40
40
X_breast , y_breast = breast_cancer .data [:, 1 :3 ], breast_cancer .target
41
41
42
42
43
- @pytest .mark .skip (
44
- reason = "scikit-learn implemented a StackingClassifier in 0.22. It has built-in cross-validation."
45
- )
46
43
def test_StackingCVClassifier ():
47
44
np .random .seed (123 )
48
45
meta = LogisticRegression (multi_class = "ovr" , solver = "liblinear" )
@@ -174,9 +171,7 @@ def test_no_weight_support_with_no_weight():
174
171
sclf .fit (X_iris , y_iris )
175
172
176
173
177
- @pytest .mark .skip (
178
- reason = "scikit-learn implemented a StackingClassifier in 0.22. It has built-in cross-validation."
179
- )
174
+
180
175
def test_StackingClassifier_proba ():
181
176
np .random .seed (12 )
182
177
meta = LogisticRegression (multi_class = "ovr" , solver = "liblinear" )
@@ -245,9 +240,6 @@ def test_gridsearch_enumerate_names():
245
240
grid = grid .fit (X , y )
246
241
247
242
248
- @pytest .mark .skip (
249
- reason = "scikit-learn implemented a StackingClassifier in 0.22. It has built-in cross-validation."
250
- )
251
243
def test_use_probas ():
252
244
np .random .seed (123 )
253
245
meta = LogisticRegression (multi_class = "ovr" , solver = "liblinear" )
@@ -262,9 +254,6 @@ def test_use_probas():
262
254
assert scores_mean == 0.94 , scores_mean
263
255
264
256
265
- @pytest .mark .skip (
266
- reason = "scikit-learn implemented a StackingClassifier in 0.22. It has built-in cross-validation."
267
- )
268
257
def test_use_features_in_secondary ():
269
258
np .random .seed (123 )
270
259
meta = LogisticRegression (multi_class = "ovr" , solver = "liblinear" )
@@ -282,9 +271,6 @@ def test_use_features_in_secondary():
282
271
assert scores_mean == 0.93 , scores_mean
283
272
284
273
285
- @pytest .mark .skip (
286
- reason = "scikit-learn implemented a StackingClassifier in 0.22. It has built-in cross-validation."
287
- )
288
274
def test_do_not_stratify ():
289
275
meta = LogisticRegression (multi_class = "ovr" , solver = "liblinear" )
290
276
clf1 = RandomForestClassifier (n_estimators = 10 )
@@ -298,9 +284,6 @@ def test_do_not_stratify():
298
284
assert scores_mean == 0.93 , scores .mean ()
299
285
300
286
301
- @pytest .mark .skip (
302
- reason = "scikit-learn implemented a StackingClassifier in 0.22. It has built-in cross-validation."
303
- )
304
287
def test_cross_validation_technique ():
305
288
# This is like the `test_do_not_stratify` but instead
306
289
# autogenerating the cross validation strategy it provides
@@ -640,9 +623,6 @@ def test_works_with_df_if_fold_indexes_missing():
640
623
)
641
624
642
625
643
- @pytest .mark .skip (
644
- reason = "scikit-learn implemented a StackingClassifier in 0.22. It has built-in cross-validation."
645
- )
646
626
def test_decision_function ():
647
627
np .random .seed (123 )
648
628
0 commit comments