@@ -166,7 +166,7 @@ def _kurtosis_excluding_i(self, i: int) -> float:
166
166
)
167
167
168
168
def jackknife_mean (self ) -> float :
169
- """Compute the statistical uncertainty of the mean using the remove-one jackknife.
169
+ r """Compute the statistical uncertainty of the mean using the remove-one jackknife.
170
170
If there is only one initial state (for example if $\mu = \infty$), zero uncertainty
171
171
is returned.
172
172
"""
@@ -176,7 +176,7 @@ def jackknife_mean(self) -> float:
176
176
return np .std (mean_i ) * np .sqrt (self .num_initial_states - 1 )
177
177
178
178
def jackknife_variance (self ) -> float :
179
- """Compute the statistical uncertainty of the variance using the remove-one jackknife.
179
+ r """Compute the statistical uncertainty of the variance using the remove-one jackknife.
180
180
If there is only one initial state (for example if $\mu = \infty$), zero uncertainty
181
181
is returned.
182
182
"""
@@ -188,7 +188,7 @@ def jackknife_variance(self) -> float:
188
188
return np .std (variance_i ) * np .sqrt (self .num_initial_states - 1 )
189
189
190
190
def jackknife_skew (self ) -> float :
191
- """Compute the statistical uncertainty of the skewness using the remove-one jackknife.
191
+ r """Compute the statistical uncertainty of the skewness using the remove-one jackknife.
192
192
If there is only one initial state (for example if $\mu = \infty$), zero uncertainty
193
193
is returned.
194
194
"""
@@ -198,7 +198,7 @@ def jackknife_skew(self) -> float:
198
198
return np .std (skew_i ) * np .sqrt (self .num_initial_states - 1 )
199
199
200
200
def jackknife_kurtosis (self ) -> float :
201
- """Compute the statistical uncertainty of the kurtosis using the remove-one jackknife.
201
+ r """Compute the statistical uncertainty of the kurtosis using the remove-one jackknife.
202
202
If there is only one initial state (for example if $\mu = \infty$), zero uncertainty
203
203
is returned.
204
204
"""
@@ -234,7 +234,7 @@ def plot_histogram(self, ax: Optional[Union[None, plt.Axes]] = None) -> plt.Axes
234
234
edgecolor = "k" ,
235
235
)
236
236
ax .tick_params (direction = "in" , top = True , right = True )
237
- ax .set_xlabel ("Number of 1s that crossed center, $\mathcal{M}/2$" )
237
+ ax .set_xlabel (r "Number of 1s that crossed center, $\mathcal{M}/2$" )
238
238
ax .set_ylabel ("Probability" )
239
239
return ax
240
240
@@ -382,13 +382,13 @@ def plot_histogram(self, ax: Optional[Union[None, plt.Axes]] = None) -> plt.Axes
382
382
edgecolor = "k" ,
383
383
)
384
384
ax .tick_params (direction = "in" , top = True , right = True )
385
- ax .set_xlabel ("Number of 1s that crossed center, $\mathcal{M}/2$" )
385
+ ax .set_xlabel (r "Number of 1s that crossed center, $\mathcal{M}/2$" )
386
386
ax .set_ylabel ("Probability" )
387
387
return ax
388
388
389
389
390
390
class KPZExperiment :
391
- """A class for running/simulating the KPZ experiment.
391
+ r """A class for running/simulating the KPZ experiment.
392
392
393
393
This class implements 1D Floquet XXZ dynamics, realized as alternating layers of fSim
394
394
gates. The initial states, parameterized by mu, interpolate between an
0 commit comments