M/pd87W7W6x+bnPt/sZIee411yuSlw4ee4ptRWSgy0Qt9QM9EUvvdWPnoOt4qOo615cvRKY54THvIbcVJ/6o9j+/aO/qKJHQWFjKwfr52SxKOKZdUDo1PEh+7QWrdujX23bdoTveP7CQmK98GfrkYeGo1MOMy4Lm3gdkrgJ+OiDr1froQuPg44IY/AW0rgddywL1XAn07AV/9CbD+PeCzNlwgnweuvg947j2gZQtg6leB/TsB1/wfsKgW+PJU4Op2wOwngBFfAm74BdC2DfBaLXDvBKDfYcDV/wE89yLQsiUw9WdAtzbAV8fZeSQzYeMHwJe+CxzTF/j6uUC/g0puzdmDNDTAb3djzTfddFPJtkmTJkXHbNUKU6dO3el3582bt8vn+yT1Zg2inI9ViHIC1gBYCeB8RNHhXyMyvGYiijKvB/AfiOyOCYieHe2gPID/se0tAUzdAezfArhmG/AkgPMAfB3RAg1ZALcjaktqAfwE0cILt9n/LQCMRbQg+PmIfg97yXVvBDBqC3BMS+DrrYB+Pvy+SdkT9aap+ERJDQ11EtfV1eHOO+/EF77wBUycD4zsDzxxLdC5/U4OBqBuB/D7y4AbvgJMng/MWAgc1AOY+6/AQHMBHnwG6NgOeOwmYPzFwA0WS71xJHBCb+B3FwfH3A78fjJww/XA5PuBBx+NVst87DfA+OuBG24DZjwKHNQTmPv/gIGHxt/tnAGe+AVwzonAxPuAL3wDuHMasAcjLI7AAX5Jf+XMx603cxENzfwuirtZQrYD+DaAbwB4EJEh3x3RArzsU1yKqFF5FMCPANxgD/HGyijh9f9QzHYAkxCF4WbYMdsDuAnAxYgy+GYg6l2ZjeJxmp0BPLEXcE4rYOIW4AsbgTvXA3W7GQ50do1yrjefqMFM6gQm77//Pu644w4cffTRuKIj0L8nCuGZipYoPLV8e0RhtDZATTWAdkDPPsCGZ4BX1gADegPYFxg4AHjyTeD5jcDvnwEevzbylnruj6jXvR2i2MQRiDI4LVRQ0y+SPT8LbJgDPF8L/P5PwONP2Pe72nmOBLA3MPBzwJN/QZwYcRgwuCfQth1w2++AO/4POPsUoFMmvp9CEoTOWsy3zyxSnehOF0cDisNWZij/tyVv1F8bq2r5bE1q1LFdsG2DZDV0tLDCFgt1tE24lm4WUnlWQiThxMIaUStEIC0ssUUGsbdljI/PQEfUM7Z4rEntXM+hiIZCD213sr0c+Lj1pgei/mpGhXYgahR6IArPtUHkDfVB1GDthSi82grAAYg8l66IEhFWIvKEjkPkLXWtA1bXRV7XVkRyPaJwX61973lEYb95AN5GtPp2rX1/PwBPIYrG7gVgCICnWwGVVu/e+yAq+le0AW7bAdyxATi7I9CpJZC3dfJYjjVRgg3ovuMj2VJC3YyAMXdI1t/EnVbWvmj7d9EWlkkFiyxUlxEd49Js8eeIzhIJ3rNuhX3EfF9usUxGpa/S/Bhb8XOThdyqdClyFmg75sPSSjCyzkvJydeYB8KG/wxNO9+FkF3a680n8pCSOoFJp06dsGzZMlx55ZX45ZPASbcANz8K/L0O6LgX8Ka9kBVr4uNVyLHzeeCg7sDTlqm19KVI9t0fGDUEmPcDYP5/AlP+peFrDI/Z92Bg1BeBebcD8+8ApnwfOKgX8LTFhJeujPf/ex1w82TgpK8Cv5wFXPllYNl0a4ycPU45D/BriI9bb54AcCOi38U6REYHf3te2Mmx84i8Iw5dYqJjN0Te1kxEv5c/Lf3qTskjahhPtu/ORpTw9lnEXSk6o9Df88AdiGbu+uV24MrWwLI+QKe0x4v+QSjnerNLReT000/H8uXL8eKLL2LMmDG4+OKLEzuJlf79++MXFwBb64DfLQc2VwBHHBhZ26f9Cjj8AMSmXiUi8+AdANuBLx0B/PoR4JSrgT5dAWwDzhgAPLoCOOknUYLE+YOBrw9FZG5VIGpic4hOsDU6Dj5ENGfau8AZvYFHZwEnfdO+fzpw0anAr2cAp3wd6PNZu44MsHkT0KUd8NAtQBs23UzCAGK3hK6DekjsNqDlpDGXcK437ZmmxWQ5tS0l4aH3nyKZ/2ska3RSOp7Hjl05UHRmYhc8Ix1MzF+2TCSOEO9pjXWgVlmCxN7idVVw7jrzqNqeGusK93WJSe0R57mZh6yWZTDJXj2K09fLld2tNz9DdP9/ROQFfQ5Rzst3EXmtlQA6IiqGVj3QHsA5AP4VwHhEnkxrRH1NLyNaIbwCwJcQ9b1vRlRl2iAKtbW373REFHigJ/adfYDrNgNnbY2+fy6Ab+wDnPs+cGoLoE8rAFsA7AA256Oq8AcAVTvswnLxvbH408hXzzucb/EtXcLcYJazOvrMg2qZFJFYEUgdqMpyyIuQZIF6ekZ2rGXizbAh5mn+U4ZL8G1WcZo8aQm22PjbtlZ/hmn3ouVcDLS6v+SWWGVTcMYeREa+p5lI2DP1Zty4cVi0aBGqq6sxefJktG4dP+D6+nqMHj0aL7/8MgYMGICbb74Zq1atwoUXXogWLVqgffv2uO+++9ChQ4cGzhBRkc/n93xk907zUzQ0tRU48w7gVb5IdWX4mVemAyrYhLZM0LUolr0PAGZyIDazfJi0kDT7aJKvzG11gQTigkCzNWls0+42SNxntuiCBqmigQYJCQ1SobZrg8TwGiupTIfPBmk/a5DyDTRIRWPMGmqQqk0yQURTuvjMjolefKaiInEpNQDoM3Ikpk2bthPtPwbLK6KKEBa5f0YUQgMie4uE1UZ1/MyfEbVEg2qDHog8HCC2sdraj+u2dwtfQyV/cFl2JHS0zepUJQ8qxtomy0Zlg6TFn0XnqAQdqU/QlTRI40W5uw2S3WvLBhokfk2LOBukdp1RQtggIaFBQkKDRPg4B6ghx9+hNXum3qxYsQI33XQT7rnnHowfPx4HHnhgURLOAw88gCVLluBHP/oRRo8ejUsvvRR9+/ZFRUUFMpkMJk2ahPfffz/R8AppGieajcfmYHsecenSBom5pnz62uhoo6b78HhAXMjeRjxgjj92SfPgsGSzryMjOv5g8vs6EvFQ+xX+wIYialyXNZ/H0nvQ44c6wh/ss2Wbnbvi9/a/Nkic04UeT050/DFgo6HfY+OUcA378Z4tzl6hv4zVJq2RLPJ0aMLyPEmNI4+t71MbSpT3NPqNAe+9Otj+GcSPTZcEYldmUuc1Kzoff1K1aWk7ta8E+rAzktLKtjoehR/ChIyLrdbo1NsFviVDInpbn0rLN4sPA8Rdrvyh7yvDF9YFZn+/pJWkhwbXBsQp5N9OuF52YNlv05PS4LK7s409UB2jGzZEeikc95WzY31XdIUx97w+fVkdiuXAUbGqflrx+ZaLR8Zq1sdkY9eb3Z1yi1RWVqJFi4/XO9SsUd2Zl8s/WtL5tvmkNUzGUsKKok+eL5cvK1i4yikv/lFCdo3N3Yh/u9RLYNVgsQ/6ugHE9pUuX8dq07uLfUhan8QpGxqqNw3NcLIzNmzYgO7duwPYtSm3ACCXy+H222/Hww8//LGu3bsZndTyafeQHGd3aKjecIaTJBpzyi0gGsJw/vnnY8KECSXf2RlN0yDRZFPLiyYaZ/XVzkumSdKc0wAt74sekrrmNPXYL6JvhfsxrKb+NyeUovuu028fa072aosD9tKJ7iw21Z5+/kuxirGRLjy4pO+9uw5FaBw5nOjueHF1j7dBXG02lX6PMISmJjBDpfRC9T3wWfH57Jeg43m+KrobTXL2dD0fnzvjSTpHHY0n9uWpGf85FMH+8E8rjCprMWZX6BlW9HqLbp2FxXpZmKtSzOTlJvmaddL6k8NykTSewOpEhfQFbbbVOTgric5HWWXvdZ1FO/TniLMNHGHXuUSukz8HWYbPxQXc1/YrJEFomdO55IDimcD5AG8wmbCKyLNWhTWCxqLJr2ukr2uwba7o+LPFe26pz5OTRDDmqrN282Xy4NKt0GJa8TFz8rU+OisLdr/ecMqtkOXLl2PChAm48MILG5xy6/jjj8ecOXNwySVR5/Hll1+OUaNG4bjjjis55s7w2b6d1MLQQ9Kf4zjJNHa90Sm3Vq5cibPPjjq2x4wZAwAYMWIEVq9ejWw2izZt2mDQoEFYsGABpk2bhilTpuDEE0/ExIkTP9a5mibLznF2g8suu6wQCgipqqrCXXfdlahznE8z5VxvvEFyHMdxUoGH7BzHcZxU4A2S4ziOkwq8QXIcx3FSgTdIjuM4TirwBslxHMdJBd4gOY7jOKnAGyTHcRwnFXiD5DiO46QCb5Acx3GcVOANkuM4jpMKvEFyHMdxUoE3SI7jOE4q8AbJcRzHSQXeIDmO4zipwBskx3EcJxV4g+Q4juOkAm+QHMdxnFTgDZLjOI6TCrxBchzHcVKBN0iO4zhOKvAGyXEcx0kF3iA5juM4qcAbJMdxHCcVeIPkOI7jpAJvkBzHcZxU4A2S4ziOkwq8QXIcx3FSgTdIjuM4TirwBslxHMdJBd4gOY7jOKnAGyTHcRwnFXiD5DiO46QCb5Acx3GcVOANkuM4jpMKvEFyHMdxUoE3SI7jOE4q8AbJcRzHSQXeIDmO4zipwBskx3EcJxV4g+Q4juOkAm+QHMdxnFTgDZLjOI6TCrxBchzHcVKBN0iO4zhOKvAGyXEcx0kF3iA5juM4qcAbJMdxHCcVeIPkOI7jpAJvkBzHcZxU4A2S4ziOkwq8QXIcx3FSgTdIjuM4TirwBslxHMdJBd4gOY7jOKnAGyTHcRwnFXiD5DiO46QCb5Acx3GcVOANkuM4jpMKvEFyHMdxUoE3SI7jOE4q8AbJcRzHSQXeIDmO4zipwBskx3EcJxV4g+Q4juOkAm+QHMdxnFTgDZLjOI6TCrxBchzHcVKBN0iO4zhOKvAGyXEcx0kF/x+/VgJaShSVMwAAAABJRU5ErkJggg==", + "text/html": [ + "\n", + "
\n", + "
\n", + " Figure\n", + "
\n", + " \n", + "
\n", + " " + ], + "text/plain": [ + "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# use plot images to show the images.\n", + "import matplotlib.pyplot as plt\n", + "f= plt.figure(figsize=(7,7))\n", + "hs.plot.plot_images(maps,per_row=2,fig=f,\n", + " label=[\"e11\",\"e22\", \"e12\", \"theta\"],\n", + " tight_layout=True, cmap=\"hot\", axes_decor=\"off\", scalebar=\"all\", scalebar_color=\"black\")\n", + "plt.show()\n", + "# save the figure\n", + "fig.savefig(\"strainmaps.png\", dpi=300)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### 6.1 Visualizing the Error\n", + "\n", + "It's a good idea to look at the STD ERROR and Identify regions where the strain mapping didn't work very well. It's pretty easy (as it is in this case) to determine __why__ the fit for the strain didn't work very well. Usually you can remove the problematic vector from the basis set and reduce the error to get a better fit. " + ] + }, + { + "cell_type": "code", + "execution_count": 36, + "metadata": { + "tags": [] + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[########################################] | 100% Completed | 103.48 ms\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "95f162161d604c80b4e3cebae85326a3", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "HBox(children=(Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Ba…" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "m = filtered_data.to_markers(edgecolor=\"w\",facecolor=\"none\", sizes=(45), linewidth=4)\n", + "basis_markers = hs.plot.markers.Points(basis.data[0][:,::-1], edgecolor=\"r\",facecolor=\"none\", sizes=(45), linewidth=4 )\n", + "\n", + "filtered.plot(navigator=std_err,vmax=\"99th\", navigator_kwds =dict(cmap=\"hot\"))\n", + "filtered.add_marker((m, basis_markers))" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "anaconda-cloud": {}, + "kernelspec": { + "display_name": "pyxem-dev", + "language": "python", + "name": "pyxem-dev" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.11.6" + }, + "widgets": { + "state": { + "280e931f7b274209a009d92f04098e5c": { + "views": [ + { + "cell_index": 54 + } + ] + }, + "3d704cd8716e4cb1bf00a7c4e9fe1330": { + "views": [ + { + "cell_index": 34 + } + ] + }, + "477fdf6035284f3ca253bc694d701370": { + "views": [ + { + "cell_index": 24 + } + ] + }, + "48d9b9d421a14ddc9e73f084d5fc5e37": { + "views": [ + { + "cell_index": 30 + } + ] + }, + "635d08b3b596415ab27d7bed3b684f91": { + "views": [ + { + "cell_index": 48 + } + ] + }, + "64f45a95642f400ea7d3bed5fecff420": { + "views": [ + { + "cell_index": 52 + } + ] + }, + "7618040a46fc4203b76648a4d1383a11": { + "views": [ + { + "cell_index": 28 + } + ] + }, + "bb0e63a793d34b2bb255c5dca59a5aa3": { + "views": [ + { + "cell_index": 54 + } + ] + } + }, + "version": "1.2.0" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} From 332171eebb7391a3b83093f9780991e502a8cd9f Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Tue, 28 May 2024 20:46:01 +0000 Subject: [PATCH 2/2] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- 05 Strain Mapping.ipynb | 95 +++++++++++++++++------------------------ 1 file changed, 40 insertions(+), 55 deletions(-) diff --git a/05 Strain Mapping.ipynb b/05 Strain Mapping.ipynb index 1ce7156..305f716 100644 --- a/05 Strain Mapping.ipynb +++ b/05 Strain Mapping.ipynb @@ -66,7 +66,7 @@ }, { "cell_type": "code", - "execution_count": 1, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -92,7 +92,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "tags": [] }, @@ -104,7 +104,7 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -178,7 +178,7 @@ " | 256 | 0 | -6.6 | 0.051 | nm^-1 " ] }, - "execution_count": 3, + "execution_count": null, "metadata": {}, "output_type": "execute_result" } @@ -189,7 +189,7 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -199,7 +199,7 @@ }, { "cell_type": "code", - "execution_count": 5, + "execution_count": null, "metadata": { "tags": [] }, @@ -212,7 +212,7 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": null, "metadata": { "tags": [] }, @@ -234,7 +234,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -270,7 +270,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "tags": [] }, @@ -282,7 +282,7 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -291,7 +291,7 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": null, "metadata": { "tags": [] }, @@ -303,7 +303,7 @@ }, { "cell_type": "code", - "execution_count": 11, + "execution_count": null, "metadata": { "tags": [] }, @@ -424,7 +424,7 @@ "" ] }, - "execution_count": 11, + "execution_count": null, "metadata": {}, "output_type": "execute_result" } @@ -435,7 +435,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": null, "metadata": { "tags": [] }, @@ -500,7 +500,7 @@ }, { "cell_type": "code", - "execution_count": 13, + "execution_count": null, "metadata": { "tags": [] }, @@ -545,7 +545,7 @@ }, { "cell_type": "code", - "execution_count": 14, + "execution_count": null, "metadata": { "tags": [] }, @@ -557,7 +557,7 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": null, "metadata": { "tags": [] }, @@ -599,7 +599,7 @@ }, { "cell_type": "code", - "execution_count": 16, + "execution_count": null, "metadata": { "tags": [] }, @@ -658,7 +658,7 @@ }, { "cell_type": "code", - "execution_count": 17, + "execution_count": null, "metadata": { "tags": [] }, @@ -685,7 +685,7 @@ }, { "cell_type": "code", - "execution_count": 18, + "execution_count": null, "metadata": { "tags": [] }, @@ -713,7 +713,7 @@ }, { "cell_type": "code", - "execution_count": 19, + "execution_count": null, "metadata": { "tags": [] }, @@ -818,7 +818,7 @@ "" ] }, - "execution_count": 19, + "execution_count": null, "metadata": {}, "output_type": "execute_result" } @@ -830,7 +830,7 @@ }, { "cell_type": "code", - "execution_count": 20, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -906,7 +906,7 @@ "" ] }, - "execution_count": 20, + "execution_count": null, "metadata": {}, "output_type": "execute_result" } @@ -917,7 +917,7 @@ }, { "cell_type": "code", - "execution_count": 21, + "execution_count": null, "metadata": { "tags": [] }, @@ -975,7 +975,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": null, "metadata": { "tags": [] }, @@ -1002,7 +1002,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "metadata": { "tags": [] }, @@ -1021,7 +1021,7 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": null, "metadata": { "tags": [] }, @@ -1033,7 +1033,7 @@ }, { "cell_type": "code", - "execution_count": 25, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1052,13 +1052,6 @@ "cell_type": "code", "execution_count": null, "metadata": {}, - "outputs": [], - "source": [] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": {}, "outputs": [ { "name": "stdout", @@ -1101,7 +1094,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": null, "metadata": {}, "outputs": [], "source": [ @@ -1119,7 +1112,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1143,7 +1136,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -1160,7 +1153,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": null, "metadata": { "tags": [] }, @@ -1181,7 +1174,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": null, "metadata": { "tags": [] }, @@ -1194,7 +1187,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "metadata": { "tags": [] }, @@ -1232,7 +1225,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": null, "metadata": { "tags": [] }, @@ -1270,7 +1263,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": null, "metadata": { "tags": [] }, @@ -1299,7 +1292,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": null, "metadata": { "tags": [] }, @@ -1353,7 +1346,7 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": null, "metadata": { "tags": [] }, @@ -1387,13 +1380,6 @@ "filtered.plot(navigator=std_err,vmax=\"99th\", navigator_kwds =dict(cmap=\"hot\"))\n", "filtered.add_marker((m, basis_markers))" ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": {}, - "outputs": [], - "source": [] } ], "metadata": { @@ -1412,8 +1398,7 @@ "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.11.6" + "pygments_lexer": "ipython3" }, "widgets": { "state": {