-
Notifications
You must be signed in to change notification settings - Fork 5k
/
Copy pathapp.py
78 lines (59 loc) · 2.36 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright (c) Sebastian Raschka under Apache License 2.0 (see LICENSE.txt).
# Source for "Build a Large Language Model From Scratch"
# - https://www.manning.com/books/build-a-large-language-model-from-scratch
# Code: https://github.com/rasbt/LLMs-from-scratch
from pathlib import Path
import sys
import tiktoken
import torch
import chainlit
from previous_chapters import (
classify_review,
GPTModel
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def get_model_and_tokenizer():
"""
Code to load finetuned GPT-2 model generated in chapter 6.
This requires that you run the code in chapter 6 first, which generates the necessary model.pth file.
"""
GPT_CONFIG_124M = {
"vocab_size": 50257, # Vocabulary size
"context_length": 1024, # Context length
"emb_dim": 768, # Embedding dimension
"n_heads": 12, # Number of attention heads
"n_layers": 12, # Number of layers
"drop_rate": 0.1, # Dropout rate
"qkv_bias": True # Query-key-value bias
}
tokenizer = tiktoken.get_encoding("gpt2")
model_path = Path("..") / "01_main-chapter-code" / "review_classifier.pth"
if not model_path.exists():
print(
f"Could not find the {model_path} file. Please run the chapter 6 code"
" (ch06.ipynb) to generate the review_classifier.pth file."
)
sys.exit()
# Instantiate model
model = GPTModel(GPT_CONFIG_124M)
# Convert model to classifier as in section 6.5 in ch06.ipynb
num_classes = 2
model.out_head = torch.nn.Linear(in_features=GPT_CONFIG_124M["emb_dim"], out_features=num_classes)
# Then load model weights
checkpoint = torch.load(model_path, map_location=device, weights_only=True)
model.load_state_dict(checkpoint)
model.to(device)
model.eval()
return tokenizer, model
# Obtain the necessary tokenizer and model files for the chainlit function below
tokenizer, model = get_model_and_tokenizer()
@chainlit.on_message
async def main(message: chainlit.Message):
"""
The main Chainlit function.
"""
user_input = message.content
label = classify_review(user_input, model, tokenizer, device, max_length=120)
await chainlit.Message(
content=f"{label}", # This returns the model response to the interface
).send()