We decided to save the models in models/mc-wgan-gp
and the samples in samples/mc-wgan-gp
.
An example using the MIX SMALL
dataset:
mkdir -p models/mc-wgan-gp/synthetic/mix_small
mkdir -p samples/mc-wgan-gp/synthetic/mix_small
Training:
python multi_categorical_gans/methods/mc_wgan_gp/trainer.py \
--data_format=sparse \
--noise_size=10 \
--batch_size=100 \
--num_epochs=1000 \
--l2_regularization=0 \
--learning_rate=1e-3 \
--generator_hidden_sizes=100,100,100 \
--bn_decay=0.9 \
--discriminator_hidden_sizes=100 \
--num_discriminator_steps=2 \
--num_generator_steps=1 \
--seed=123 \
--penalty=10.0 \
data/synthetic/mix_small/synthetic-train.features.npz \
data/synthetic/mix_small/metadata.json \
models/mc-wgan-gp/synthetic/mix_small/generator.torch \
models/mc-wgan-gp/synthetic/mix_small/discriminator.torch \
models/mc-wgan-gp/synthetic/mix_small/loss.csv
Sampling:
python multi_categorical_gans/methods/mc_wgan_gp/sampler.py \
--noise_size=10 \
--batch_size=1000 \
--generator_hidden_sizes=100,100,100 \
--generator_bn_decay=0.9 \
models/mc-wgan-gp/synthetic/mix_small/generator.torch \
data/synthetic/mix_small/metadata.json \
10000 65 \
samples/mc-wgan-gp/synthetic/mix_small/sample.features.npy