-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathclassify_nsfw.py
129 lines (107 loc) · 4.33 KB
/
classify_nsfw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
"""
Copyright 2016 Yahoo Inc.
Licensed under the terms of the 2 clause BSD license.
Please see LICENSE-yahoo.txt in the project root for the terms.
"""
import argparse
import sys
from io import BytesIO
import caffe
import numpy as np
from PIL import Image
def resize_image(img_data, size=(256, 256)):
"""
Resize image. Please use this resize logic for best results, as it was used
to generate the training dataset.
:param bytes data:
The image data
:param size tuple:
The resized image dimensions
:returns bytearray:
A byte array with the resized image
"""
im = Image.open(BytesIO(img_data))
if im.mode != "RGB":
im = im.convert("RGB")
imr = im.resize(size, resample=Image.BILINEAR)
fh_im = BytesIO()
imr.save(fh_im, format="JPEG")
fh_im.seek(0)
return bytearray(fh_im.read())
def caffe_preprocess_and_compute(pimg, caffe_transformer=None, caffe_net=None, output_layers=None):
"""
Run a Caffe network on an input image after preprocessing it to prepare
it for Caffe.
:param PIL.Image pimg:
PIL image to be input into Caffe.
:param caffe.Net caffe_net:
A Caffe network with which to process pimg after preprocessing.
:param list output_layers:
A list of the names of the layers from caffe_net whose outputs are to
to be returned. If this is None, the default outputs for the network
are returned.
:return:
Returns the requested outputs from the Caffe net.
"""
if caffe_net is not None:
# Grab the default output names if none were requested specifically.
if output_layers is None:
output_layers = caffe_net.outputs
img_data_rs = resize_image(pimg, size=(256, 256))
image = caffe.io.load_image(BytesIO(img_data_rs))
H, W, _ = image.shape
_, _, h, w = caffe_net.blobs["data"].data.shape
h_off = max((H - h) // 2, 0)
w_off = max((W - w) // 2, 0)
crop = image[h_off:h_off + h, w_off:w_off + w, :]
transformed_image = caffe_transformer.preprocess("data", crop)
transformed_image.shape = (1,) + transformed_image.shape
input_name = caffe_net.inputs[0]
all_outputs = caffe_net.forward_all(blobs=output_layers,
**{input_name: transformed_image})
outputs = all_outputs[output_layers[0]][0].astype(float)
return outputs
else:
return []
def load_model(model_def=None, pretrained_model=None):
if model_def is None:
model_def = "nsfw_model/deploy.prototxt"
if pretrained_model is None:
pretrained_model = "nsfw_model/resnet_50_1by2_nsfw.caffemodel"
# Pre-load caffe model.
nsfw_net = caffe.Net(model_def, pretrained_model, caffe.TEST)
# Load transformer
# Note that the parameters are hard-coded for best results
caffe_transformer = caffe.io.Transformer({"data": nsfw_net.blobs["data"].data.shape})
caffe_transformer.set_transpose("data", (2, 0, 1)) # move image channels to outermost
caffe_transformer.set_mean("data", np.array([104, 117, 123])) # subtract the dataset-mean value in each channel
caffe_transformer.set_raw_scale("data", 255) # rescale from [0, 1] to [0, 255]
caffe_transformer.set_channel_swap("data", (2, 1, 0)) # swap channels from RGB to BGR
return nsfw_net, caffe_transformer
def main(argv):
parser = argparse.ArgumentParser()
# Required arguments: input file.
parser.add_argument(
"input_file",
help="Path to the input image file"
)
# Optional arguments.
parser.add_argument(
"--model_def",
help="Model definition file."
)
parser.add_argument(
"--pretrained_model",
help="Trained model weights file."
)
args = parser.parse_args()
nsfw_net, caffe_transformer = load_model(args.model_def, args.pretrained_model)
image = open(args.input_file, "rb").read()
# Classify.
scores = caffe_preprocess_and_compute(image, caffe_transformer=caffe_transformer, caffe_net=nsfw_net, output_layers=["prob"])
# Scores is the array containing SFW / NSFW image probabilities
# scores[1] indicates the NSFW probability
nsfw_prob = scores[1]
print("NSFW score: {}".format(nsfw_prob.astype(str)))
if __name__ == "__main__":
main(sys.argv)