-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrainer.py
431 lines (350 loc) · 14.2 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
from __future__ import print_function
import argparse
import torch
import numpy as np
from torch.autograd.variable import Variable
from torch.optim import Adam
from multi_categorical_gans.datasets.dataset import Dataset
from multi_categorical_gans.datasets.formats import data_formats, loaders
from multi_categorical_gans.methods.general.autoencoder import AutoEncoder
from multi_categorical_gans.methods.general.generator import Generator
from multi_categorical_gans.methods.general.discriminator import Discriminator
from multi_categorical_gans.methods.general.wgan_gp import calculate_gradient_penalty
from multi_categorical_gans.utils.categorical import load_variable_sizes_from_metadata, categorical_variable_loss
from multi_categorical_gans.utils.commandline import DelayedKeyboardInterrupt, parse_int_list
from multi_categorical_gans.utils.cuda import to_cuda_if_available, to_cpu_if_available
from multi_categorical_gans.utils.initialization import load_or_initialize
from multi_categorical_gans.utils.logger import Logger
def add_noise_to_code(code, noise_radius):
if noise_radius > 0:
means = torch.zeros_like(code)
gauss_noise = torch.normal(means, noise_radius)
return code + to_cuda_if_available(Variable(gauss_noise))
else:
return code
def train(autoencoder,
generator,
discriminator,
train_data,
val_data,
output_ae_path,
output_gen_path,
output_disc_path,
output_loss_path,
batch_size=1000,
start_epoch=0,
num_epochs=1000,
num_ae_steps=1,
num_disc_steps=2,
num_gen_steps=1,
noise_size=128,
l2_regularization=0.001,
learning_rate=0.001,
ae_noise_radius=0.2,
ae_noise_anneal=0.995,
normalize_code=True,
variable_sizes=None,
temperature=None,
penalty=0.1
):
autoencoder, generator, discriminator = to_cuda_if_available(autoencoder, generator, discriminator)
optim_ae = Adam(autoencoder.parameters(), weight_decay=l2_regularization, lr=learning_rate)
optim_gen = Adam(generator.parameters(), weight_decay=l2_regularization, lr=learning_rate)
optim_disc = Adam(discriminator.parameters(), weight_decay=l2_regularization, lr=learning_rate)
logger = Logger(output_loss_path, append=start_epoch > 0)
for epoch_index in range(start_epoch, num_epochs):
logger.start_timer()
# train
autoencoder.train(mode=True)
generator.train(mode=True)
discriminator.train(mode=True)
ae_losses = []
disc_losses = []
gen_losses = []
more_batches = True
train_data_iterator = train_data.batch_iterator(batch_size)
while more_batches:
# train autoencoder
for _ in range(num_ae_steps):
try:
batch = next(train_data_iterator)
except StopIteration:
more_batches = False
break
autoencoder.zero_grad()
batch_original = Variable(torch.from_numpy(batch))
batch_original = to_cuda_if_available(batch_original)
batch_code = autoencoder.encode(batch_original, normalize_code=normalize_code)
batch_code = add_noise_to_code(batch_code, ae_noise_radius)
batch_reconstructed = autoencoder.decode(batch_code, training=True, temperature=temperature)
ae_loss = categorical_variable_loss(batch_reconstructed, batch_original, variable_sizes)
ae_loss.backward()
optim_ae.step()
ae_loss = to_cpu_if_available(ae_loss)
ae_losses.append(ae_loss.data.numpy())
# train discriminator
for _ in range(num_disc_steps):
try:
batch = next(train_data_iterator)
except StopIteration:
more_batches = False
break
discriminator.zero_grad()
autoencoder.zero_grad()
# first train the discriminator only with real data
real_features = Variable(torch.from_numpy(batch))
real_features = to_cuda_if_available(real_features)
real_code = autoencoder.encode(real_features, normalize_code=normalize_code)
real_code = add_noise_to_code(real_code, ae_noise_radius)
real_pred = discriminator(real_code)
real_loss = - real_pred.mean(0).view(1)
real_loss.backward()
# then train the discriminator only with fake data
noise = Variable(torch.FloatTensor(len(batch), noise_size).normal_())
noise = to_cuda_if_available(noise)
fake_code = generator(noise)
fake_code = fake_code.detach() # do not propagate to the generator
fake_pred = discriminator(fake_code)
fake_loss = fake_pred.mean(0).view(1)
fake_loss.backward()
# this is the magic from WGAN-GP
gradient_penalty = calculate_gradient_penalty(discriminator, penalty, real_code, fake_code)
gradient_penalty.backward()
optim_ae.step()
optim_disc.step()
disc_loss = real_loss + fake_loss + gradient_penalty
disc_loss = to_cpu_if_available(disc_loss)
disc_losses.append(disc_loss.data.numpy())
del disc_loss
del gradient_penalty
del fake_loss
del real_loss
# train generator
for _ in range(num_gen_steps):
generator.zero_grad()
noise = Variable(torch.FloatTensor(len(batch), noise_size).normal_())
noise = to_cuda_if_available(noise)
gen_code = generator(noise)
fake_pred = discriminator(gen_code)
fake_loss = - fake_pred.mean(0).view(1)
fake_loss.backward()
optim_gen.step()
fake_loss = to_cpu_if_available(fake_loss)
gen_losses.append(fake_loss.data.numpy()[0])
del fake_loss
# log epoch metrics for current class
logger.log(epoch_index, num_epochs, "autoencoder", "train_mean_loss", np.mean(ae_losses))
logger.log(epoch_index, num_epochs, "discriminator", "train_mean_loss", np.mean(disc_losses))
logger.log(epoch_index, num_epochs, "generator", "train_mean_loss", np.mean(gen_losses))
# save models for the epoch
with DelayedKeyboardInterrupt():
torch.save(autoencoder.state_dict(), output_ae_path)
torch.save(generator.state_dict(), output_gen_path)
torch.save(discriminator.state_dict(), output_disc_path)
logger.flush()
ae_noise_radius *= ae_noise_anneal
logger.close()
def main():
options_parser = argparse.ArgumentParser(description="Train ARAE or MC-ARAE. "
+ "Define 'metadata' and 'temperature' to use MC-ARAE.")
options_parser.add_argument("data", type=str, help="Training data. See 'data_format' parameter.")
options_parser.add_argument("output_autoencoder", type=str, help="Autoencoder output file.")
options_parser.add_argument("output_generator", type=str, help="Generator output file.")
options_parser.add_argument("output_discriminator", type=str, help="Discriminator output file.")
options_parser.add_argument("output_loss", type=str, help="Loss output file.")
options_parser.add_argument("--input_autoencoder", type=str, help="Autoencoder input file.", default=None)
options_parser.add_argument("--input_generator", type=str, help="Generator input file.", default=None)
options_parser.add_argument("--input_discriminator", type=str, help="Discriminator input file.", default=None)
options_parser.add_argument("--metadata", type=str,
help="Information about the categorical variables in json format.")
options_parser.add_argument(
"--validation_proportion", type=float,
default=.1,
help="Ratio of data for validation."
)
options_parser.add_argument(
"--data_format",
type=str,
default="sparse",
choices=data_formats,
help="Either a dense numpy array or a sparse csr matrix."
)
options_parser.add_argument(
"--code_size",
type=int,
default=128,
help="Dimension of the autoencoder latent space."
)
options_parser.add_argument(
"--noise_size",
type=int,
default=128,
help="Dimension of the generator input noise."
)
options_parser.add_argument(
"--encoder_hidden_sizes",
type=str,
default="",
help="Size of each hidden layer in the encoder separated by commas (no spaces)."
)
options_parser.add_argument(
"--decoder_hidden_sizes",
type=str,
default="",
help="Size of each hidden layer in the decoder separated by commas (no spaces)."
)
options_parser.add_argument(
"--batch_size",
type=int,
default=100,
help="Amount of samples per batch."
)
options_parser.add_argument(
"--start_epoch",
type=int,
default=0,
help="Starting epoch."
)
options_parser.add_argument(
"--num_epochs",
type=int,
default=5000,
help="Number of epochs."
)
options_parser.add_argument(
"--l2_regularization",
type=float,
default=0,
help="L2 regularization weight for every parameter."
)
options_parser.add_argument(
"--learning_rate",
type=float,
default=1e-5,
help="Adam learning rate."
)
options_parser.add_argument(
"--generator_hidden_sizes",
type=str,
default="100,100,100",
help="Size of each hidden layer in the generator separated by commas (no spaces)."
)
options_parser.add_argument(
"--bn_decay",
type=float,
default=0.9,
help="Batch normalization decay for the generator and discriminator."
)
options_parser.add_argument(
"--discriminator_hidden_sizes",
type=str,
default="100",
help="Size of each hidden layer in the discriminator separated by commas (no spaces)."
)
options_parser.add_argument(
"--num_autoencoder_steps",
type=int,
default=1,
help="Number of successive training steps for the autoencoder."
)
options_parser.add_argument(
"--num_discriminator_steps",
type=int,
default=1,
help="Number of successive training steps for the discriminator."
)
options_parser.add_argument(
"--num_generator_steps",
type=int,
default=1,
help="Number of successive training steps for the generator."
)
options_parser.add_argument(
"--autoencoder_noise_radius",
type=float,
default=0,
help="Gaussian noise standard deviation for the latent code (autoencoder regularization)."
)
options_parser.add_argument(
"--autoencoder_noise_anneal",
type=float,
default=0.995,
help="Anneal the noise radius by this value after every epoch."
)
options_parser.add_argument(
"--temperature",
type=float,
default=None,
help="Gumbel-Softmax temperature."
)
options_parser.add_argument(
"--penalty",
type=float,
default=0.1,
help="WGAN-GP gradient penalty lambda."
)
options_parser.add_argument("--seed", type=int, help="Random number generator seed.", default=42)
options = options_parser.parse_args()
if options.seed is not None:
np.random.seed(options.seed)
torch.manual_seed(options.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(options.seed)
features = loaders[options.data_format](options.data)
data = Dataset(features)
train_data, val_data = data.split(1.0 - options.validation_proportion)
if options.metadata is not None and options.temperature is not None:
variable_sizes = load_variable_sizes_from_metadata(options.metadata)
temperature = options.temperature
else:
variable_sizes = None
temperature = None
autoencoder = AutoEncoder(
features.shape[1],
code_size=options.code_size,
encoder_hidden_sizes=parse_int_list(options.encoder_hidden_sizes),
decoder_hidden_sizes=parse_int_list(options.decoder_hidden_sizes),
variable_sizes=variable_sizes
)
load_or_initialize(autoencoder, options.input_autoencoder)
generator = Generator(
options.noise_size,
options.code_size,
hidden_sizes=parse_int_list(options.generator_hidden_sizes),
bn_decay=options.bn_decay
)
load_or_initialize(generator, options.input_generator)
discriminator = Discriminator(
options.code_size,
hidden_sizes=parse_int_list(options.discriminator_hidden_sizes),
bn_decay=0, # no batch normalization for the critic
critic=True
)
load_or_initialize(discriminator, options.input_discriminator)
train(
autoencoder,
generator,
discriminator,
train_data,
val_data,
options.output_autoencoder,
options.output_generator,
options.output_discriminator,
options.output_loss,
batch_size=options.batch_size,
start_epoch=options.start_epoch,
num_epochs=options.num_epochs,
num_ae_steps=options.num_autoencoder_steps,
num_disc_steps=options.num_discriminator_steps,
num_gen_steps=options.num_generator_steps,
noise_size=options.noise_size,
l2_regularization=options.l2_regularization,
learning_rate=options.learning_rate,
ae_noise_radius=options.autoencoder_noise_radius,
ae_noise_anneal=options.autoencoder_noise_anneal,
variable_sizes=variable_sizes,
temperature=temperature,
penalty=options.penalty
)
if __name__ == "__main__":
main()