-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathts_encoding.py
88 lines (82 loc) · 3.68 KB
/
ts_encoding.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import pandas as pd
import json
import torch
class ts2DFLoader(torch.nn.Module):
def __init__(self,channel_list,n_sample,frequency,time_use):
super(ts2DFLoader,self).__init__()
self.channel_list=channel_list
time_stamps = [pd.Timedelta(seconds=i / frequency) for i in range(n_sample)]
time_stamps = [str(t.total_seconds()) + 's' for t in time_stamps]
self.time_stamps=time_stamps
self.time_use=time_use
def forward(self,x):
data = x.T
column_names = self.channel_list
df = pd.DataFrame(data, columns=column_names)
DFLoader=dict()
for i in range(len(self.channel_list)):
DFLoader[column_names[i]]=list(df[column_names[i]])
DFLoader=str(DFLoader)
if self.time_use==False:
result = 'pd.DataFrame(' + DFLoader + f',index={df.index.values.tolist()}' + ')'
return result
else:
result = 'pd.DataFrame(' + DFLoader + f',index={self.time_stamps}' + ')'
return result
class ts2html(torch.nn.Module):
def __init__(self,channel_list,n_sample,frequency,time_use):
super(ts2html,self).__init__()
time_stamps = [pd.Timedelta(seconds=i / frequency) for i in range(n_sample)]
time_stamps = [str(t.total_seconds())+'s' for t in time_stamps]
self.time_stamps = time_stamps
self.time_use = time_use
self.channel_list=channel_list
def forward(self,x):
data = x.T
column_names = self.channel_list
if self.time_use==True:
df = pd.DataFrame(data, columns=column_names, index=self.time_stamps)
result = df.to_html(index=True).replace(' ', '')
return result
else:
df = pd.DataFrame(data, columns=column_names)
result = df.to_html(index=True).replace(' ', '')
return result
class ts2json(torch.nn.Module):
def __init__(self,channel_list,n_sample,frequency,time_use):
super(ts2json,self).__init__()
time_stamps = [pd.Timedelta(seconds=i / frequency) for i in range(n_sample)]
time_stamps = [str(t.total_seconds())+'s' for t in time_stamps]
self.time_stamps = time_stamps
self.time_use = time_use
self.channel_list=channel_list
def forward(self,x):
data=x.T
column_names=self.channel_list
if self.time_use==True:
df=pd.DataFrame(data,columns=column_names,index=self.time_stamps)
data = {str(index): row.to_dict() for index, row in df.iterrows()}
return json.dumps(data, indent=4, ensure_ascii=False).replace(' ','')
else:
df = pd.DataFrame(data, columns=column_names)
data = {str(index): row.to_dict() for index, row in df.iterrows()}
return json.dumps(data, indent=4, ensure_ascii=False).replace(' ', '')
class ts2markdown(torch.nn.Module):
def __init__(self, channel_list,n_sample,frequency,time_use):
super(ts2markdown, self).__init__()
time_stamps = [pd.Timedelta(seconds=i / frequency) for i in range(n_sample)]
time_stamps = [str(t.total_seconds()) + 's' for t in time_stamps]
self.time_stamps = time_stamps
self.time_use = time_use
self.channel_list = channel_list
def forward(self, x):
data = x.T
column_names=self.channel_list
if self.time_use == True:
df = pd.DataFrame(data, columns=column_names, index=self.time_stamps)
df = df.to_markdown(index=True).replace(' ','')
return df
else:
df = pd.DataFrame(data, columns=column_names)
df = df.to_markdown(index=True).replace(' ','')
return df