-
Notifications
You must be signed in to change notification settings - Fork 1.4k
/
ch13_part2.py
290 lines (160 loc) · 6.48 KB
/
ch13_part2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
# coding: utf-8
import sys
from python_environment_check import check_packages
import numpy as np
import torch
import torch.nn as nn
import pandas as pd
import sklearn
import sklearn.model_selection
from torch.nn.functional import one_hot
from torch.utils.data import DataLoader, TensorDataset
import torchvision
from torchvision import transforms
# # Machine Learning with PyTorch and Scikit-Learn
# # -- Code Examples
# ## Package version checks
# Add folder to path in order to load from the check_packages.py script:
sys.path.insert(0, '..')
# Check recommended package versions:
d = {
'numpy': '1.21.2',
'pandas': '1.3.2',
'sklearn': '1.0',
'torch': '1.8',
'torchvision': '0.9.0'
}
check_packages(d)
# # Chapter 13: Going Deeper -- the Mechanics of PyTorch (Part 2/3)
# **Outline**
#
# - [Project one - predicting the fuel efficiency of a car](#Project-one----predicting-the-fuel-efficiency-of-a-car)
# - [Working with feature columns](#Working-with-feature-columns)
# - [Training a DNN regression model](#Training-a-DNN-regression-model)
# - [Project two - classifying MNIST handwritten digits](#Project-two----classifying-MNIST-handwritten-digits)
# ## Project one - predicting the fuel efficiency of a car
#
# ### Working with feature columns
#
#
url = 'http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data'
column_names = ['MPG', 'Cylinders', 'Displacement', 'Horsepower', 'Weight',
'Acceleration', 'Model Year', 'Origin']
df = pd.read_csv(url, names=column_names,
na_values = "?", comment='\t',
sep=" ", skipinitialspace=True)
df.tail()
print(df.isna().sum())
df = df.dropna()
df = df.reset_index(drop=True)
df.tail()
df_train, df_test = sklearn.model_selection.train_test_split(df, train_size=0.8, random_state=1)
train_stats = df_train.describe().transpose()
train_stats
numeric_column_names = ['Cylinders', 'Displacement', 'Horsepower', 'Weight', 'Acceleration']
df_train_norm, df_test_norm = df_train.copy(), df_test.copy()
for col_name in numeric_column_names:
mean = train_stats.loc[col_name, 'mean']
std = train_stats.loc[col_name, 'std']
df_train_norm.loc[:, col_name] = (df_train_norm.loc[:, col_name] - mean)/std
df_test_norm.loc[:, col_name] = (df_test_norm.loc[:, col_name] - mean)/std
df_train_norm.tail()
boundaries = torch.tensor([73, 76, 79])
v = torch.tensor(df_train_norm['Model Year'].values)
df_train_norm['Model Year Bucketed'] = torch.bucketize(v, boundaries, right=True)
v = torch.tensor(df_test_norm['Model Year'].values)
df_test_norm['Model Year Bucketed'] = torch.bucketize(v, boundaries, right=True)
numeric_column_names.append('Model Year Bucketed')
total_origin = len(set(df_train_norm['Origin']))
origin_encoded = one_hot(torch.from_numpy(df_train_norm['Origin'].values) % total_origin)
x_train_numeric = torch.tensor(df_train_norm[numeric_column_names].values)
x_train = torch.cat([x_train_numeric, origin_encoded], 1).float()
origin_encoded = one_hot(torch.from_numpy(df_test_norm['Origin'].values) % total_origin)
x_test_numeric = torch.tensor(df_test_norm[numeric_column_names].values)
x_test = torch.cat([x_test_numeric, origin_encoded], 1).float()
y_train = torch.tensor(df_train_norm['MPG'].values).float()
y_test = torch.tensor(df_test_norm['MPG'].values).float()
train_ds = TensorDataset(x_train, y_train)
batch_size = 8
torch.manual_seed(1)
train_dl = DataLoader(train_ds, batch_size, shuffle=True)
hidden_units = [8, 4]
input_size = x_train.shape[1]
all_layers = []
for hidden_unit in hidden_units:
layer = nn.Linear(input_size, hidden_unit)
all_layers.append(layer)
all_layers.append(nn.ReLU())
input_size = hidden_unit
all_layers.append(nn.Linear(hidden_units[-1], 1))
model = nn.Sequential(*all_layers)
model
loss_fn = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.001)
torch.manual_seed(1)
num_epochs = 200
log_epochs = 20
for epoch in range(num_epochs):
loss_hist_train = 0
for x_batch, y_batch in train_dl:
pred = model(x_batch)[:, 0]
loss = loss_fn(pred, y_batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()
loss_hist_train += loss.item()
if epoch % log_epochs==0:
print(f'Epoch {epoch} Loss {loss_hist_train/len(train_dl):.4f}')
with torch.no_grad():
pred = model(x_test.float())[:, 0]
loss = loss_fn(pred, y_test)
print(f'Test MSE: {loss.item():.4f}')
print(f'Test MAE: {nn.L1Loss()(pred, y_test).item():.4f}')
# ## Project two - classifying MNIST hand-written digits
image_path = './'
transform = transforms.Compose([transforms.ToTensor()])
mnist_train_dataset = torchvision.datasets.MNIST(root=image_path,
train=True,
transform=transform,
download=True)
mnist_test_dataset = torchvision.datasets.MNIST(root=image_path,
train=False,
transform=transform,
download=False)
batch_size = 64
torch.manual_seed(1)
train_dl = DataLoader(mnist_train_dataset, batch_size, shuffle=True)
hidden_units = [32, 16]
image_size = mnist_train_dataset[0][0].shape
input_size = image_size[0] * image_size[1] * image_size[2]
all_layers = [nn.Flatten()]
for hidden_unit in hidden_units:
layer = nn.Linear(input_size, hidden_unit)
all_layers.append(layer)
all_layers.append(nn.ReLU())
input_size = hidden_unit
all_layers.append(nn.Linear(hidden_units[-1], 10))
model = nn.Sequential(*all_layers)
model
loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
torch.manual_seed(1)
num_epochs = 20
for epoch in range(num_epochs):
accuracy_hist_train = 0
for x_batch, y_batch in train_dl:
pred = model(x_batch)
loss = loss_fn(pred, y_batch)
loss.backward()
optimizer.step()
optimizer.zero_grad()
is_correct = (torch.argmax(pred, dim=1) == y_batch).float()
accuracy_hist_train += is_correct.sum()
accuracy_hist_train /= len(train_dl.dataset)
print(f'Epoch {epoch} Accuracy {accuracy_hist_train:.4f}')
pred = model(mnist_test_dataset.data / 255.)
is_correct = (torch.argmax(pred, dim=1) == mnist_test_dataset.targets).float()
print(f'Test accuracy: {is_correct.mean():.4f}')
# ---
#
# Readers may ignore the next cell.