-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_functions.py
212 lines (154 loc) · 7.27 KB
/
train_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import numpy as np
import torch.nn as nn
import os
import math
from pkgutil import get_data
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision import datasets, transforms
from torch.utils.data import DataLoader, random_split
from torchvision.models import resnet50, ResNet50_Weights
from torch.optim import SGD, Adam
from torch.optim.lr_scheduler import StepLR
import pytorch_warmup as warmup
import optuna
from utils import plot_loss_acc, get_train_valid_loader, unwrap_and_calc_loss, compute_avg_class_acc, calc_distribution, get_test_loader
from model import CustomResNet, CustomSEResNeXt, CustomSEResNeXt_v2
def train(model, dataloader, criterion_weights, optimizer, device, smoothing):
epoch_loss = 0.0
epoch_acc = 0.0
model.train()
for imgs, labels in dataloader:
imgs = imgs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
logits = model.forward(imgs)
logits_converted, loss = unwrap_and_calc_loss(logits, labels, criterion_weights, num_classes = [7, 3, 3, 4, 6, 3], smoothing=smoothing)
loss.backward()
optimizer.step()
acc = compute_avg_class_acc(labels, logits_converted)
epoch_loss += loss.item()
epoch_acc += acc
train_loss = epoch_loss / len(dataloader)
train_acc = epoch_acc / len(dataloader)
return train_loss, train_acc
def evaluate(model, dataloader, criterion_weights, device):
epoch_loss = 0.0
epoch_acc = 0.0
model.eval()
with torch.no_grad():
for imgs, labels in dataloader:
imgs = imgs.to(device)
labels = labels.to(device)
logits = model.forward(imgs)
logits_converted, loss = unwrap_and_calc_loss(logits, labels, criterion_weights, num_classes = [7, 3, 3, 4, 6, 3])
acc = compute_avg_class_acc(labels, logits_converted)
epoch_loss += loss.item()
epoch_acc += acc
val_loss = epoch_loss / len(dataloader)
val_acc = epoch_acc / len(dataloader)
return val_loss, val_acc
def test(args, model, test_loader, model_checkpoint, criterion_weights):
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.load_state_dict(torch.load(model_checkpoint))
model.eval()
with open(f'prediction.txt', 'w') as f: # Open the file in write mode
with torch.no_grad():
for test_imgs, test_labels in test_loader:
test_imgs = test_imgs.to(device)
test_labels = test_labels.to(device) # None Array
logits = model.forward(test_imgs)
logits_converted, _ = unwrap_and_calc_loss(logits, test_labels, criterion_weights, num_classes = [7, 3, 3, 4, 6, 3])
# Save logits_converted to a .txt file
np.savetxt(f, logits_converted.cpu().numpy(), fmt='%d')
return logits_converted
def training_loop(args, epochs = 10, print_params = True, print_info = True, print_train_progress = True, save_checkpoints = True, **kwargs):
torch.manual_seed(args.seed)
np.random.seed(args.seed)
## ========= Set Hyperparameters ========= ##
# Regularization
smoothing = kwargs.get('smoothing', args.smoothing)
weight_decay = kwargs.get('wd', args.wd)
dropout_p = kwargs.get('dropout_p', args.dropout_p)
# Optimization
learning_rate = kwargs.get('lr', args.lr)
batch_size = kwargs.get('batch_size', args.batch_size)
beta1 = kwargs.get('beta1', args.beta1)
beta2 = kwargs.get('beta2', args.beta2)
epsilon = kwargs.get('epsilon', args.epsilon)
if print_params:
print("\nHYPERPARAMETERS --")
print(f'Smoothing: {smoothing}')
print(f'Weight Decay: {weight_decay}')
print(f'Dropout: {dropout_p}')
print(f'Learning Rate: {learning_rate}')
print(f'Batch Size: {batch_size}')
print(f'Adam Beta1: {beta1}')
print(f'Adam Beta2: {beta2}')
print(f'Adam Epsilon: {epsilon}')
## ========= Define Training Objects ========= ##
# Device
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Define model
model = CustomSEResNeXt_v2(dropout_p=dropout_p)
model.cuda()
# Data Loader
train_loader, valid_loader = get_train_valid_loader(args.dataset_dir, batch_size, True, save_images=args.save_images)
# Calculate inverse class weights to handle data imbalance
counts, criterion_weights = calc_distribution(train_loader, device)
# Optimizer
optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay, betas = [beta1, beta2], eps = epsilon)
# Learning Rate Scheduling
if args.lr_scheduler:
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, epochs)
else:
scheduler = torch.optim.lr_scheduler.ConstantLR(optimizer, factor=1.0, total_iters=epochs)
# Learning Rate Warm-up
warmup_scheduler = warmup.LinearWarmup(optimizer, 5)
## ========= Print Info ========== ##
if print_info:
print('\nTRAINING INFO --')
print(f'Device: \n{device}')
print(f'Criterion Weights: \n{criterion_weights}')
print(f'Model: \n{model}')
print(f"Number of Trainable Parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
print('\nTRAINING PROGRESS --')
## ========== TRAIN LOOP ============ ##
stat_training_loss = []
stat_val_loss = []
stat_training_acc = []
stat_val_acc = []
best_val_acc = float('-inf')
best_val_loss = float('inf')
for epoch in range(epochs):
train_loss, train_acc = train(model, train_loader, criterion_weights, optimizer, device, smoothing)
val_loss, val_acc = evaluate(model, valid_loader, criterion_weights, device)
if val_acc > best_val_acc:
best_val_acc = val_acc
if save_checkpoints:
model_name_acc = f'./model_weights/acc/model_{args.fig_name[:-4]}_acc.pt'
torch.save(model.state_dict(), model_name_acc)
if val_loss < best_val_loss:
best_val_loss = val_loss
if save_checkpoints:
model_name_loss = f'./model_weights/loss/model_{args.fig_name[:-4]}_loss.pt'
torch.save(model.state_dict(), model_name_loss)
# Record Accuracy and loss
stat_training_loss.append(train_loss)
stat_training_acc.append(train_acc)
stat_val_loss.append(val_loss)
stat_val_acc.append(val_acc)
if print_train_progress:
print(f"Epoch {epoch} -- LR: {scheduler.get_lr()[0]:.4f} -- Training Loss: {train_loss:.3f} | Training Acc: {train_acc:.3f} | Validation Loss: {val_loss:.3f} | Validation Acc: {val_acc:.3f}")
# Apply LR Warmup
with warmup_scheduler.dampening():
if warmup_scheduler.last_step + 1 >= 5:
scheduler.step()
# Save Final Model
if save_checkpoints:
model_name_final = f'./model_weights/final/model_{args.fig_name[:-4]}_final.pt'
torch.save(model.state_dict(), model_name_final)
## ========== Plot ========== ##
plot_loss_acc(stat_training_loss, stat_val_loss, stat_training_acc, stat_val_acc, args.fig_name)
return (stat_training_loss, stat_val_loss, stat_training_acc, stat_val_acc), criterion_weights, model