forked from Cubitect/cubiomes
-
Notifications
You must be signed in to change notification settings - Fork 1
/
finders.h
1164 lines (986 loc) · 42.2 KB
/
finders.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifndef FINDERS_H_
#define FINDERS_H_
#include "generator.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#ifdef _WIN32
#include <windows.h>
typedef HANDLE thread_id_t;
#else
#define USE_PTHREAD
#include <pthread.h>
typedef pthread_t thread_id_t;
#endif
#ifdef __cplusplus
extern "C"
{
#endif
#define MASK48 (((int64_t)1 << 48) - 1)
#define PI 3.141592653589793
#define LARGE_STRUCT 1
#define CHUNK_STRUCT 2
enum StructureType
{
Feature, // for locations of temple generation attempts pre 1.13
Desert_Pyramid,
Jungle_Pyramid,
Swamp_Hut,
Igloo,
Village,
Ocean_Ruin,
Shipwreck,
Monument,
Mansion,
Outpost,
Ruined_Portal,
Ruined_Portal_N,
Treasure,
Mineshaft,
Fortress,
Bastion,
End_City,
End_Gateway,
FEATURE_NUM
};
enum // village house types prior to 1.14
{
HouseSmall, Church, Library, WoodHut, Butcher, FarmLarge, FarmSmall,
Blacksmith, HouseLarge, HOUSE_NUM
};
STRUCT(StructureConfig)
{
int salt;
char regionSize;
char chunkRange;
unsigned char structType;
unsigned char properties;
};
#define _sc static const StructureConfig
/* for desert pyramids, jungle temples, witch huts and igloos prior to 1.13 */
_sc FEATURE_CONFIG = { 14357617, 32, 24, Feature, 0};
_sc IGLOO_CONFIG_112 = { 14357617, 32, 24, Igloo, 0};
_sc SWAMP_HUT_CONFIG_112 = { 14357617, 32, 24, Swamp_Hut, 0};
_sc DESERT_PYRAMID_CONFIG_112 = { 14357617, 32, 24, Desert_Pyramid, 0};
_sc JUNGLE_PYRAMID_CONFIG_112 = { 14357617, 32, 24, Jungle_Pyramid, 0};
/* ocean features before 1.16 */
_sc OCEAN_RUIN_CONFIG_115 = { 14357621, 16, 8, Ocean_Ruin, 0};
_sc SHIPWRECK_CONFIG_115 = {165745295, 15, 7, Shipwreck, 0};
/* 1.13 separated feature seeds by type */
_sc DESERT_PYRAMID_CONFIG = { 14357617, 32, 24, Desert_Pyramid, 0};
_sc IGLOO_CONFIG = { 14357618, 32, 24, Igloo, 0};
_sc JUNGLE_PYRAMID_CONFIG = { 14357619, 32, 24, Jungle_Pyramid, 0};
_sc SWAMP_HUT_CONFIG = { 14357620, 32, 24, Swamp_Hut, 0};
_sc OUTPOST_CONFIG = {165745296, 32, 24, Outpost, 0};
_sc VILLAGE_CONFIG = { 10387312, 32, 24, Village, 0};
_sc OCEAN_RUIN_CONFIG = { 14357621, 20, 12, Ocean_Ruin, 0};
_sc SHIPWRECK_CONFIG = {165745295, 24, 20, Shipwreck, 0};
_sc MONUMENT_CONFIG = { 10387313, 32, 27, Monument, LARGE_STRUCT};
_sc MANSION_CONFIG = { 10387319, 80, 60, Mansion, LARGE_STRUCT};
_sc RUINED_PORTAL_CONFIG = { 34222645, 40, 25, Ruined_Portal, 0}; // overworld
_sc RUINED_PORTAL_N_CONFIG = { 34222645, 25, 15, Ruined_Portal_N, 0}; // nether
_sc TREASURE_CONFIG = { 10387320, 1, 1, Treasure, CHUNK_STRUCT};
_sc MINESHAFT_CONFIG = { 0, 1, 1, Mineshaft, CHUNK_STRUCT};
// nether and end structures
_sc FORTRESS_CONFIG_115 = { 0, 16, 8, Fortress, 0};
_sc FORTRESS_CONFIG = { 30084232, 27, 23, Fortress, 0};
_sc BASTION_CONFIG = { 30084232, 27, 23, Bastion, 0};
_sc END_CITY_CONFIG = { 10387313, 20, 9, End_City, LARGE_STRUCT};
// for the scattered return gateways
_sc END_GATEWAY_CONFIG = { 40013, 1, 1, End_Gateway, CHUNK_STRUCT};
#undef _sc
STRUCT(Pos)
{
int x, z;
};
STRUCT(BiomeFilter)
{
// bitfields for biomes required at their respecive layers
uint64_t tempsToFind; // Special (1:1024)
uint64_t otempToFind; // OceanTemp (1:256)
uint64_t majorToFind; // Biome (1:256)
uint64_t edgesToFind; // Edge (1:64) [mod64: as special case for bamboo]
// bitfields for biomes to find at RareBiome(1:64), Shore(1:16) and Mix(1:4)
// layers for (biomeID < 64) and modified (biomeID >= 128 && biomeID < 192)
uint64_t raresToFind, raresToFindM;
uint64_t shoreToFind, shoreToFindM;
uint64_t riverToFind, riverToFindM;
uint64_t oceanToFind; // all required ocean types
int specialCnt; // number of special temperature categories required
};
STRUCT(StrongholdIter)
{
Pos pos; // accurate location of current stronghold
Pos nextapprox; // approxmimate location (+/-112 blocks) of next stronghold
int index; // stronghold index counter
int ringnum; // ring number for index
int ringmax; // max index within ring
int ringidx; // index within ring
double angle; // next angle within ring
double dist; // next distance from origin (in chunks)
uint64_t rnds; // random number seed (48 bit)
int mc; // minecraft version
};
STRUCT(VillageType)
{
char abandoned; // is zombie village
char variant;
int biome;
};
/******************************** SEED FINDING *********************************
*
* If we want to find rare seeds that meet multiple custom criteria then we
* should test each condition, starting with the one that is the cheapest
* to test for, while ruling out the most seeds.
*
* Biome checks are quite expensive and should be applied late in the
* condition chain (to avoid as many unnecessary checks as possible).
* Fortunately we can often rule out vast amounts of seeds before hand.
*/
/***************************** Structure Positions *****************************
*
* For most structure positions, Minecraft divides the world into a grid of
* regions (usually 32x32 chunks) and performs one generation attempt
* somewhere in each region. The position of this attempt is governed by the
* structure type, the region coordiates and the lower 48-bits of the world
* seed. The remaining top 16 bits do not influence structure positions.
* The dependency on the region coordinates is linear for both the X and Z
* directions, which means that the positions of most structures in a world
* can be translated by applying the following transformation to a seed:
*
* seed2 = seed1 - dregX * 341873128712 - dregZ * 132897987541;
*
* Here seed1 and seed2 have the same structure positioning, but moved by a
* region offset of (dregX,dregZ).
*
* Another property of note is that seed1 at region (0,0) is simply the world
* seed plus a constant that is specific to the stucture type (its salt). This
* means that some structure types share quad-bases which are just offset by
* their respective salt differences.
*
*
** Quad-Witch-Huts
*
* For a quad-structure, we mainly care about relative positioning, so we can
* get away with just checking the regions near the origin: (0,0),(0,1),(1,0)
* and (1,1) and then move the structures to the desired position.
*
* Futhermore, the PRNG that determines the chunk positions inside each region,
* performs some modular arithmatic on the 48-bit numbers which causes some
* restrictions on the lower bits when looking for near perfect structure
* positions. This is difficult to prove, but can be used to reduce the number
* of free bits to 28 which can be comfortably brute-forced to get the entire
* set of quad-structure candidates. Each of the seeds found this way
* describes entire set of possible quad-witch-huts (with degrees of freedom
* for region-transposition, as well as the top 16-bit bits).
*/
// lower 20 bits, only the very best constellations
// (the structure salt has to be subtracted before use)
static const uint64_t low20QuadIdeal[] =
{
0x43f18,0xc751a,0xf520a,
};
// lower 20 bits, the classic quad-structure constellations
static const uint64_t low20QuadClassic[] =
{
0x43f18,0x79a0a,0xc751a,0xf520a,
};
// for any valid quad-structure constellation with a structure size:
// (7+1,7+43+1,9+1) which corresponds to a fall-damage based quad-witch-farm,
// but may require a perfect player position
static const uint64_t low20QuadHutNormal[] =
{
0x43f18,0x65118,0x75618,0x79a0a, 0x89718,0x9371a,0xa5a08,0xb5e18,
0xc751a,0xf520a,
};
// for any valid quad-structure constellation with a structure size:
// (7+1,7+1,9+1) which corresponds to quad-witch-farms without drop chute
static const uint64_t low20QuadHutBarely[] =
{
0x1272d,0x17908,0x367b9,0x43f18, 0x487c9,0x487ce,0x50aa7,0x647b5,
0x65118,0x75618,0x79a0a,0x89718, 0x9371a,0x967ec,0xa3d0a,0xa5918,
0xa591d,0xa5a08,0xb5e18,0xc6749, 0xc6d9a,0xc751a,0xd7108,0xd717a,
0xe2739,0xe9918,0xee1c4,0xf520a,
};
//==============================================================================
// Moving Structures
//==============================================================================
/* Transposes a base seed such that structures are moved by the specified region
* vector, (regX, regZ).
*/
static inline uint64_t moveStructure(uint64_t baseSeed, int regX, int regZ)
{
return (baseSeed - regX*341873128712 - regZ*132897987541) & 0xffffffffffff;
}
//==============================================================================
// Saving & Loading Seeds
//==============================================================================
/* Loads a list of seeds from a file. The seeds should be written as decimal
* ASCII numbers separated by newlines.
* @fnam: file path
* @scnt: number of valid seeds found in the file, which is also the number of
* elements in the returned buffer
*
* Return a pointer to a dynamically allocated seed list.
*/
uint64_t *loadSavedSeeds(const char *fnam, uint64_t *scnt);
//==============================================================================
// Finding Structure Positions
//==============================================================================
/* Selects the structure configuration for a given version. Returns zero upon
* failure (e.g. version does not support structure type).
*/
int getStructureConfig(int structureType, int mc, StructureConfig *sconf);
/* The library can be compiled to use a custom internal getter for structure
* configurations. For this, the macro STRUCT_CONFIG_OVERRIDE should be defined
* as true and the function getStructureConfig_override() should be defined
* with a custom function body. However, note this is experimental and not all
* structure configs may work. (Ideally only change structure salts.)
*/
#if STRUCT_CONFIG_OVERRIDE
int getStructureConfig_override(int stype, int mc, StructureConfig *sconf);
#endif
/* Finds the block position of the structure generation attempt in a given
* region. You can use isViableStructurePos() to test if the necessary biome
* requirements are met for the structure to actually generate at that position.
* Some structure types may fail to produce a valid position in the given
* region regardless of biomes, in which case the function returns zero.
*
* @structureType : structure type
* @mc : minecraft version
* @seed : world seed (only the lower 48-bits are relevant)
* @regX,regZ : region coordinates (the region size depends on type)
* @pos : output block position
*
* Returns zero if the position is invalid, or non-zero otherwise.
*/
int getStructurePos(int structureType, int mc, uint64_t seed, int regX, int regZ, Pos *pos);
/* The inline functions below get the generation attempt position given a
* structure configuration. Most small structures use the getFeature..
* variants, which have a uniform distribution, while large structures
* (monuments and mansions) have a triangular distribution.
*/
static inline __attribute__((const))
Pos getFeaturePos(StructureConfig config, uint64_t seed, int regX, int regZ);
static inline __attribute__((const))
Pos getFeatureChunkInRegion(StructureConfig config, uint64_t seed, int regX, int regZ);
static inline __attribute__((const))
Pos getLargeStructurePos(StructureConfig config, uint64_t seed, int regX, int regZ);
static inline __attribute__((const))
Pos getLargeStructureChunkInRegion(StructureConfig config, uint64_t seed, int regX, int regZ);
/* Checks a chunk area, starting at (chunkX, chunkZ) with size (chunkW, chunkH)
* for Mineshaft positions. If not NULL, positions are written to the buffer
* 'out' up to a maximum number of 'nout'. The return value is the number of
* chunks with Mineshafts in the area.
*/
int getMineshafts(int mc, uint64_t seed, int chunkX, int chunkZ,
int chunkW, int chunkH, Pos *out, int nout);
// not exacly a structure
static inline __attribute__((const))
int isSlimeChunk(uint64_t seed, int chunkX, int chunkZ)
{
uint64_t rnd = seed;
rnd += (int)(chunkX * 0x5ac0db);
rnd += (int)(chunkX * chunkX * 0x4c1906);
rnd += (int)(chunkZ * 0x5f24f);
rnd += (int)(chunkZ * chunkZ) * 0x4307a7ULL;
rnd ^= 0x3ad8025fULL;
setSeed(&rnd, rnd);
return nextInt(&rnd, 10) == 0;
}
//==============================================================================
// Multi-Structure-Base Checks
//==============================================================================
/* This function determines if the lower 48-bits of a seed qualify as a
* quad-base. This implies that the four structures in the adjacent regions
* (0,0)-(1,1) will attempt to generate close enough together to be within the
* specified block radius of a single block position. The quad-structure can be
* moved to a different location by applying moveStructure() to the quad-base.
* The upper 16 bits of the seed can be chosen freely, as they do not affect
* structure positions.
*
* This function is a wrapper for more specific filtering functions which can
* be found below. Using the correct quad-base finder directly can be faster as
* it is more likely to avoid code branching and offers more control over the
* quality of the structure positions.
*
* The return value is zero if the seed is not a quad-base, and equal to the
* radius of the enclosing sphere if it is, and can be used as a measure of
* quality for the quad-base (smaller is better).
*/
static inline float isQuadBase(const StructureConfig sconf, uint64_t seed, int radius);
/* Determines if the specified seed qualifies as a quad-base, given a required
* structure size. The structure size should include the actual dimensions of
* the structure and any additional size requirements where despawning shall
* not occur (such as fall damage drop chutes). A smaller size requirement can
* yield more seeds and relax constraints for other structure positions.
* (Since most structures use the same positioning algorithm with an offset,
* this also affects restrictions on the placement of other structure types.)
*
* The function variants are:
* isQuadBaseFeature24Classic() - finds only the classic constellations
* isQuadBaseFeature24() - optimisation for region=32,range=24,radius=128
* isQuadBaseFeature() - for small features (chunkRange not a power of 2)
* isQuadBaseLarge() - for large structures (chunkRange not a power of 2)
*
* The function returns the actual block radius to the furthest block inside
* any of the four structures or zero if the seed does not satisfy the
* quad-base requirements.
*
* @sconf : structure configuration
* @seed : world seed (only the lower 48-bits are relevant)
* @ax,ay,az : required structure size
* @radius : maximum radius for a sphere that encloses all four structures
*
* Implementation sidenote:
* Inline actually matters here, as these functions are not small and compilers
* generally don't want to inline them. However, these functions usually return
* so quickly that the function call is a major contributor to the overall time.
*/
static inline __attribute__((always_inline, const))
float isQuadBaseFeature24Classic (const StructureConfig sconf, uint64_t seed);
static inline __attribute__((always_inline, const))
float isQuadBaseFeature24 (const StructureConfig sconf, uint64_t seed,
int ax, int ay, int az);
static inline __attribute__((always_inline, const))
float isQuadBaseFeature (const StructureConfig sconf, uint64_t seed,
int ax, int ay, int az, int radius);
static inline __attribute__((always_inline, const))
float isQuadBaseLarge (const StructureConfig sconf, uint64_t seed,
int ax, int ay, int az, int radius);
/* Starts a multi-threaded search through all 48-bit seeds. Since this can
* potentially be a lengthy calculation, results can be written to temporary
* files immediately, in order to save progress in case of interruption. Seeds
* are tested using the function 'check' which takes a 48-bit seed and a custom
* 'data' argument. The output can be a dynamically allocated seed buffer
* and/or a destination file [which can be loaded using loadSavedSeeds()].
* Optionally, only a subset of the lower 20 bits are searched.
*
* @seedbuf output seed buffer (nullable for file only)
* @buflen length of output buffer (nullable)
* @path output file path (nullable, also toggles temporary files)
* @threads number of threads to use
* @lowBits lower bit subset (nullable)
* @lowBitCnt length of lower bit subset
* @lowBitN number of bits in the subset values
* @check the testing function, should return non-zero for desired seeds
* @data custon data argument passed to 'check'
*
* Returns zero upon success.
*/
int searchAll48(
uint64_t ** seedbuf,
uint64_t * buflen,
const char * path,
int threads,
const uint64_t * lowBits,
int lowBitCnt,
int lowBitN,
int (*check)(uint64_t s48, void *data),
void * data
);
/* Finds the optimal AFK location for four structures of size (ax,ay,az),
* located at the positions of 'p'. The AFK position is determined by looking
* for whole block coordinates which offer the maximum number of spawning
* spaces on the horizontal plane, which have the vertical structure height, ay,
* inside the enclosing sphere of radius 128 blocks. If there are multiple
* positions of this type (such as when all structures can be enclosed
* completly inside the sphere with some tollerance) then an average of those
* equally valid positions is returned.
*
* @p : positions of the structures
* @ax,ay,az : size of one structure
* @spcnt : output number of planar spawning spaces in reach (nullable)
*
* Returns an optimal block-coordinate to operate a farm.
*/
Pos getOptimalAfk(Pos p[4], int ax, int ay, int az, int *spcnt);
/* Scans the seed 's48' for quad-structures in the given area of region
* coordiantes. The search is performed for only a specific set of lower bits
* of the transformed bases (each constellation of quad-structures is
* considered separately).
*
* @sconf : structure config
* @radius : radius for isQuadBase (use 128 for quad-huts)
* @s48 : 48-bit seed to scan
* @lowBits : consider transformations that yield one of these lower bits
* @lowBitCnt : length of lower bit subset
* @lowBitN : number of bits in the subset values (0 < lowBitN <= 48)
* @salt : salt subtracted from subset values (useful for protobases)
* @x,z,w,h : area to scan in region coordinates (inclusive)
* @qplist : output region coordinates for the descovered quad-structures
* @n : maximum number of quad-structures to look for
*<
* Returns the number of quad-structures found (up to 'n').
*/
int scanForQuads(
const StructureConfig sconf, int radius, uint64_t s48,
const uint64_t *lowBits, int lowBitCnt, int lowBitN, uint64_t salt,
int x, int z, int w, int h, Pos *qplist, int n);
//==============================================================================
// Checking Biomes & Biome Helper Functions
//==============================================================================
/* Returns the biome for the specified block position.
* (Alternatives should be considered first in performance critical code.)
*/
int getBiomeAtPos(const LayerStack *g, const Pos pos);
/* Get the shadow seed.
*/
static inline uint64_t getShadow(uint64_t seed)
{
return -7379792620528906219LL - seed;
}
/* Finds a suitable pseudo-random location in the specified area.
* This function is used to determine the positions of spawn and strongholds.
* Warning: accurate, but slow!
*
* @mcversion : Minecraft version (changed in: 1.7, 1.13)
* @l : entry layer with scale = 4
* @cache : biome buffer, set to NULL for temporary allocation
* @centreX, centreZ : origin for the search
* @range : square 'radius' of the search
* @isValid : boolean array of valid biome ids (size = 256)
* @seed : seed used for the RNG
* (initialise RNG using setSeed(&seed))
* @passes : (output) number of valid biomes passed, NULL to ignore
*/
Pos findBiomePosition(
const int mcversion,
const Layer * l,
int * cache,
const int centerX,
const int centerZ,
const int range,
const char * isValid,
uint64_t * seed,
int * passes
);
/* Determines if the given area contains only biomes specified by 'biomeList'.
* This function is used to determine the positions of villages, ocean monuments
* and mansions.
* Warning: accurate, but slow!
*
* @l : entry layer with scale = 4: [L_RIVER_MIX_4|L13_OCEAN_MIX_4]
* @cache : biome buffer, set to NULL for temporary allocation
* @posX, posZ : centre for the check
* @radius : 'radius' of the check area
* @isValid : boolean array of valid biome ids (size = 256)
*/
int areBiomesViable(
const Layer * l,
int * cache,
const int posX,
const int posZ,
const int radius,
const char * isValid
);
//==============================================================================
// Finding Strongholds and Spawn
//==============================================================================
/* Finds the approximate location of the first stronghold (+/-112 blocks),
* which can be determined from the lower 48 bits of the world seed without
* biome checks. If 'sh' is not NULL, it will be initialized for iteration
* using nextStronghold() to get the accurate stronghold locations, as well as
* the subsequent approximate stronghold positions.
*
* @sh : stronghold iterator to be initialized (nullable)
* @mc : minecraft version (changes in 1.7, 1.9, 1.13)
* @s48 : world seed (only 48-bit are relevant)
*
* Returns the approximate block position of the first stronghold.
*/
Pos initFirstStronghold(StrongholdIter *sh, int mc, uint64_t s48);
/* Performs the biome checks for the stronghold iterator and finds its accurate
* location, as well as the approximate location of the next stronghold.
*
* @sh : stronghold iteration state, holding position info
* @g : generator layer stack [world seed should be applied before call!]
* @cache : biome buffer, set to NULL for temporary allocation
*
* Returns the number of further strongholds after this one.
*/
int nextStronghold(StrongholdIter *sh, const LayerStack *g, int *cache);
/* deprecated - use initFirstStronghold() and nextStronghold() instead
* Finds the block positions of the strongholds in the world. Note that the
* number of strongholds was increased from 3 to 128 in MC 1.9.
* Warning: Slow!
*
* @mcversion : Minecraft version (changed in 1.7, 1.9, 1.13)
* @g : generator layer stack [worldSeed should be applied before call!]
* @cache : biome buffer, set to NULL for temporary allocation
* @locations : output block positions
* @worldSeed : world seed of the generator
* @maxSH : Stop when this many strongholds have been found. A value of 0
* defaults to 3 for mcversion <= MC_1_8, and to 128 for >= MC_1_9.
* @maxRing : Stop after this many rings.
*
* Returned is the number of strongholds found.
*/
__attribute__((deprecated))
int findStrongholds(
const int mcversion,
const LayerStack * g,
int * cache,
Pos * locations,
uint64_t worldSeed,
int maxSH,
int maxRing
);
/* Finds the spawn point in the world.
* Warning: Slow, and may be inaccurate because the world spawn depends on
* grass blocks!
*
* @mc : Minecraft version (changed in 1.7, 1.13)
* @g : generator layer stack [worldSeed should be applied before call!]
* @cache : biome buffer, set to NULL for temporary allocation
* @worldSeed : world seed used for the generator
*/
Pos getSpawn(const int mc, const LayerStack *g, int *cache, uint64_t worldSeed);
/* Finds the approximate spawn point in the world.
*
* @mc : Minecraft version (changed in 1.7, 1.13)
* @g : generator layer stack [worldSeed should be applied before call!]
* @cache : biome buffer, set to NULL for temporary allocation
* @worldSeed : world seed used for the generator
*/
Pos estimateSpawn(const int mc, const LayerStack *g, int *cache, uint64_t worldSeed);
//==============================================================================
// Validating Structure Positions
//==============================================================================
/* This function performs a biome check at the specified block coordinates to
* determine whether the corresponding structure would spawn there. You can get
* the block positions using getStructurePos().
*
* @structureType : structure type to be checked
* @mc : minecraft version
* @g : generator layer stack, seed will be applied to layers
* @seed : world seed, will be applied to generator
* @blockX, blockZ : block coordinates
*
* The return value is non-zero if the position is valid.
*/
int isViableStructurePos(int structureType, int mc, LayerStack *g,
uint64_t seed, int blockX, int blockZ);
int isViableNetherStructurePos(int structureType, int mc, NetherNoise *nn,
uint64_t seed, int blockX, int blockZ);
int isViableEndStructurePos(int structureType, int mc, EndNoise *en,
uint64_t seed, int blockX, int blockZ);
/* Checks if the specified structure type could generate in the given biome.
*/
int isViableFeatureBiome(int mc, int structureType, int biomeID);
/* End Cities require a sufficiently high surface in addition to a biome check.
* The world seed should be applied to the EndNoise and SurfaceNoise before
* calling this function. (Use initSurfaceNoiseEnd() for initialization.)
*/
int isViableEndCityTerrain(const EndNoise *en, const SurfaceNoise *sn,
int blockX, int blockZ);
//==============================================================================
// Finding Properties of Structures
//==============================================================================
/* Initialises and returns a random seed used in the (16x16) chunk generation.
* This random object is used for recursiveGenerate() which is responsible for
* generating caves, ravines, mineshafts, and virtually all other structures.
*/
inline static
uint64_t chunkGenerateRnd(uint64_t worldSeed, int chunkX, int chunkZ)
{
uint64_t rnd;
setSeed(&rnd, worldSeed);
rnd = (nextLong(&rnd) * chunkX) ^ (nextLong(&rnd) * chunkZ) ^ worldSeed;
setSeed(&rnd, rnd);
return rnd;
}
VillageType getVillageType(int mc, uint64_t seed, int blockX, int blockZ, int biomeID);
/* Finds the number of each type of house that generate in a village
* (mc < MC_1_14)
* @worldSeed : world seed
* @chunkX, chunkZ : 16x16 chunk position of the village origin
* @housesOut : output number of houses for each entry in the house type
* enum (i.e this should be an array of length HOUSE_NUM)
*
* Returns the random object seed after finding these numbers.
*/
uint64_t getHouseList(uint64_t worldSeed, int chunkX, int chunkZ, int *housesOut);
//==============================================================================
// Seed Filters
//==============================================================================
/* Creates a biome filter configuration from a given list of biomes.
*/
BiomeFilter setupBiomeFilter(const int *biomeList, int listLen);
/* Starts to generate the specified area and checks if all biomes in the filter
* are present. If so, the area will be fully generated inside the cache
* (if != NULL) up to the entry 'layerID', and the return value will be > 0.
* Otherwise, the contents of 'cache' is undefined and a value <= 0 is returned.
* More aggressive filtering can be enabled with 'protoCheck' which may yield
* some false negatives in exchange for speed.
*
* @g : generator (will be modified!)
* @layerID : layer enum of generation entry point
* @cache : working buffer, and output (if != NULL)
* @seed : world seed
* @x,z,w,h : requested area
* @filter : biomes to be checked for
* @protoCheck : enables more aggressive filtering when non-zero (MC >= 1.7)
*/
int checkForBiomes(
LayerStack * g,
int layerID,
int * cache,
uint64_t seed,
int x,
int z,
unsigned int w,
unsigned int h,
BiomeFilter filter,
int protoCheck
);
/* Checks that the area (x,z,w,h) at layer Special, scale 1:1024 contains the
* temperature category requirements defined by 'tc' as:
* if (tc[TEMP_CAT] >= 0) require at least this many entries of this category
* if (tc[TEMP_CAT] < 0) avoid, there shall be no entries of this category
* TEMP_CAT is any of:
* Oceanic, Warm, Lush, Cold, Freeing, Special+Warm, Special+Lush, Special+Cold
* For 1.7+ only.
*/
int checkForTemps(LayerStack *g, uint64_t seed, int x, int z, int w, int h, const int tc[9]);
/* Checks if a biome may generate given a version and layer ID as entry point.
* The supported layers are:
* L_BIOME_256, L_BAMBOO_256, L_BIOME_EDGE_64, L_HILLS_64, L_SUNFLOWER_64,
* L_SHORE_16, L_RIVER_MIX_4, L_OCEAN_MIX_4, L_VORONOI_1
* (provided the version matches)
*/
int canBiomeGenerate(int layerId, int mc, int biomeID);
/* Given a biome 'id' at a generation 'layer', this functions finds which
* biomes may generate from it. The result is stored in the bitfields:
* mL : for ids 0-63
* mM : for ids 128-191
*/
void genPotential(uint64_t *mL, uint64_t *mM, int layer, int mc, int id);
//==============================================================================
// Implementaions for Functions that Ideally Should be Inlined
//==============================================================================
static inline __attribute__((const))
Pos getFeatureChunkInRegion(StructureConfig config, uint64_t seed, int regX, int regZ)
{
/*
// Vanilla like implementation.
setSeed(&seed, regX*341873128712 + regZ*132897987541 + seed + config.salt);
Pos pos;
pos.x = nextInt(&seed, 24);
pos.z = nextInt(&seed, 24);
*/
Pos pos;
const uint64_t K = 0x5deece66dULL;
const uint64_t M = (1ULL << 48) - 1;
const uint64_t b = 0xb;
// set seed
seed = seed + regX*341873128712ULL + regZ*132897987541ULL + config.salt;
seed = (seed ^ K);
seed = (seed * K + b) & M;
uint64_t r = config.chunkRange;
if (r & (r-1))
{
pos.x = (int)(seed >> 17) % r;
seed = (seed * K + b) & M;
pos.z = (int)(seed >> 17) % r;
}
else
{
// Java RNG treats powers of 2 as a special case.
pos.x = (int)((r * (seed >> 17)) >> 31);
seed = (seed * K + b) & M;
pos.z = (int)((r * (seed >> 17)) >> 31);
}
return pos;
}
static inline __attribute__((const))
Pos getFeaturePos(StructureConfig config, uint64_t seed, int regX, int regZ)
{
Pos pos = getFeatureChunkInRegion(config, seed, regX, regZ);
pos.x = (int)(((uint64_t)regX*config.regionSize + pos.x) << 4);
pos.z = (int)(((uint64_t)regZ*config.regionSize + pos.z) << 4);
return pos;
}
static inline __attribute__((const))
Pos getLargeStructureChunkInRegion(StructureConfig config, uint64_t seed, int regX, int regZ)
{
Pos pos;
const uint64_t K = 0x5deece66dULL;
const uint64_t M = (1ULL << 48) - 1;
const uint64_t b = 0xb;
//TODO: power of two chunk ranges...
// set seed
seed = seed + regX*341873128712ULL + regZ*132897987541ULL + config.salt;
seed = (seed ^ K);
seed = (seed * K + b) & M;
pos.x = (int)(seed >> 17) % config.chunkRange;
seed = (seed * K + b) & M;
pos.x += (int)(seed >> 17) % config.chunkRange;
seed = (seed * K + b) & M;
pos.z = (int)(seed >> 17) % config.chunkRange;
seed = (seed * K + b) & M;
pos.z += (int)(seed >> 17) % config.chunkRange;
pos.x >>= 1;
pos.z >>= 1;
return pos;
}
static inline __attribute__((const))
Pos getLargeStructurePos(StructureConfig config, uint64_t seed, int regX, int regZ)
{
Pos pos = getLargeStructureChunkInRegion(config, seed, regX, regZ);
pos.x = (int)(((uint64_t)regX*config.regionSize + pos.x) << 4);
pos.z = (int)(((uint64_t)regZ*config.regionSize + pos.z) << 4);
return pos;
}
static __attribute__((const))
float getEnclosingRadius(
int x0, int z0, int x1, int z1, int x2, int z2, int x3, int z3,
int ax, int ay, int az, int reg, int gap)
{
// convert chunks to blocks
x0 = (x0 << 4);
z0 = (z0 << 4);
x1 = ((reg+x1) << 4) + ax;
z1 = ((reg+z1) << 4) + az;
x2 = ((reg+x2) << 4) + ax;
z2 = (z2 << 4);
x3 = (x3 << 4);
z3 = ((reg+z3) << 4) + az;
int sqrad = 0x7fffffff;
// build the inner rectangle containing the center point
int cbx0 = (x1 > x2 ? x1 : x2) - gap;
int cbz0 = (z1 > z3 ? z1 : z3) - gap;
int cbx1 = (x0 < x3 ? x0 : x3) + gap;
int cbz1 = (z0 < z2 ? z0 : z2) + gap;
int x, z;
// brute force the ideal center position
for (z = cbz0; z <= cbz1; z++)
{
for (x = cbx0; x <= cbx1; x++)
{
int sq = 0;
int s;
s = (x-x0)*(x-x0) + (z-z0)*(z-z0); if (s > sq) sq = s;
s = (x-x1)*(x-x1) + (z-z1)*(z-z1); if (s > sq) sq = s;
s = (x-x2)*(x-x2) + (z-z2)*(z-z2); if (s > sq) sq = s;
s = (x-x3)*(x-x3) + (z-z3)*(z-z3); if (s > sq) sq = s;
if (sq < sqrad)
sqrad = sq;
}
}
return sqrad < 0x7fffffff ? sqrtf(sqrad + ay*ay/4.0f) : 0xffff;
}
static inline float isQuadBase(const StructureConfig sconf, uint64_t seed, int radius)
{
switch(sconf.structType)
{
case Swamp_Hut:
if (radius == 128)
return isQuadBaseFeature24(sconf, seed, 7+1, 7+1, 9+1);//7+1, 7+43+1, 9+1);
else
return isQuadBaseFeature(sconf, seed, 7+1, 7+1, 9+1, radius);
case Desert_Pyramid:
case Jungle_Pyramid:
case Igloo:
case Village:
// nothing special spawns here, why would you want these?
if (radius == 128)
return isQuadBaseFeature24(sconf, seed, 0, 0, 0);
else
return isQuadBaseFeature(sconf, seed, 0, 0, 0, radius);
case Outpost:
// Outposts are tricky. They require an additional 1 in 5 PRNG pass to
// generate and no village nearby. Also perfect quad-outposts don't
// exist as they are too large, given that the generation point will
// always be 8 chunks apart. However, the watchtower can be offset to
// the generation attempt by a chunk or two (TODO: investivgate this!).
return isQuadBaseFeature(sconf, seed, 72, 54, 72, radius);
case Monument:
return isQuadBaseLarge(sconf, seed, 58, 23, 58, radius);
//case Mansion:
//case Ocean_Ruin:
//case Shipwreck:
//case Ruined_Portal:
default:
fprintf(stderr, "isQuadBase: not implemented for structure type %d\n",
sconf.structType);
exit(-1);
}
return 0;
}
// optimised version for regionSize=32,chunkRange=24,radius=128
static inline __attribute__((always_inline, const))
float isQuadBaseFeature24(const StructureConfig sconf, uint64_t seed,
int ax, int ay, int az)
{
seed += sconf.salt;
uint64_t s00 = seed;
uint64_t s11 = 341873128712ULL + 132897987541ULL + seed;
const uint64_t K = 0x5deece66dULL;
int x0, z0, x1, z1, x2, z2, x3, z3;
int x, z;
// check that the two structures in the opposing diagonal quadrants are
// close enough together
s00 ^= K;
JAVA_NEXT_INT24(s00, x0); if L(x0 < 20) return 0;
JAVA_NEXT_INT24(s00, z0); if L(z0 < 20) return 0;
s11 ^= K;
JAVA_NEXT_INT24(s11, x1); if L(x1 > x0-20) return 0;
JAVA_NEXT_INT24(s11, z1); if L(z1 > z0-20) return 0;
x = x1 + 32 - x0;
z = z1 + 32 - z0;
if (x*x + z*z > 255)
return 0;
uint64_t s01 = 341873128712ULL + seed;
uint64_t s10 = 132897987541ULL + seed;
s01 ^= K;
JAVA_NEXT_INT24(s01, x2); if L(x2 >= 4) return 0;
JAVA_NEXT_INT24(s01, z2); if L(z2 < 20) return 0;
s10 ^= K;
JAVA_NEXT_INT24(s10, x3); if L(x3 < 20) return 0;
JAVA_NEXT_INT24(s10, z3); if L(z3 >= 4) return 0;
x = x2 + 32 - x3;
z = z3 + 32 - z2;
if (x*x + z*z > 255)
return 0;
// only approx. 1 in 100M seeds makes it here, now we have to determine if
// there is a sphere, centered on a block, which is in range of all four
// structures
float sqrad = getEnclosingRadius(x0,z0,x1,z1,x2,z2,x3,z3,ax,ay,az,32,128);
return sqrad < 128 ? sqrad : 0;
}
// variant of isQuadBaseFeature24 which finds only the classic constellations
static inline __attribute__((always_inline, const))
float isQuadBaseFeature24Classic(const StructureConfig sconf, uint64_t seed)
{