-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhurricanedanger.cpp
194 lines (161 loc) · 7.83 KB
/
hurricanedanger.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#include<bits/stdc++.h>
using namespace std;
#define INF 1e9
#define EPS 1e-9
#define PI acos(-1.0) // important constant; alternative #define PI (2.0 * acos(0.0))
double DEG_to_RAD(double d) { return d * PI / 180.0; }
double RAD_to_DEG(double r) { return r * 180.0 / PI; }
// struct point_i { int x, y; }; // basic raw form, minimalist mode
struct point_i { int x, y; // whenever possible, work with point_i
point_i() { x = y = 0; } // default constructor
point_i(int _x, int _y) : x(_x), y(_y) {} }; // user-defined
struct point { double x, y; // only used if more precision is needed
point() { x = y = 0.0; } // default constructor
point(double _x, double _y) : x(_x), y(_y) {} // user-defined
bool operator < (point other) const { // override less than operator
if (fabs(x - other.x) > EPS) // useful for sorting
return x < other.x; // first criteria , by x-coordinate
return y < other.y; } // second criteria, by y-coordinate
// use EPS (1e-9) when testing equality of two floating points
bool operator == (point other) const {
return (fabs(x - other.x) < EPS && (fabs(y - other.y) < EPS)); } };
double dist(point p1, point p2) { // Euclidean distance
// hypot(dx, dy) returns sqrt(dx * dx + dy * dy)
return hypot(p1.x - p2.x, p1.y - p2.y); } // return double
// rotate p by theta degrees CCW w.r.t origin (0, 0)
point rotate(point p, double theta) {
double rad = DEG_to_RAD(theta); // multiply theta with PI / 180.0
return point(p.x * cos(rad) - p.y * sin(rad),
p.x * sin(rad) + p.y * cos(rad)); }
struct line { double a, b, c; }; // a way to represent a line
// the answer is stored in the third parameter (pass by reference)
void pointsToLine(point p1, point p2, line &l) {
if (fabs(p1.x - p2.x) < EPS) { // vertical line is fine
l.a = 1.0; l.b = 0.0; l.c = -p1.x; // default values
} else {
l.a = -(double)(p1.y - p2.y) / (p1.x - p2.x);
l.b = 1.0; // IMPORTANT: we fix the value of b to 1.0
l.c = -(double)(l.a * p1.x) - p1.y;
} }
// not needed since we will use the more robust form: ax + by + c = 0 (see above)
struct line2 { double m, c; }; // another way to represent a line
int pointsToLine2(point p1, point p2, line2 &l) {
if (abs(p1.x - p2.x) < EPS) { // special case: vertical line
l.m = INF; // l contains m = INF and c = x_value
l.c = p1.x; // to denote vertical line x = x_value
return 0; // we need this return variable to differentiate result
}
else {
l.m = (double)(p1.y - p2.y) / (p1.x - p2.x);
l.c = p1.y - l.m * p1.x;
return 1; // l contains m and c of the line equation y = mx + c
} }
bool areParallel(line l1, line l2) { // check coefficients a & b
return (fabs(l1.a-l2.a) < EPS) && (fabs(l1.b-l2.b) < EPS); }
bool areSame(line l1, line l2) { // also check coefficient c
return areParallel(l1 ,l2) && (fabs(l1.c - l2.c) < EPS); }
// returns true (+ intersection point) if two lines are intersect
bool areIntersect(line l1, line l2, point &p) {
if (areParallel(l1, l2)) return false; // no intersection
// solve system of 2 linear algebraic equations with 2 unknowns
p.x = (l2.b * l1.c - l1.b * l2.c) / (l2.a * l1.b - l1.a * l2.b);
// special case: test for vertical line to avoid division by zero
if (fabs(l1.b) > EPS) p.y = -(l1.a * p.x + l1.c);
else p.y = -(l2.a * p.x + l2.c);
return true; }
struct vec { double x, y; // name: `vec' is different from STL vector
vec(double _x, double _y) : x(_x), y(_y) {} };
vec toVec(point a, point b) { // convert 2 points to vector a->b
return vec(b.x - a.x, b.y - a.y); }
vec scale(vec v, double s) { // nonnegative s = [<1 .. 1 .. >1]
return vec(v.x * s, v.y * s); } // shorter.same.longer
point translate(point p, vec v) { // translate p according to v
return point(p.x + v.x , p.y + v.y); }
// convert point and gradient/slope to line
void pointSlopeToLine(point p, double m, line &l) {
l.a = -m; // always -m
l.b = 1; // always 1
l.c = -((l.a * p.x) + (l.b * p.y)); } // compute this
void closestPoint(line l, point p, point &ans) {
line perpendicular; // perpendicular to l and pass through p
if (fabs(l.b) < EPS) { // special case 1: vertical line
ans.x = -(l.c); ans.y = p.y; return; }
if (fabs(l.a) < EPS) { // special case 2: horizontal line
ans.x = p.x; ans.y = -(l.c); return; }
pointSlopeToLine(p, 1 / l.a, perpendicular); // normal line
// intersect line l with this perpendicular line
// the intersection point is the closest point
areIntersect(l, perpendicular, ans); }
// returns the reflection of point on a line
void reflectionPoint(line l, point p, point &ans) {
point b;
closestPoint(l, p, b); // similar to distToLine
vec v = toVec(p, b); // create a vector
ans = translate(translate(p, v), v); } // translate p twice
double dot(vec a, vec b) { return (a.x * b.x + a.y * b.y); }
double norm_sq(vec v) { return v.x * v.x + v.y * v.y; }
// returns the distance from p to the line defined by
// two points a and b (a and b must be different)
// the closest point is stored in the 4th parameter (byref)
double distToLine(point p, point a, point b, point &c) {
// formula: c = a + u * ab
vec ap = toVec(a, p), ab = toVec(a, b);
double u = dot(ap, ab) / norm_sq(ab);
c = translate(a, scale(ab, u)); // translate a to c
return dist(p, c); } // Euclidean distance between p and c
// returns the distance from p to the line segment ab defined by
// two points a and b (still OK if a == b)
// the closest point is stored in the 4th parameter (byref)
double distToLineSegment(point p, point a, point b, point &c) {
vec ap = toVec(a, p), ab = toVec(a, b);
double u = dot(ap, ab) / norm_sq(ab);
if (u < 0.0) { c = point(a.x, a.y); // closer to a
return dist(p, a); } // Euclidean distance between p and a
if (u > 1.0) { c = point(b.x, b.y); // closer to b
return dist(p, b); } // Euclidean distance between p and b
return distToLine(p, a, b, c); } // run distToLine as above
double angle(point a, point o, point b) { // returns angle aob in rad
vec oa = toVec(o, a), ob = toVec(o, b);
return acos(dot(oa, ob) / sqrt(norm_sq(oa) * norm_sq(ob))); }
double cross(vec a, vec b) { return a.x * b.y - a.y * b.x; }
//// another variant
//int area2(point p, point q, point r) { // returns 'twice' the area of this triangle A-B-c
// return p.x * q.y - p.y * q.x +
// q.x * r.y - q.y * r.x +
// r.x * p.y - r.y * p.x;
//}
// note: to accept collinear points, we have to change the `> 0'
// returns true if point r is on the left side of line pq
bool ccw(point p, point q, point r) {
return cross(toVec(p, q), toVec(p, r)) > 0; }
// returns true if point r is on the same line as the line pq
bool collinear(point p, point q, point r) {
return fabs(cross(toVec(p, q), toVec(p, r))) < EPS; }
int main() {
int t; cin >> t;
while(t--) {
double x1, y1, x2, y2;
cin >> x1 >> y1 >> x2 >> y2;
// ++x1;++x2;++y1;++y2;
point p1(x1, y1), p2(x2, y2), p3;
int n; cin >> n;
double minDist = INF;
vector<string> cities(n);
vector<double> dists(n);
for(int i = 0; i < n; i++) {
cin >> cities[i];
double cx, cy; cin >> cx >> cy;
// ++cx;++cy;
point pc(cx, cy);
double dist = distToLine(pc, p1, p2, p3);
dists[i] = dist;
if(dist <= minDist - EPS)
minDist = dist;
}
for(int i = 0; i < n; i++) {
if(abs(dists[i] - minDist) < EPS)
cout << cities[i] << ' ';
}
cout << endl;
}
}