-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathroberthood.cpp
168 lines (142 loc) · 6.49 KB
/
roberthood.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
#include <bits/stdc++.h>
using namespace std;
#define EPS 1e-9
#define PI acos(-1.0)
float DEG_to_RAD(float d) { return d * PI / 180.0; }
float RAD_to_DEG(float r) { return r * 180.0 / PI; }
struct point { float x, y; // only used if more precision is needed
point() { x = y = 0.0; } // default constructor
point(float _x, float _y) : x(_x), y(_y) {} // user-defined
bool operator == (point other) const {
return (fabs(x - other.x) < EPS && (fabs(y - other.y) < EPS)); } };
struct vec { float x, y; // name: `vec' is different from STL vector
vec(float _x, float _y) : x(_x), y(_y) {} };
vec toVec(point a, point b) { // convert 2 points to vector a->b
return vec(b.x - a.x, b.y - a.y); }
float dist(point p1, point p2) { // Euclidean distance
return hypot(p1.x - p2.x, p1.y - p2.y); } // return float
// returns the perimeter, which is the sum of Euclidian distances
// of consecutive line segments (polygon edges)
float perimeter(const vector<point> &P) {
float result = 0.0;
for (int i = 0; i < (int)P.size()-1; i++) // remember that P[0] = P[n-1]
result += dist(P[i], P[i+1]);
return result; }
// returns the area, which is half the determinant
float area(const vector<point> &P) {
float result = 0.0, x1, y1, x2, y2;
for (int i = 0; i < (int)P.size()-1; i++) {
x1 = P[i].x; x2 = P[i+1].x;
y1 = P[i].y; y2 = P[i+1].y;
result += (x1 * y2 - x2 * y1);
}
return fabs(result) / 2.0; }
float dot(vec a, vec b) { return (a.x * b.x + a.y * b.y); }
float norm_sq(vec v) { return v.x * v.x + v.y * v.y; }
float angle(point a, point o, point b) { // returns angle aob in rad
vec oa = toVec(o, a), ob = toVec(o, b);
return acos(dot(oa, ob) / sqrt(norm_sq(oa) * norm_sq(ob))); }
float cross(vec a, vec b) { return a.x * b.y - a.y * b.x; }
// note: to accept collinear points, we have to change the `> 0'
// returns true if point r is on the left side of line pq
bool ccw(point p, point q, point r) {
return cross(toVec(p, q), toVec(p, r)) > 0; }
// returns true if point r is on the same line as the line pq
bool collinear(point p, point q, point r) {
return fabs(cross(toVec(p, q), toVec(p, r))) < EPS; }
// returns true if we always make the same turn while examining
// all the edges of the polygon one by one
bool isConvex(const vector<point> &P) {
int sz = (int)P.size();
if (sz <= 3) return false; // a point/sz=2 or a line/sz=3 is not convex
bool isLeft = ccw(P[0], P[1], P[2]); // remember one result
for (int i = 1; i < sz-1; i++) // then compare with the others
if (ccw(P[i], P[i+1], P[(i+2) == sz ? 1 : i+2]) != isLeft)
return false; // different sign -> this polygon is concave
return true; } // this polygon is convex
// returns true if point p is in either convex/concave polygon P
bool inPolygon(point pt, const vector<point> &P) {
if ((int)P.size() == 0) return false;
float sum = 0; // assume the first vertex is equal to the last vertex
for (int i = 0; i < (int)P.size()-1; i++) {
if (ccw(pt, P[i], P[i+1]))
sum += angle(P[i], pt, P[i+1]); // left turn/ccw
else sum -= angle(P[i], pt, P[i+1]); } // right turn/cw
return fabs(fabs(sum) - 2*PI) < EPS; }
// line segment p-q intersect with line A-B.
point lineIntersectSeg(point p, point q, point A, point B) {
float a = B.y - A.y;
float b = A.x - B.x;
float c = B.x * A.y - A.x * B.y;
float u = fabs(a * p.x + b * p.y + c);
float v = fabs(a * q.x + b * q.y + c);
return point((p.x * v + q.x * u) / (u+v), (p.y * v + q.y * u) / (u+v)); }
// cuts polygon Q along the line formed by point a -> point b
// (note: the last point must be the same as the first point)
vector<point> cutPolygon(point a, point b, const vector<point> &Q) {
vector<point> P;
for (int i = 0; i < (int)Q.size(); i++) {
float left1 = cross(toVec(a, b), toVec(a, Q[i])), left2 = 0;
if (i != (int)Q.size()-1) left2 = cross(toVec(a, b), toVec(a, Q[i+1]));
if (left1 > -EPS) P.push_back(Q[i]); // Q[i] is on the left of ab
if (left1 * left2 < -EPS) // edge (Q[i], Q[i+1]) crosses line ab
P.push_back(lineIntersectSeg(Q[i], Q[i+1], a, b));
}
if (!P.empty() && !(P.back() == P.front()))
P.push_back(P.front()); // make P's first point = P's last point
return P; }
point pivot;
bool angleCmp(point a, point b) { // angle-sorting function
if (collinear(pivot, a, b)) // special case
return dist(pivot, a) < dist(pivot, b); // check which one is closer
float d1x = a.x - pivot.x, d1y = a.y - pivot.y;
float d2x = b.x - pivot.x, d2y = b.y - pivot.y;
return (atan2(d1y, d1x) - atan2(d2y, d2x)) < 0; } // compare two angles
vector<point> CH(vector<point> P) { // the content of P may be reshuffled
int i, j, n = (int)P.size();
if (n <= 3) {
if (!(P[0] == P[n-1])) P.push_back(P[0]); // safeguard from corner case
return P; // special case, the CH is P itself
}
// first, find P0 = point with lowest Y and if tie: rightmost X
int P0 = 0;
for (i = 1; i < n; i++)
if (P[i].y < P[P0].y || (P[i].y == P[P0].y && P[i].x > P[P0].x))
P0 = i;
point temp = P[0]; P[0] = P[P0]; P[P0] = temp; // swap P[P0] with P[0]
// second, sort points by angle w.r.t. pivot P0
pivot = P[0]; // use this global variable as reference
sort(++P.begin(), P.end(), angleCmp); // we do not sort P[0]
// third, the ccw tests
vector<point> S;
S.push_back(P[n-1]); S.push_back(P[0]); S.push_back(P[1]); // initial S
i = 2; // then, we check the rest
while (i < n) { // note: N must be >= 3 for this method to work
j = (int)S.size()-1;
if (ccw(S[j-1], S[j], P[i])) S.push_back(P[i++]); // left turn, accept
else S.pop_back(); } // or pop the top of S until we have a left turn
return S; }
int main() {
int n; cin >> n;
vector<point> p;
for(int i = 0; i < n; i++) {
int x, y; cin >> x >> y;
p.push_back(point(x, y));
}
float maxDist = 0;
if(p.size() > 20) {
vector<point> ch = CH(p);
for(int i = 0; i < ch.size(); i++) {
for(int j = i+1; j < ch.size(); j++) {
maxDist = max(maxDist, dist(ch[i], ch[j]));
}
}
} else {
for(int i = 0; i < p.size(); i++) {
for(int j = i+1; j < p.size(); j++) {
maxDist = max(maxDist, dist(p[i], p[j]));
}
}
}
printf("%.8f\n", maxDist);
}