-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path7_best_time_to_buy_stocks_IV.py
67 lines (57 loc) · 2.47 KB
/
7_best_time_to_buy_stocks_IV.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
class Solution(object):
def maxProfit(self, K, prices):
n = len(prices)
def recursiveApproach(day, k, brought):
if day == n or k == 0:
return 0
maxProfit = 0
if brought == 0:
buyNow = -prices[day] + recursiveApproach(day + 1, k, 1)
dontBuyNow = recursiveApproach(day + 1, k, 0)
maxProfit = max(buyNow, dontBuyNow)
else:
sellNow = prices[day] + recursiveApproach(day + 1, k - 1, 0)
dontSellNow = recursiveApproach(day + 1, k, 1)
maxProfit = max(sellNow, dontSellNow)
return maxProfit
cache = []
for i in range(n + 1):
row = []
for j in range(K + 1):
col = []
for r in range(2):
col.append(0)
row.append(col)
cache.append(row)
def memoizationApproach(day, k, brought):
if day == n or k == 0:
return 0
elif cache[day][k][brought] != -1:
return cache[day][k][brought]
maxProfit = 0
if brought == 0:
buyNow = -prices[day] + memoizationApproach(day + 1, k, 1)
dontBuyNow = memoizationApproach(day + 1, k, 0)
maxProfit = max(buyNow, dontBuyNow)
else:
sellNow = prices[day] + memoizationApproach(day + 1, k - 1, 0)
dontSellNow = memoizationApproach(day + 1, k, 1)
maxProfit = max(sellNow, dontSellNow)
cache[day][k][brought] = maxProfit
return maxProfit
def tabulationApproach():
for day in range(n - 1, -1, -1):
for k in range(1, K + 1):
for brought in range(2):
maxProfit = 0
if brought == 0:
buyNow = -prices[day] + cache[day + 1][k][1]
dontBuyNow = cache[day + 1][k][0]
maxProfit = max(buyNow, dontBuyNow)
else:
sellNow = prices[day] + cache[day + 1][k - 1][0]
dontSellNow = cache[day + 1][k][1]
maxProfit = max(sellNow, dontSellNow)
cache[day][k][brought] = maxProfit
return cache[0][k][0]
return tabulationApproach()