-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdivide.js
231 lines (210 loc) · 5.8 KB
/
divide.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
/*jshint esversion: 6 */
/*jshint asi*/
import {
Command,
GUI,
Integer,
String,
Boolean,
Key,
Control,
Input,
} from "../libraries/gui/gui.js";
import { getLargeCanvas } from "../libraries/misc.js";
import { colorKmeans } from "../libraries/colorKmeans.js";
// Rectangular treemap representing colours in each colour cluster for a naive k-means to find dominant colours in an image. It adjustes the number of clusters in case of problems (i.e. empty clusters). Press R to rerun from start
const sketch = (s) => {
let baseImage;
let gui, palette;
let numClusters = 8;
let colors = [],
centroids,
closeColors,
withText = false,
kmeans = false;
let imageW, imageH, canvas;
s.preload = () => {
baseImage = s.loadImage("../resources/gw.jpg");
};
function prepareImageAndDisplay(image) {
let { w, h } = getLargeCanvas(s, 1600);
if (canvas) canvas.remove();
if (image.height > image.width) {
image.resize(0, h);
} else {
image.resize(w, 0);
}
w = Math.min(w, image.width);
h = Math.min(h, image.height);
imageW = w;
imageH = h;
canvas = s.createCanvas(w, h).id("canvas");
image.loadPixels();
colors = [];
for (let j = 0; j < image.pixels.length; j += 4) {
let r = image.pixels[j];
let g = image.pixels[j + 1];
let b = image.pixels[j + 2];
colors.push([r, g, b]);
}
drawCentroids();
}
function loadImageFromInput(callback) {
return (inputEvent) => {
let filename = inputEvent.target.files[0];
let fr = new FileReader();
fr.onload = (fileEvent) => {
let rawImage = new Image();
rawImage.src = fileEvent.target.result;
rawImage.onload = () => {
let image = s.createImage(rawImage.width, rawImage.height);
image.drawingContext.drawImage(rawImage, 0, 0);
callback(image);
};
};
fr.readAsDataURL(filename);
};
}
s.setup = () => {
prepareImageAndDisplay(baseImage);
gui = createGUI();
gui.toggle();
};
function colorSum(col) {
return s.red(col) + s.green(col) + s.blue(col);
}
function balancedOppositeColor(col) {
let r = 255 - s.red(col);
let g = 255 - s.green(col);
let b = 255 - s.blue(col);
let rev = s.color(r, g, b);
if (Math.abs(colorSum(rev) - colorSum(col)) < 150) {
r -= 40;
g -= 40;
b -= 40;
}
return s.color(r, g, b);
}
function drawRectangle(col, x, y, wi, he) {
s.fill(col);
s.rect(x, y, wi, he);
if (withText) {
s.textAlign(s.CENTER, s.CENTER);
s.fill(balancedOppositeColor(col));
let rs = s.red(col).toString().padStart(2, "0");
let gs = s.green(col).toString().padStart(2, "0");
let bs = s.blue(col).toString().padStart(2, "0");
let text = `(${rs}, ${gs}, ${bs})`;
s.text("RGB" + text, x + wi / 2.0, y + he / 2.0);
palette.push("s.color" + text);
}
}
function drawRectangles() {
s.clear();
let c;
palette = [];
let vertical = true;
let width = imageW;
let height = imageH;
let x = 0;
let y = 0;
centroids.sort((a, b) => -a[3] + b[3]);
for (let c = 0; c < centroids.length; c++) {
let [r, g, b, k] = centroids[c];
let rest = centroids
.slice(c)
.map((a) => a[3])
.reduce((c1, c2) => c1 + c2, 0);
if (vertical) {
let rectW = s.int((width * k) / rest);
rectW = Math.min(rectW, imageW - x);
drawRectangle(s.color(r, g, b), x, y, rectW, height);
width -= rectW;
x += rectW;
} else {
let rectH = s.int((height * k) / rest);
rectH = Math.min(rectH, imageH - y);
drawRectangle(s.color(r, g, b), x, y, width, rectH);
height -= rectH;
y += rectH;
}
vertical = !vertical;
}
if (withText) {
console.log("[" + palette.join(", ") + "]");
}
}
function drawCentroids() {
let c;
[centroids, closeColors] = colorKmeans(colors, numClusters, 15);
drawRectangles();
}
function createGUI() {
let info = `Color frequency treemap based on k-means clustering`;
let subinfo = "";
let S = new Key("s", () => {
s.save("img.png");
});
let saveCmd = new Command(S, "save the canvas");
let R = new Key("r", () => {
drawCentroids();
});
let resetCmd = new Command(R, "recompute");
let C = new Key("c", () => {
withText = !withText;
drawRectangles();
});
let rgbCmd = new Command(C, "show RGB values");
let A = new Key("a", () => {
kmeans = !kmeans;
drawRectangles();
});
let kmeansStates = ["centroids", "close color"];
let kmeansString = new String(() => kmeansStates[kmeans + 0]);
let kmeansControl = new Control([A], "cluster centroid?", kmeansString);
let incC = new Key(")", () => {
numClusters += 1;
drawCentroids();
});
let decC = new Key("(", () => {
if (numClusters >= 1) {
numClusters -= 1;
}
drawCentroids();
});
let numClustersInt = new Integer(() => numClusters);
let numClustersControl = new Control(
[decC, incC],
"+/- num clusters",
numClustersInt,
);
let fileInput = new Input(
"Choose your own image",
"file",
"image/*",
loadImageFromInput((img) => {
s.clear();
prepareImageAndDisplay(img);
}),
);
let gui = new GUI(
"Divide et impera, RB 2020/05",
info,
subinfo,
[resetCmd, saveCmd, rgbCmd],
[kmeansControl, numClustersControl, fileInput],
);
let QM = new Key("?", () => {
gui.toggle();
});
let hide = new Command(QM, "hide this");
gui.addCmd(hide);
gui.update();
return gui;
}
s.keyReleased = () => {
gui.dispatch(s.key);
};
};
p5.disableFriendlyErrors = true;
let p5sketch = new p5(sketch);