-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmodelAE.py
434 lines (372 loc) · 22 KB
/
modelAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import os
import math
import mcubes
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from utils import *
class IMNETDecoder(nn.Module):
def __init__(self, z_dim, df_dim):
super(IMNETDecoder, self).__init__()
self.linear_1 = nn.Linear(z_dim, df_dim * 8, bias=True)
self.linear_2 = nn.Linear(df_dim * 8, df_dim * 8, bias=True)
self.linear_3 = nn.Linear(df_dim * 8, df_dim * 8, bias=True)
self.linear_4 = nn.Linear(df_dim * 8, df_dim * 4, bias=True)
self.linear_5 = nn.Linear(df_dim * 4, df_dim * 2, bias=True)
self.linear_6 = nn.Linear(df_dim * 2, df_dim * 1, bias=True)
self.linear_7 = nn.Linear(df_dim * 1, 1, bias=True)
nn.init.normal_(self.linear_1.weight, mean=0.0, std=0.02)
nn.init.constant_(self.linear_1.bias, 0)
nn.init.normal_(self.linear_2.weight, mean=0.0, std=0.02)
nn.init.constant_(self.linear_2.bias, 0)
nn.init.normal_(self.linear_3.weight, mean=0.0, std=0.02)
nn.init.constant_(self.linear_3.bias, 0)
nn.init.normal_(self.linear_4.weight, mean=0.0, std=0.02)
nn.init.constant_(self.linear_4.bias, 0)
nn.init.normal_(self.linear_5.weight, mean=0.0, std=0.02)
nn.init.constant_(self.linear_5.bias, 0)
nn.init.normal_(self.linear_6.weight, mean=0.0, std=0.02)
nn.init.constant_(self.linear_6.bias, 0)
nn.init.normal_(self.linear_7.weight, mean=1e-5, std=0.02)
nn.init.constant_(self.linear_7.bias, 0)
def forward(self, z):
# input z - B x 4096 x z_dim
l1 = self.linear_1(z)
l1 = F.leaky_relu(l1, negative_slope=0.02, inplace=True)
l2 = self.linear_2(l1)
l2 = F.leaky_relu(l2, negative_slope=0.02, inplace=True)
l3 = self.linear_3(l2)
l3 = F.leaky_relu(l3, negative_slope=0.02, inplace=True)
l4 = self.linear_4(l3)
l4 = F.leaky_relu(l4, negative_slope=0.02, inplace=True)
l5 = self.linear_5(l4)
l5 = F.leaky_relu(l5, negative_slope=0.02, inplace=True)
l6 = self.linear_6(l5)
l6 = F.leaky_relu(l6, negative_slope=0.02, inplace=True)
l7 = self.linear_7(l6)
l7 = torch.max(torch.min(l7, l7 * 0.01 + 0.99), l7 * 0.01)
return l7
class GridEncoder2D(nn.Module):
def __init__(self, ef_dim=16, z_dim=64):
super(GridEncoder2D, self).__init__()
self.layers = nn.Sequential(
nn.Conv2d(1, ef_dim, 3, stride=2, padding=1), nn.ReLU(), # (B, 16, 128, 128)
nn.Conv2d(ef_dim * 1, ef_dim * 1, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm2d(ef_dim * 1),
nn.Conv2d(ef_dim * 1, ef_dim * 2, 3, stride=2, padding=1), nn.ReLU(), # (B, 32, 64, 64)
nn.Conv2d(ef_dim * 2, ef_dim * 2, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm2d(ef_dim * 2),
nn.Conv2d(ef_dim * 2, ef_dim * 4, 3, stride=2, padding=1), nn.ReLU(), # (B, 64, 32, 32)
nn.Conv2d(ef_dim * 4, ef_dim * 4, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm2d(ef_dim * 4),
nn.Conv2d(ef_dim * 4, ef_dim * 8, 3, stride=2, padding=1), nn.ReLU(), # (B, 128, 16, 16)
nn.Conv2d(ef_dim * 8, ef_dim * 8, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm2d(ef_dim * 8),
nn.Conv2d(ef_dim * 8, ef_dim * 16, 3, stride=2, padding=1), nn.ReLU(), # (B, 256, 8, 8)
nn.Conv2d(ef_dim * 16, ef_dim * 16, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm2d(ef_dim * 16),
nn.Conv2d(ef_dim * 16, ef_dim * 32, 3, stride=2, padding=1), nn.ReLU(), # (B, 512, 4, 4)
nn.Conv2d(ef_dim * 32, ef_dim * 32, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm2d(ef_dim * 32),
nn.Conv2d(ef_dim * 32, ef_dim * 4, 3, stride=2, padding=1), nn.ReLU(), # (B, 64, 2, 2)
nn.Conv2d(ef_dim * 4, ef_dim * 4, 1, stride=1, padding=0), nn.ReLU(),
)
def forward(self, inputs):
out = self.layers(inputs)
return out
class GridDecoder2D(nn.Module):
def __init__(self, z_dim=64, df_dim=128):
super(GridDecoder2D, self).__init__()
self.decoder = IMNETDecoder(z_dim=z_dim, df_dim=df_dim)
def forward(self, zs, points):
points = (2 * points).unsqueeze(1) # (B, 1, 4096, 2)
zs_sampled = F.grid_sample(zs, points, padding_mode='border', align_corners=True) # (B, 64, 1, 4096)
zs_sampled = zs_sampled.squeeze(2).permute(0, 2, 1) # (B, 4096, 64)
sdf = self.decoder(zs_sampled)
return sdf
class GridAE2D(nn.Module):
def __init__(self, ef_dim=16, z_dim=64, df_dim=128):
super(GridAE2D, self).__init__()
self.encoder = GridEncoder2D(ef_dim=ef_dim, z_dim=z_dim)
self.decoder = GridDecoder2D(z_dim=z_dim, df_dim=df_dim)
def forward(self, inputs, points):
z = self.encoder(inputs)
out = self.decoder(z, points)
return out
class GridEncoder3D(nn.Module):
def __init__(self, ef_dim=16, z_dim=32):
super(GridEncoder3D, self).__init__()
self.layers = nn.Sequential(
nn.Conv3d(1, ef_dim, 3, stride=1, padding=1), nn.ReLU(), # (B, 16, 64, 64, 64)
nn.Conv3d(ef_dim * 1, ef_dim * 1, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm3d(ef_dim * 1),
nn.Conv3d(ef_dim * 1, ef_dim * 2, 3, stride=2, padding=1), nn.ReLU(), # (B, 32, 32, 32, 32)
nn.Conv3d(ef_dim * 2, ef_dim * 2, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm3d(ef_dim * 2),
nn.Conv3d(ef_dim * 2, ef_dim * 4, 3, stride=2, padding=1), nn.ReLU(), # (B, 64, 16, 16, 16)
nn.Conv3d(ef_dim * 4, ef_dim * 4, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm3d(ef_dim * 4),
nn.Conv3d(ef_dim * 4, ef_dim * 8, 3, stride=2, padding=1), nn.ReLU(), # (B, 128, 8, 8, 8)
nn.Conv3d(ef_dim * 8, ef_dim * 8, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm3d(ef_dim * 8),
nn.Conv3d(ef_dim * 8, ef_dim * 16, 3, stride=2, padding=1), nn.ReLU(), # (B, 256, 4, 4, 4)
nn.Conv3d(ef_dim * 16, ef_dim * 16, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm3d(ef_dim * 16),
nn.Conv3d(ef_dim * 16, ef_dim * 32, 3, stride=2, padding=1), nn.ReLU(), # (B, 512, 2, 2, 2)
nn.Conv3d(ef_dim * 32, ef_dim * 32, 3, stride=1, padding=1), nn.ReLU(), nn.BatchNorm3d(ef_dim * 32),
nn.Conv3d(ef_dim * 32, z_dim, 3, stride=1, padding=1), nn.ReLU(), # (B, 32, 2, 2, 2)
nn.Conv3d(z_dim, z_dim, 3, stride=1, padding=1), nn.ReLU(),
)
def forward(self, inputs):
out = self.layers(inputs)
return out
class GridDecoder3D(nn.Module):
def __init__(self, z_dim=32, df_dim=128):
super(GridDecoder3D, self).__init__()
self.decoder = IMNETDecoder(z_dim=z_dim, df_dim=df_dim)
def forward(self, zs, points):
points = (2 * points).unsqueeze(1).unsqueeze(1) # (B, 1, 1, 4096, 3)
zs_sampled = F.grid_sample(zs, points, padding_mode='border', align_corners=True) # (B, 32, 1, 1, 4096)
zs_sampled = zs_sampled.squeeze(2).squeeze(2).permute(0, 2, 1) # (B, 4096, 32)
sdf = self.decoder(zs_sampled)
return sdf
class GridAE3D(nn.Module):
def __init__(self, ef_dim=16, z_dim=32, df_dim=128):
super(GridAE3D, self).__init__()
self.encoder = GridEncoder3D(ef_dim=ef_dim, z_dim=z_dim)
self.decoder = GridDecoder3D(z_dim=z_dim, df_dim=df_dim)
def forward(self, inputs, points):
z = self.encoder(inputs)
out = self.decoder(z, points)
return out
class _CustomDataParallel(nn.DataParallel):
def __init__(self, model):
super(_CustomDataParallel, self).__init__(model)
def __getattr__(self, name):
try:
return super(_CustomDataParallel, self).__getattr__(name)
except AttributeError:
return getattr(self.module, name)
class Tester:
def __init__(self, device, cell_grid_size=4, frame_grid_size=64):
self.test_size = 32 # related to testing batch_size, adjust according to gpu memory size
self.cell_grid_size = cell_grid_size
self.frame_grid_size = frame_grid_size
self.real_size = self.cell_grid_size * self.frame_grid_size # =256, output point-value voxel grid size in testing
self.test_point_batch_size = self.test_size * self.test_size * self.test_size # 32 x 32 x 32, do not change
self.sampling_threshold = 0.5
self.device = device
self.get_test_coord_for_training() # initialize self.coords
self.get_test_coord_for_testing() # initialize self.frame_coords
def get_test_coord_for_training(self):
dima = self.test_size # 32
dim = self.frame_grid_size # 64
multiplier = int(dim / dima) # 2
multiplier2 = multiplier * multiplier
multiplier3 = multiplier * multiplier * multiplier
ranges = np.arange(0, dim, multiplier, np.uint8)
self.aux_x = np.ones([dima, dima, dima], np.uint8) * np.expand_dims(ranges, axis=(1, 2))
self.aux_y = np.ones([dima, dima, dima], np.uint8) * np.expand_dims(ranges, axis=(0, 2))
self.aux_z = np.ones([dima, dima, dima], np.uint8) * np.expand_dims(ranges, axis=(0, 1))
self.coords = np.zeros([multiplier ** 3, dima, dima, dima, 3], np.float32)
for i in range(multiplier):
for j in range(multiplier):
for k in range(multiplier):
self.coords[i * multiplier2 + j * multiplier + k, :, :, :, 0] = self.aux_x + i
self.coords[i * multiplier2 + j * multiplier + k, :, :, :, 1] = self.aux_y + j
self.coords[i * multiplier2 + j * multiplier + k, :, :, :, 2] = self.aux_z + k
self.coords = (self.coords.astype(np.float32) + 0.5) / dim - 0.5
self.coords = np.reshape(self.coords, [multiplier3, self.test_point_batch_size, 3])
self.coords = torch.from_numpy(self.coords).to(self.device)
def get_test_coord_for_testing(self):
dimc = self.cell_grid_size
dimf = self.frame_grid_size
self.cell_x = np.zeros([dimc, dimc, dimc], np.int32)
self.cell_y = np.zeros([dimc, dimc, dimc], np.int32)
self.cell_z = np.zeros([dimc, dimc, dimc], np.int32)
self.cell_coords = np.zeros([dimf, dimf, dimf, dimc, dimc, dimc, 3], np.float32)
self.frame_coords = np.zeros([dimf, dimf, dimf, 3], np.float32)
self.frame_x = np.zeros([dimf, dimf, dimf], np.int32)
self.frame_y = np.zeros([dimf, dimf, dimf], np.int32)
self.frame_z = np.zeros([dimf, dimf, dimf], np.int32)
for i in range(dimc):
for j in range(dimc):
for k in range(dimc):
self.cell_x[i, j, k] = i
self.cell_y[i, j, k] = j
self.cell_z[i, j, k] = k
for i in range(dimf):
for j in range(dimf):
for k in range(dimf):
self.cell_coords[i, j, k, :, :, :, 0] = self.cell_x + i * dimc
self.cell_coords[i, j, k, :, :, :, 1] = self.cell_y + j * dimc
self.cell_coords[i, j, k, :, :, :, 2] = self.cell_z + k * dimc
self.frame_coords[i, j, k, 0] = i
self.frame_coords[i, j, k, 1] = j
self.frame_coords[i, j, k, 2] = k
self.frame_x[i, j, k] = i
self.frame_y[i, j, k] = j
self.frame_z[i, j, k] = k
self.cell_coords = (self.cell_coords.astype(np.float32) + 0.5) / self.real_size - 0.5
self.cell_coords = np.reshape(self.cell_coords, [dimf, dimf, dimf, dimc * dimc * dimc, 3])
self.cell_x = np.reshape(self.cell_x, [dimc * dimc * dimc])
self.cell_y = np.reshape(self.cell_y, [dimc * dimc * dimc])
self.cell_z = np.reshape(self.cell_z, [dimc * dimc * dimc])
self.frame_x = np.reshape(self.frame_x, [dimf * dimf * dimf])
self.frame_y = np.reshape(self.frame_y, [dimf * dimf * dimf])
self.frame_z = np.reshape(self.frame_z, [dimf * dimf * dimf])
self.frame_coords = (self.frame_coords.astype(np.float32) + 0.5) / dimf - 0.5
self.frame_coords = np.reshape(self.frame_coords, [dimf * dimf * dimf, 3])
self.frame_coords = torch.from_numpy(self.frame_coords).to(self.device)
def test_during_train(self, network, input_voxel, name):
network.eval()
batch_voxels = input_voxel.unsqueeze(0).to(self.device) # batch_voxel - 1 x 1 x 64 x 64 x 64
model_float = np.zeros([self.frame_grid_size + 2, self.frame_grid_size + 2, self.frame_grid_size + 2], np.float32)
multiplier = int(self.frame_grid_size / self.test_size)
multiplier2 = multiplier * multiplier
with torch.no_grad():
zs_vector = network.encoder(batch_voxels)
for idx, z_vector in enumerate(zs_vector):
for i in range(multiplier):
for j in range(multiplier):
for k in range(multiplier):
minib = i * multiplier2 + j * multiplier + k
point_coord = self.coords[minib:minib + 1]
with torch.no_grad():
net_out = network.decoder(z_vector.unsqueeze(0), point_coord)
model_float[self.aux_x + i + 1, self.aux_y + j + 1, self.aux_z + k + 1] = np.reshape(net_out.detach().cpu().numpy(),
[self.test_size,
self.test_size,
self.test_size])
vertices, triangles = mcubes.marching_cubes(model_float, self.sampling_threshold)
vertices = (vertices.astype(np.float32) - 0.5) / self.frame_grid_size - 0.5
write_ply_triangle(name + '-z{}.ply'.format(idx), vertices, triangles)
print("[sample]")
# output shape as ply and point cloud as ply if specified
def test_mesh_point(self, network, input_data, name, input_type='voxel', save_mesh=True, save_point=False):
# input_data could be [voxel] or [z], should be either 1x1x64x64x64 or 1x256
zs_vector = network.encoder(input_data) if input_type == 'voxel' else input_data
for idx, z_vector in enumerate(zs_vector):
model_float = self.z2voxel(network, z_vector.unsqueeze(0))
vertices, triangles = mcubes.marching_cubes(model_float, self.sampling_threshold)
vertices = (vertices.astype(np.float32) - 0.5) / self.real_size - 0.5
# optimized_vertices = self.optimize_mesh(network, vertices, z_vector)
if save_mesh:
write_ply_triangle(name + '_z{}_vox.ply'.format(idx), vertices, triangles)
if save_point:
sampled_points_normals = sample_points_triangle(vertices, triangles, num_of_points=2048)
np.random.shuffle(sampled_points_normals)
# write_ply_point_normal(name + '_z{}_pcd.ply'.format(idx), sampled_points_normals)
write_ply_point(name + '_z{}_pcd.ply'.format(idx), sampled_points_normals)
break
print("[sample]")
def test_point_as_image(self, network, input_data, input_type='z', scale=1):
model_float = self.z2voxel(network, input_data) if input_type == 'z' else input_data
vertices, triangles = mcubes.marching_cubes(model_float, self.sampling_threshold)
vertices = (vertices.astype(np.float32) - 0.5) / self.real_size - 0.5
sampled_points_normals = sample_points_triangle(vertices, triangles, num_of_points=2048)
np.random.shuffle(sampled_points_normals)
centroid = np.mean(sampled_points_normals[:, :3], axis=0)
sampled_points_normals[:, :3] += -centroid
image = plot_3d_point_to_image(sampled_points_normals[:, :3] * scale) # change scale to zoom in or out
return image
def z2voxel(self, network, z):
model_float = np.zeros([self.real_size + 2, self.real_size + 2, self.real_size + 2], np.float32)
dimc = self.cell_grid_size
dimf = self.frame_grid_size
frame_flag = np.zeros([dimf + 2, dimf + 2, dimf + 2], np.uint8)
queue = []
frame_batch_num = int(dimf ** 3 / self.test_point_batch_size)
assert frame_batch_num > 0
# get frame grid values
for i in range(frame_batch_num):
point_coord = self.frame_coords[i * self.test_point_batch_size:(i + 1) * self.test_point_batch_size]
point_coord = point_coord.unsqueeze(dim=0)
with torch.no_grad():
model_out_ = network.decoder(z, point_coord)
model_out = model_out_.detach().cpu().numpy()[0]
x_coords = self.frame_x[i * self.test_point_batch_size:(i + 1) * self.test_point_batch_size]
y_coords = self.frame_y[i * self.test_point_batch_size:(i + 1) * self.test_point_batch_size]
z_coords = self.frame_z[i * self.test_point_batch_size:(i + 1) * self.test_point_batch_size]
frame_flag[x_coords + 1, y_coords + 1, z_coords + 1] = np.reshape((model_out > self.sampling_threshold).astype(np.uint8),
[self.test_point_batch_size])
# get queue and fill up ones
for i in range(1, dimf + 1):
for j in range(1, dimf + 1):
for k in range(1, dimf + 1):
maxv = np.max(frame_flag[i - 1:i + 2, j - 1:j + 2, k - 1:k + 2])
minv = np.min(frame_flag[i - 1:i + 2, j - 1:j + 2, k - 1:k + 2])
if maxv != minv:
queue.append((i, j, k))
elif maxv == 1:
x_coords = self.cell_x + (i - 1) * dimc
y_coords = self.cell_y + (j - 1) * dimc
z_coords = self.cell_z + (k - 1) * dimc
model_float[x_coords + 1, y_coords + 1, z_coords + 1] = 1.0
# print("running queue:", len(queue))
cell_batch_size = dimc ** 3
cell_batch_num = int(self.test_point_batch_size / cell_batch_size)
assert cell_batch_num > 0
# run queue
while len(queue) > 0:
batch_num = min(len(queue), cell_batch_num)
point_list = []
cell_coords = []
for i in range(batch_num):
point = queue.pop(0)
point_list.append(point)
cell_coords.append(self.cell_coords[point[0] - 1, point[1] - 1, point[2] - 1])
cell_coords = np.concatenate(cell_coords, axis=0)
cell_coords = np.expand_dims(cell_coords, axis=0)
cell_coords = torch.from_numpy(cell_coords)
cell_coords = cell_coords.to(self.device)
with torch.no_grad():
model_out_batch_ = network.decoder(z, cell_coords)
model_out_batch = model_out_batch_.detach().cpu().numpy()[0]
for i in range(batch_num):
point = point_list[i]
model_out = model_out_batch[i * cell_batch_size:(i + 1) * cell_batch_size, 0]
x_coords = self.cell_x + (point[0] - 1) * dimc
y_coords = self.cell_y + (point[1] - 1) * dimc
z_coords = self.cell_z + (point[2] - 1) * dimc
model_float[x_coords + 1, y_coords + 1, z_coords + 1] = model_out
if np.max(model_out) > self.sampling_threshold:
for i in range(-1, 2):
pi = point[0] + i
if pi <= 0 or pi > dimf:
continue
for j in range(-1, 2):
pj = point[1] + j
if pj <= 0 or pj > dimf:
continue
for k in range(-1, 2):
pk = point[2] + k
if pk <= 0 or pk > dimf:
continue
if frame_flag[pi, pj, pk] == 0:
frame_flag[pi, pj, pk] = 1
queue.append((pi, pj, pk))
return model_float
def optimize_mesh(self, network, vertices, z, iterations=3):
new_vertices = np.copy(vertices)
new_vertices_ = np.expand_dims(new_vertices, axis=0)
new_vertices_ = torch.from_numpy(new_vertices_)
new_vertices_ = new_vertices_.to(self.device)
new_v_out_ = network.decoder(z, new_vertices_)
new_v_out = new_v_out_.detach().cpu().numpy()[0]
for iteration in range(iterations):
for i in [-1, 0, 1]:
for j in [-1, 0, 1]:
for k in [-1, 0, 1]:
if i == 0 and j == 0 and k == 0: continue
offset = np.array([[i, j, k]], np.float32) / (self.real_size * 6 * 2 ** iteration)
current_vertices = vertices + offset
current_vertices_ = np.expand_dims(current_vertices, axis=0)
current_vertices_ = torch.from_numpy(current_vertices_)
current_vertices_ = current_vertices_.to(self.device)
current_v_out_ = network.decoder(z, current_vertices_)
current_v_out = current_v_out_.detach().cpu().numpy()[0]
keep_flag = abs(current_v_out - self.sampling_threshold) < abs(new_v_out - self.sampling_threshold)
keep_flag = keep_flag.astype(np.float32)
new_vertices = current_vertices * keep_flag + new_vertices * (1 - keep_flag)
new_v_out = current_v_out * keep_flag + new_v_out * (1 - keep_flag)
vertices = new_vertices
return vertices
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
if __name__ == '__main__':
test_input = torch.randn(16, 1, 256, 256).cuda()
test_point = torch.randn(16, 4096, 2).cuda()
AE = GridAE3D(ef_dim=16, z_dim=32, df_dim=128, multi_scale=False).cuda()
num_parameters = count_parameters(AE)
print(num_parameters)