-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathsampler.py
163 lines (127 loc) · 5.07 KB
/
sampler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from __future__ import print_function
import argparse
import torch
import numpy as np
from torch.autograd.variable import Variable
from multi_categorical_gans.methods.general.autoencoder import AutoEncoder
from multi_categorical_gans.methods.general.generator import Generator
from multi_categorical_gans.utils.categorical import load_variable_sizes_from_metadata
from multi_categorical_gans.utils.commandline import parse_int_list
from multi_categorical_gans.utils.cuda import to_cuda_if_available, to_cpu_if_available, load_without_cuda
def sample(autoencoder, generator, num_samples, num_features, batch_size=100, noise_size=128, temperature=None,
round_features=False):
autoencoder, generator = to_cuda_if_available(autoencoder, generator)
autoencoder.train(mode=False)
generator.train(mode=False)
samples = np.zeros((num_samples, num_features), dtype=np.float32)
start = 0
while start < num_samples:
with torch.no_grad():
noise = Variable(torch.FloatTensor(batch_size, noise_size).normal_())
noise = to_cuda_if_available(noise)
batch_code = generator(noise)
batch_samples = autoencoder.decode(batch_code, training=False, temperature=temperature)
batch_samples = to_cpu_if_available(batch_samples)
batch_samples = batch_samples.data.numpy()
# if rounding is activated (for ARAE with binary outputs)
if round_features:
batch_samples = np.round(batch_samples)
# do not go further than the desired number of samples
end = min(start + batch_size, num_samples)
# limit the samples taken from the batch based on what is missing
samples[start:end, :] = batch_samples[:min(batch_size, end - start), :]
# move to next batch
start = end
return samples
def main():
options_parser = argparse.ArgumentParser(description="Sample data with ARAE.")
options_parser.add_argument("autoencoder", type=str, help="Autoencoder input file.")
options_parser.add_argument("generator", type=str, help="Generator input file.")
options_parser.add_argument("num_samples", type=int, help="Number of output samples.")
options_parser.add_argument("num_features", type=int, help="Number of output features.")
options_parser.add_argument("data", type=str, help="Output data.")
options_parser.add_argument("--metadata", type=str,
help="Information about the categorical variables in json format.")
options_parser.add_argument(
"--code_size",
type=int,
default=128,
help="Dimension of the autoencoder latent space."
)
options_parser.add_argument(
"--noise_size",
type=int,
default=128,
help="Dimension of the generator input noise."
)
options_parser.add_argument(
"--encoder_hidden_sizes",
type=str,
default="",
help="Size of each hidden layer in the encoder separated by commas (no spaces)."
)
options_parser.add_argument(
"--decoder_hidden_sizes",
type=str,
default="",
help="Size of each hidden layer in the decoder separated by commas (no spaces)."
)
options_parser.add_argument(
"--batch_size",
type=int,
default=100,
help="Amount of samples per batch."
)
options_parser.add_argument(
"--generator_hidden_sizes",
type=str,
default="256,128",
help="Size of each hidden layer in the generator separated by commas (no spaces)."
)
options_parser.add_argument(
"--generator_bn_decay",
type=float,
default=0.01,
help="Generator batch normalization decay."
)
options_parser.add_argument(
"--temperature",
type=float,
default=None,
help="Gumbel-Softmax temperature."
)
options = options_parser.parse_args()
if options.metadata is not None and options.temperature is not None:
variable_sizes = load_variable_sizes_from_metadata(options.metadata)
temperature = options.temperature
else:
variable_sizes = None
temperature = None
autoencoder = AutoEncoder(
options.num_features,
code_size=options.code_size,
encoder_hidden_sizes=parse_int_list(options.encoder_hidden_sizes),
decoder_hidden_sizes=parse_int_list(options.decoder_hidden_sizes),
variable_sizes=variable_sizes
)
load_without_cuda(autoencoder, options.autoencoder)
generator = Generator(
options.noise_size,
options.code_size,
hidden_sizes=parse_int_list(options.generator_hidden_sizes),
bn_decay=options.generator_bn_decay
)
load_without_cuda(generator, options.generator)
data = sample(
autoencoder,
generator,
options.num_samples,
options.num_features,
batch_size=options.batch_size,
noise_size=options.noise_size,
temperature=temperature,
round_features=(temperature is None)
)
np.save(options.data, data)
if __name__ == "__main__":
main()