-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathtrainer.py
306 lines (244 loc) · 9.9 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from __future__ import print_function
import argparse
import torch
import numpy as np
from torch.autograd.variable import Variable
from torch.optim import Adam
from multi_categorical_gans.datasets.dataset import Dataset
from multi_categorical_gans.datasets.formats import data_formats, loaders
from multi_categorical_gans.methods.general.discriminator import Discriminator
from multi_categorical_gans.methods.general.generator import Generator
from multi_categorical_gans.methods.general.wgan_gp import calculate_gradient_penalty
from multi_categorical_gans.utils.categorical import load_variable_sizes_from_metadata
from multi_categorical_gans.utils.commandline import DelayedKeyboardInterrupt, parse_int_list
from multi_categorical_gans.utils.cuda import to_cuda_if_available, to_cpu_if_available
from multi_categorical_gans.utils.initialization import load_or_initialize
from multi_categorical_gans.utils.logger import Logger
def train(generator,
discriminator,
train_data,
val_data,
output_gen_path,
output_disc_path,
output_loss_path,
batch_size=1000,
start_epoch=0,
num_epochs=1000,
num_disc_steps=2,
num_gen_steps=1,
noise_size=128,
l2_regularization=0.001,
learning_rate=0.001,
penalty=0.1
):
generator, discriminator = to_cuda_if_available(generator, discriminator)
optim_gen = Adam(generator.parameters(), weight_decay=l2_regularization, lr=learning_rate)
optim_disc = Adam(discriminator.parameters(), weight_decay=l2_regularization, lr=learning_rate)
logger = Logger(output_loss_path, append=start_epoch > 0)
for epoch_index in range(start_epoch, num_epochs):
logger.start_timer()
# train
generator.train(mode=True)
discriminator.train(mode=True)
disc_losses = []
gen_losses = []
more_batches = True
train_data_iterator = train_data.batch_iterator(batch_size)
while more_batches:
# train discriminator
for _ in range(num_disc_steps):
# next batch
try:
batch = next(train_data_iterator)
except StopIteration:
more_batches = False
break
optim_disc.zero_grad()
# first train the discriminator only with real data
real_features = Variable(torch.from_numpy(batch))
real_features = to_cuda_if_available(real_features)
real_pred = discriminator(real_features)
real_loss = - real_pred.mean(0).view(1)
real_loss.backward()
# then train the discriminator only with fake data
noise = Variable(torch.FloatTensor(len(batch), noise_size).normal_())
noise = to_cuda_if_available(noise)
fake_features = generator(noise, training=True)
fake_features = fake_features.detach() # do not propagate to the generator
fake_pred = discriminator(fake_features)
fake_loss = fake_pred.mean(0).view(1)
fake_loss.backward()
# this is the magic from WGAN-GP
gradient_penalty = calculate_gradient_penalty(discriminator, penalty, real_features, fake_features)
gradient_penalty.backward()
# finally update the discriminator weights
# using two separated batches is another trick to improve GAN training
optim_disc.step()
disc_loss = real_loss + fake_loss + gradient_penalty
disc_loss = to_cpu_if_available(disc_loss)
disc_losses.append(disc_loss.data.numpy())
del disc_loss
del gradient_penalty
del fake_loss
del real_loss
# train generator
for _ in range(num_gen_steps):
optim_gen.zero_grad()
noise = Variable(torch.FloatTensor(len(batch), noise_size).normal_())
noise = to_cuda_if_available(noise)
gen_features = generator(noise, training=True)
fake_pred = discriminator(gen_features)
fake_loss = - fake_pred.mean(0).view(1)
fake_loss.backward()
optim_gen.step()
fake_loss = to_cpu_if_available(fake_loss)
gen_losses.append(fake_loss.data.numpy())
del fake_loss
# log epoch metrics for current class
logger.log(epoch_index, num_epochs, "discriminator", "train_mean_loss", np.mean(disc_losses))
logger.log(epoch_index, num_epochs, "generator", "train_mean_loss", np.mean(gen_losses))
# save models for the epoch
with DelayedKeyboardInterrupt():
torch.save(generator.state_dict(), output_gen_path)
torch.save(discriminator.state_dict(), output_disc_path)
logger.flush()
logger.close()
def main():
options_parser = argparse.ArgumentParser(description="Train Gumbel generator and discriminator.")
options_parser.add_argument("data", type=str, help="Training data. See 'data_format' parameter.")
options_parser.add_argument("metadata", type=str,
help="Information about the categorical variables in json format.")
options_parser.add_argument("output_generator", type=str, help="Generator output file.")
options_parser.add_argument("output_discriminator", type=str, help="Discriminator output file.")
options_parser.add_argument("output_loss", type=str, help="Loss output file.")
options_parser.add_argument("--input_generator", type=str, help="Generator input file.", default=None)
options_parser.add_argument("--input_discriminator", type=str, help="Discriminator input file.", default=None)
options_parser.add_argument(
"--validation_proportion", type=float,
default=.1,
help="Ratio of data for validation."
)
options_parser.add_argument(
"--data_format",
type=str,
default="sparse",
choices=data_formats,
help="Either a dense numpy array, a sparse csr matrix or any of those formats in split into several files."
)
options_parser.add_argument(
"--noise_size",
type=int,
default=128,
help=""
)
options_parser.add_argument(
"--batch_size",
type=int,
default=1000,
help="Amount of samples per batch."
)
options_parser.add_argument(
"--start_epoch",
type=int,
default=0,
help="Starting epoch."
)
options_parser.add_argument(
"--num_epochs",
type=int,
default=1000,
help="Number of epochs."
)
options_parser.add_argument(
"--l2_regularization",
type=float,
default=0.001,
help="L2 regularization weight for every parameter."
)
options_parser.add_argument(
"--learning_rate",
type=float,
default=0.001,
help="Adam learning rate."
)
options_parser.add_argument(
"--generator_hidden_sizes",
type=str,
default="256,128",
help="Size of each hidden layer in the generator separated by commas (no spaces)."
)
options_parser.add_argument(
"--bn_decay",
type=float,
default=0.9,
help="Batch normalization decay for the generator and discriminator."
)
options_parser.add_argument(
"--discriminator_hidden_sizes",
type=str,
default="256,128",
help="Size of each hidden layer in the discriminator separated by commas (no spaces)."
)
options_parser.add_argument(
"--num_discriminator_steps",
type=int,
default=2,
help="Number of successive training steps for the discriminator."
)
options_parser.add_argument(
"--num_generator_steps",
type=int,
default=1,
help="Number of successive training steps for the generator."
)
options_parser.add_argument(
"--penalty",
type=float,
default=0.1,
help="WGAN-GP gradient penalty lambda."
)
options_parser.add_argument("--seed", type=int, help="Random number generator seed.", default=42)
options = options_parser.parse_args()
if options.seed is not None:
np.random.seed(options.seed)
torch.manual_seed(options.seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(options.seed)
features = loaders[options.data_format](options.data)
data = Dataset(features)
train_data, val_data = data.split(1.0 - options.validation_proportion)
variable_sizes = load_variable_sizes_from_metadata(options.metadata)
generator = Generator(
options.noise_size,
variable_sizes,
hidden_sizes=parse_int_list(options.generator_hidden_sizes),
bn_decay=options.bn_decay
)
load_or_initialize(generator, options.input_generator)
discriminator = Discriminator(
features.shape[1],
hidden_sizes=parse_int_list(options.discriminator_hidden_sizes),
bn_decay=0, # no batch normalization for the critic
critic=True
)
load_or_initialize(discriminator, options.input_discriminator)
train(
generator,
discriminator,
train_data,
val_data,
options.output_generator,
options.output_discriminator,
options.output_loss,
batch_size=options.batch_size,
start_epoch=options.start_epoch,
num_epochs=options.num_epochs,
num_disc_steps=options.num_discriminator_steps,
num_gen_steps=options.num_generator_steps,
noise_size=options.noise_size,
l2_regularization=options.l2_regularization,
learning_rate=options.learning_rate,
penalty=options.penalty
)
if __name__ == "__main__":
main()