-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInterface.v
919 lines (759 loc) · 33.7 KB
/
Interface.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
(******************************************************************************)
(* ArchSem *)
(* *)
(* Copyright (c) 2021 *)
(* Thibaut Pérami, University of Cambridge *)
(* Zonguyan Liu, Aarhus University *)
(* Nils Lauermann, University of Cambridge *)
(* Jean Pichon-Pharabod, University of Cambridge, Aarhus University *)
(* Brian Campbell, University of Edinburgh *)
(* Alasdair Armstrong, University of Cambridge *)
(* Ben Simner, University of Cambridge *)
(* Peter Sewell, University of Cambridge *)
(* *)
(* All files except SailArmInstTypes.v are distributed under the *)
(* license below (BSD-2-Clause). The former is distributed *)
(* under a mix of BSD-2-Clause and BSD-3-Clause Clear, as described *)
(* in the file header. *)
(* *)
(* *)
(* Redistribution and use in source and binary forms, with or without *)
(* modification, are permitted provided that the following conditions *)
(* are met: *)
(* *)
(* 1. Redistributions of source code must retain the above copyright *)
(* notice, this list of conditions and the following disclaimer. *)
(* *)
(* 2. Redistributions in binary form must reproduce the above copyright *)
(* notice, this list of conditions and the following disclaimer in the *)
(* documentation and/or other materials provided with the distribution. *)
(* *)
(* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS *)
(* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT *)
(* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS *)
(* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE *)
(* COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, *)
(* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, *)
(* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS *)
(* OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND *)
(* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR *)
(* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE *)
(* USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *)
(* *)
(******************************************************************************)
Require Import Strings.String.
Require Import ASCommon.Options.
Require Import ASCommon.Common.
Require Import ASCommon.FMon.
(** * The architecture requirements
The SailStdpp library already defines the architecure requirements, however this
development requires slightly more things, so this looks a bit different *)
(** The architecture parameters that must be provided to the interface *)
Module Type Arch.
(** The type of registers, most likely string, but may be more fancy *)
Parameter reg : Type.
(** We need to implement a gmap indexed by registers *)
Parameter reg_eq : EqDecision reg.
#[export] Existing Instance reg_eq.
Parameter reg_countable : @Countable reg reg_eq.
#[export] Existing Instance reg_countable.
(** Register value type are dependent on the register, therefore we need all
the dependent type manipulation typeclasses *)
Parameter reg_type : reg → Type.
Parameter reg_type_eq : ∀ (r : reg), EqDecision (reg_type r).
#[export] Existing Instance reg_type_eq.
Parameter reg_type_countable : ∀ (r : reg), Countable (reg_type r).
#[export] Existing Instance reg_type_countable.
Parameter reg_type_inhabited : ∀ r : reg, Inhabited (reg_type r).
#[export] Existing Instance reg_type_inhabited.
Parameter ctrans_reg_type : CTrans reg_type.
#[export] Existing Instance ctrans_reg_type.
Parameter ctrans_reg_type_simpl : CTransSimpl reg_type.
#[export] Existing Instance ctrans_reg_type_simpl.
Parameter reg_type_eq_dep_dec : EqDepDecision reg_type.
#[export] Existing Instance reg_type_eq_dep_dec.
(** Register access kind (architecture specific) *)
Parameter reg_acc : Type.
Parameter reg_acc_eq : EqDecision reg_acc.
#[export] Existing Instance reg_acc_eq.
(** The program counter register *)
Parameter pc_reg : reg.
(** Virtual address size *)
Parameter va_size : N.
(** Physical addresses type. Since models are expected to be architecture
specific in this, there is no need for a generic way to extract a
bitvector from it*)
Parameter pa : Type.
(** We need to implement a gmap indexed by pa *)
Parameter pa_eq : EqDecision pa.
#[export] Existing Instance pa_eq.
Parameter pa_countable : @Countable pa pa_eq.
#[export] Existing Instance pa_countable.
(** Add an offset to a physical address. Can wrap if out of bounds *)
Parameter pa_addZ : pa → Z → pa.
(** This need to behave sensibly.
For fancy words: pa_addZ need to be an action of the group Z on pa *)
Parameter pa_addZ_assoc :
∀ pa z z', pa_addZ (pa_addZ pa z) z' = pa_addZ pa (z + z')%Z.
Parameter pa_addZ_zero : ∀ pa, pa_addZ pa 0 = pa.
#[export] Hint Rewrite pa_addZ_assoc : arch.
#[export] Hint Rewrite pa_addZ_zero : arch.
Parameter pa_diffN : pa → pa → option N.
Parameter pa_diffN_addZ:
∀ pa pa' n, pa_diffN pa' pa = Some n → pa_addZ pa (Z.of_N n) = pa'.
Parameter pa_diffN_existZ:
∀ pa pa' z, pa_addZ pa z = pa' → is_Some (pa_diffN pa' pa).
Parameter pa_diffN_minimalZ:
∀ pa pa' n, pa_diffN pa' pa = Some n →
∀ z', pa_addZ pa z' = pa' → (z' < 0 ∨ (Z.of_N n) ≤ z')%Z.
(** Memory access kind (architecture specific) *)
Parameter mem_acc : Type.
Parameter mem_acc_eq : EqDecision mem_acc.
#[export] Existing Instance mem_acc_eq.
(** Is this access an explicit access, e.g. whose access was explicitely
required by the instruction. As minimima, this must be not an IFetch or a TTW
access *)
Parameter is_explicit : mem_acc → bool.
(** Is this access an instruction fetch read *)
Parameter is_ifetch : mem_acc → bool.
(** Is this access a translation table walk *)
Parameter is_ttw : mem_acc → bool.
(** Is this access relaxed, aka. no acquire or release strength *)
Parameter is_relaxed : mem_acc → bool.
(** Is this an acquire or a release access (Depending on whether this is a
read or write *)
Parameter is_rel_acq : mem_acc → bool.
(** Is this a weak PC acquire (not ordered after write release *)
Parameter is_acq_rcpc : mem_acc → bool.
(** Is this a standalone access, aka. not part of an exclusive or RMW pair.
This is based on the access type, so an unmatched exclusive load would not be
"standalone" *)
Parameter is_standalone : mem_acc → bool.
(** Is this an exclusive access *)
Parameter is_exclusive : mem_acc → bool.
(** Is this part of an RMW instruction. Another RMW access to the same address
in the same instruction is expected *)
Parameter is_atomic_rmw : mem_acc → bool.
(** Translation summary *)
Parameter translation : Type.
Parameter translation_eq : EqDecision translation.
#[export] Existing Instance translation_eq.
(** Abort description. This represent physical memory aborts on memory
accesses, for example when trying to access outside of physical memory
range. Those aborts are generated by the model*)
Parameter abort : Type.
(** Barrier types *)
Parameter barrier : Type.
Parameter barrier_eq : EqDecision barrier.
#[export] Existing Instance barrier_eq.
(** Cache operations (data and instruction caches) *)
Parameter cache_op : Type.
Parameter cache_op_eq : EqDecision cache_op.
#[export] Existing Instance cache_op_eq.
(** TLB operations *)
Parameter tlb_op : Type.
Parameter tlb_op_eq : EqDecision tlb_op.
#[export] Existing Instance tlb_op_eq.
(** Fault type for a architectural fault or exception *)
Parameter fault : Type.
Parameter fault_eq : EqDecision fault.
#[export] Existing Instance fault_eq.
End Arch.
(** * The Interface *)
Module Interface (A : Arch).
Import A.
Open Scope N.
(** ** Memory utility *)
(** Virtual address are tag-less bitvectors *)
Definition va := bv va_size.
#[global] Typeclasses Transparent va.
(** Memory access kind *)
Notation accessKind := mem_acc.
Definition pa_addN pa n := pa_addZ pa (Z.of_N n).
Lemma pa_addN_assoc pa n n':
pa_addN (pa_addN pa n) n' = pa_addN pa (n + n').
Proof. unfold pa_addN. rewrite pa_addZ_assoc. f_equal. lia. Qed.
#[export] Hint Rewrite pa_addN_assoc : pa.
Lemma pa_addN_zero pa : pa_addN pa 0 = pa.
Proof. unfold pa_addN. apply pa_addZ_zero. Qed.
#[export] Hint Rewrite pa_addN_zero : pa.
Lemma pa_diffN_addN pa pa' n:
pa_diffN pa' pa = Some n → pa_addN pa n = pa'.
Proof. unfold pa_addN. apply pa_diffN_addZ. Qed.
Hint Immediate pa_diffN_addN : pa.
Lemma pa_diffN_existN pa pa' n:
pa_addN pa n = pa' → is_Some (pa_diffN pa' pa).
Proof. unfold pa_addN. apply pa_diffN_existZ. Qed.
Lemma pa_diffN_minimalN pa pa' n:
pa_diffN pa' pa = Some n → ∀ n', pa_addN pa n' = pa' → n ≤ n'.
Proof. sauto use:pa_diffN_minimalZ. Qed.
(* If faced with [pa_add pa n = pa_add pa n'], trying to prove [n = n'] is a good
idea *)
Definition f_equal_pa_addN pa := f_equal (pa_addN pa).
Hint Resolve f_equal_pa_addN : pa.
(** The list of all physical addresses accessed when accessing [pa] with size
[n] *)
Definition pa_range pa n := seqN 0 n |> map (λ n, pa_addN pa n).
Lemma pa_range_length pa n : length (pa_range pa n) = N.to_nat n.
Proof. unfold pa_range. by autorewrite with list. Qed.
Definition pa_in_range pa size pa' : Prop :=
is_Some $
diff ← pa_diffN pa' pa;
guard' (diff < size)%N.
#[global] Instance pa_in_range_dec pa size pa' :
Decision (pa_in_range pa size pa').
Proof. unfold pa_in_range. tc_solve. Defined.
Lemma pa_in_range_spec pa size pa':
pa_in_range pa size pa' ↔ ∃ n, pa_addN pa n = pa' ∧ n < size.
Proof.
unfold pa_in_range, is_Some.
split.
- cdestruct |- ? #CDestrEqOpt.
eauto with pa.
- cdestruct |- ?.
odestruct pa_diffN_existN; first eassumption.
opose proof (pa_diffN_minimalN _ _ _ _ _ _); try eassumption.
typeclasses eauto with core option lia.
Qed.
Definition pa_overlap pa1 size1 pa2 size2 : Prop :=
pa_in_range pa1 size1 pa2 ∨ pa_in_range pa2 size2 pa1.
#[global] Typeclasses Transparent pa_overlap.
Lemma pa_overlap_spec pa1 size1 pa2 size2 :
pa_overlap pa1 size1 pa2 size2 ∧ 0 < size1 ∧ 0 < size2 ↔
∃ n1 n2, (n1 < size1 ∧ n2 < size2 ∧ pa_addN pa1 n1 = pa_addN pa2 n2)%N.
Proof.
unfold pa_overlap.
setoid_rewrite pa_in_range_spec.
split.
(* TODO broken *)
- cdestruct pa1,pa2 |- ? # CDestrSplitGoal;
setoid_rewrite pa_addN_assoc;
typeclasses eauto with core lia pa.
- cdestruct |- ** as n1 n2 H1 H2 H.
intuition; try lia.
destruct decide (n1 ≤ n2).
1: right; exists (n2 - n1).
2: left; exists (n1 - n2).
(* TODO figure out better automation on pa_addZ *)
all: intuition; try lia.
all: unfold pa_addN in *.
all: rewrite N2Z.inj_sub by lia.
all: rewrite <- pa_addZ_assoc.
all: (rewrite H || rewrite <- H).
all: rewrite pa_addZ_assoc.
all: rewrite <- pa_addZ_zero.
all: f_equal; lia.
Qed.
Lemma pa_overlap_refl pa size :
0 < size → pa_overlap pa size pa size.
Proof.
unfold pa_overlap. left.
apply pa_in_range_spec.
eexists.
by rewrite pa_addN_zero.
Qed.
Hint Resolve pa_overlap_refl : pa.
Lemma pa_overlap_sym pa1 size1 pa2 size2 :
pa_overlap pa1 size1 pa2 size2 → pa_overlap pa2 size2 pa1 size1.
Proof. unfold pa_overlap. tauto. Qed.
Hint Immediate pa_overlap_sym : pa.
Lemma pa_overlap_sym_iff pa1 size1 pa2 size2 :
pa_overlap pa1 size1 pa2 size2 ↔ pa_overlap pa2 size2 pa1 size1.
Proof. unfold pa_overlap. tauto. Qed.
(** ** Memory read request *)
Module ReadReq.
#[local] Open Scope N.
Record t {n : N} :=
make
{ pa : pa;
access_kind : accessKind;
va : option va;
translation : translation;
tag : bool;
}.
Arguments t : clear implicits.
#[global] Instance eq_dec n : EqDecision (t n).
Proof. solve_decision. Defined.
#[global] Instance jmeq_dec : EqDepDecision t.
Proof. intros ? ? ? [] []. decide_jmeq. Defined.
Definition range `(rr : t n) := pa_range (pa rr) n.
End ReadReq.
(** ** Memory write request *)
Module WriteReq.
#[local] Open Scope N.
Record t {n : N} :=
make
{ pa : pa;
access_kind : accessKind;
value : bv (8 * n);
va : option va;
translation : A.translation;
tag : option bool;
}.
Arguments t : clear implicits.
#[global] Instance eq_dec n : EqDecision (t n).
Proof. solve_decision. Defined.
#[global] Instance jmeq_dec : EqDepDecision t.
Proof. intros ? ? ? [] []. decide_jmeq. Defined.
Definition range `(rr : t n) := pa_range (pa rr) n.
End WriteReq.
(** ** Outcomes *)
(** The effect type used by ISA models *)
Inductive outcome : eff :=
(** Reads a register [reg] with provided access type [racc]. It is up to
concurrency model to interpret [racc] properly *)
| RegRead (reg : reg) (racc : reg_acc)
(** Write a register [reg] with value [reg_val] and access type [racc]. *)
| RegWrite (reg : reg) (racc : reg_acc) (regval: reg_type reg)
(** Read [n] bytes of memory in a single access (Single Copy Atomic in Arm
terminology). See [ReadReq.t] for the various required fields.
The result is either a success (value read and optional tag) or a
error (intended for physical memory errors, not translation, access
control, or segmentation faults *)
| MemRead (n : N) (rr: ReadReq.t n)
(** Announce the address or a subsequent write, all the parameters must
match up with the content of the later write *)
| MemWriteAddrAnnounce (n : N) (pa : pa)
(acc : accessKind) (trans : translation)
(** Write [n] bytes of memory in a single access (Single Copy Atomic in
Arm terminology). See [WriteReq.t] for the various required fields.
If the result is:
- inl true: The write happened
- inl false: The write didn't happened because the required strength
could not be achieved (e.g. exclusive failure)
- inr abort: The write was attempted, but a physical abort happened
*)
| MemWrite (n : N) (wr : WriteReq.t n)
(** Issues a barrier such as DMB (for Arm), fence.XX (for RISC-V), ... *)
| Barrier (b : barrier)
(** Issues a cache operation such as DC or IC (for Arm) *)
| CacheOp (cop : cache_op)
(** Issues a TLB maintenance operation, such as TLBI (for Arm) *)
| TlbOp (tlbop : tlb_op)
(** Take an exception. Includes hardware faults and physical interrupts *)
| TakeException (flt : fault)
(** Return from an exception to this address e.g. ERET (for Arm) or
IRET (for x86) *)
| ReturnException
(** Bail out when something went wrong. This is to represent ISA model
incompleteness: When getting out of the range of supported
instructions or behaviors of the ISA model. The string is for
debugging but otherwise irrelevant *)
| GenericFail (msg : string).
#[export] Instance outcome_ret : Effect outcome :=
λ out, match out with
| RegRead r _ => reg_type r
| MemRead n _ => (bv (8 * n) * option bool + abort)%type
| MemWrite n _ => (bool + abort)%type
| GenericFail _ => ∅%type
| _ => unit
end.
#[export] Instance outcome_wf : EffWf outcome.
Proof using. intros []; cbn; try tc_solve. Defined.
(* Automatically implies EqDecision (outcome T) on any T *)
#[export] Instance outcome_eq_dec : EqDecision outcome.
Proof using. intros [] []; decide_eq. Defined.
#[export] Instance outcome_EffCTrans : EffCTrans outcome.
Proof using.
intros [] [].
all: try discriminate.
all: cbn in *.
all: try (intros; assumption).
(* There is 2 non trivial cases where the return type depends on the content
of the effect constructor *)
- (* RegRead case *)
intros e. eapply ctrans. naive_solver.
- (* MemRead case *)
intros e [[b o]| a]; [left | right]; intuition.
eapply ctrans; [| eassumption].
apply (f_equal (λ out, if out is MemRead n _ then 8 * n else 0) e).
Defined.
#[export] Instance outcome_EffCTransSimpl : EffCTransSimpl outcome.
Proof.
intros [] ? ?; try reflexivity; cbn;
repeat case_match; simp ctrans; reflexivity.
Qed.
(** ** Instruction monad *)
(** An instruction semantic is a non-deterministic program using the
uninterpreted effect type [outcome] *)
Definition iMon := cMon outcome.
#[global] Typeclasses Transparent iMon.
(** The semantics of an complete instruction. A full definition of
instruction semantics is allowed to have an internal state that gets
passed from one instruction to the next. This is useful to handle
pre-computed instruction semantics (e.g. Isla). For complete instruction
semantics, we expect that A will be unit.
This is planned to disappear and be replaced by a plain [iMon ()], so
some modules (like CandidateExecutions) will already assume [iMon ()].
*)
Record iSem :=
{
(** The instruction model internal state *)
isa_state : Type;
(** The instruction model initial state for a thread with a specific Tid
*)
init_state : nat -> isa_state;
semantic : isa_state -> iMon isa_state
}.
(** A single event in an instruction execution. Events cannot contain
termination outcome (outcomes of type `outcome False`) *)
Definition iEvent := fEvent outcome.
#[global] Typeclasses Transparent iEvent.
(** An execution trace for a single instruction. *)
Definition iTrace := fTrace outcome.
#[global] Typeclasses Transparent iTrace.
(** * Event accessors
A set of accessors over the iEvent type *)
(** Get the register out of a register event *)
Definition get_reg (ev : iEvent) : option reg :=
match ev with
| RegRead reg _ &→ _ => Some reg
| RegWrite reg _ _ &→ _ => Some reg
| _ => None
end.
(** Get a register and its value out of a register event
This gives both the register and the value, because later the value might
have a type that depend on the register *)
Definition get_reg_val (ev : iEvent) : option (sigT reg_type) :=
match ev with
| RegRead reg _ &→ regval => Some (existT reg regval)
| RegWrite reg _ regval &→ _ => Some (existT reg regval)
| _ => None
end.
Lemma get_reg_val_get_reg (ev : iEvent) rrv :
get_reg_val ev = Some rrv → get_reg ev = Some rrv.T1.
Proof. destruct ev as [[] ?]; cbn; hauto lq:on. Qed.
Definition get_rec_acc (ev : iEvent) : option reg_acc :=
match ev with
| RegRead _ racc &→ _ => Some racc
| RegWrite _ racc _ &→ _ => Some racc
| _ => None
end.
(** Get the physical address out of an memory event *)
Definition get_pa (e : iEvent) : option pa:=
match e with
| MemRead _ rr &→ _ => Some rr.(ReadReq.pa)
| MemWriteAddrAnnounce _ pa _ _ &→ _ => Some pa
| MemWrite _ wr &→ _ => Some wr.(WriteReq.pa)
| _ => None
end.
(** Get the size out of an memory event *)
Definition get_size (ev : iEvent) : option N :=
match ev with
| MemRead n _ &→ _ => Some n
| MemWriteAddrAnnounce n _ _ _ &→ _ => Some n
| MemWrite n _ &→ _ => Some n
| _ => None
end.
(** Get the value out of a memory event *)
Definition get_mem_value (ev : iEvent) : option bvn :=
match ev with
| MemRead n _ &→ inl (bv, _) => Some (bv : bvn)
| MemWrite n wr &→ _ => Some (wr.(WriteReq.value) : bvn)
| _ => None
end.
Lemma get_mem_value_size (ev : iEvent) bv :
get_mem_value ev = Some bv → get_size ev = Some (bvn_n bv / 8)%N.
Proof.
destruct ev as [[] ?];
cdestruct bv |- ** #CDestrMatch; cbn; f_equal; lia.
Qed.
Definition get_access_kind (ev : iEvent) : option mem_acc :=
match ev with
| MemRead _ rr &→ _ => Some rr.(ReadReq.access_kind)
| MemWrite _ wr &→ _ => Some wr.(WriteReq.access_kind)
| _ => None
end.
(** Get the content of a barrier, returns none if not a barrier (or is an
invalid EID) *)
Definition get_barrier (ev : iEvent) : option barrier:=
match ev with
| Barrier b &→ () => Some b
| _ => None
end.
(** Get the content of a cache operation, returns none if not a cache operation
(or is an invalid EID) *)
Definition get_cacheop (ev : iEvent) : option cache_op :=
match ev with
| CacheOp co &→ () => Some co
| _ => None
end.
(** Get the content of a TLB operation, returns none if not a TLB operation
(or is an invalid EID) *)
Definition get_tlbop (ev : iEvent) : option tlb_op :=
match ev with
| TlbOp to &→ () => Some to
| _ => None
end.
Definition get_fault (ev : iEvent) : option fault :=
match ev with
| TakeException flt &→ () => Some flt
| _ => None
end.
(** * Event manipulation
This is a set of helper function to manipulate events *)
(** ** Register reads ***)
Section isReg.
Context (P : ∀ r : reg, reg_acc → reg_type r → Prop).
Implicit Type ev : iEvent.
Definition is_reg_readP ev : Prop :=
match ev with
| RegRead reg racc &→ rval => P reg racc rval
| _ => False
end.
#[export] Typeclasses Opaque is_reg_readP.
Definition is_reg_readP_spec ev :
is_reg_readP ev ↔
∃ reg racc rval, ev = RegRead reg racc &→ rval ∧ P reg racc rval.
Proof. destruct ev as [[] ?]; split; cdestruct |- **;naive_solver. Qed.
Definition is_reg_readP_cdestr ev := cdestr_simpl false (is_reg_readP_spec ev).
#[global] Existing Instance is_reg_readP_cdestr.
Context `{Pdec: ∀ reg racc rval, Decision (P reg racc rval)}.
#[global] Instance is_reg_readP_dec ev: Decision (is_reg_readP ev).
Proof using Pdec. destruct ev as [[] ?]; cbn in *; tc_solve. Defined.
(** ** Register writes *)
Definition is_reg_writeP ev : Prop :=
match ev with
| RegWrite reg racc rval &→ _ => P reg racc rval
| _ => False
end.
Definition is_reg_writeP_spec ev :
is_reg_writeP ev ↔
∃ reg racc rval,
ev = RegWrite reg racc rval &→ () ∧ P reg racc rval.
Proof.
destruct ev as [[] fret];
split; cdestruct |- ?; destruct fret; naive_solver.
Qed.
Definition is_reg_writeP_cdestr ev := cdestr_simpl false (is_reg_writeP_spec ev).
#[global] Existing Instance is_reg_writeP_cdestr.
#[global] Instance is_reg_writeP_dec ev: Decision (is_reg_writeP ev).
Proof using Pdec. destruct ev as [[] ?]; cbn in *; tc_solve. Defined.
End isReg.
Notation is_reg_read := (is_reg_readP (λ _ _ _, True)).
Notation is_reg_write := (is_reg_writeP (λ _ _ _, True)).
(** ** Memory reads *)
(** *** Memory reads request
This is the general case for both failed and successful memory reads *)
Section isMemReadReq.
Context
(P : ∀ n : N, ReadReq.t n → (bv (8 * n) * option bool + abort) → Prop).
Implicit Type ev : iEvent.
Definition is_mem_read_reqP ev : Prop :=
match ev with
| MemRead n rr &→ rres => P n rr rres
| _ => False
end.
#[export] Typeclasses Opaque is_mem_read_reqP.
Definition is_mem_read_reqP_spec ev:
is_mem_read_reqP ev ↔ ∃ n rr rres, ev = MemRead n rr &→ rres ∧ P n rr rres.
Proof. destruct ev as [[] ?]; split; cdestruct |- ?; naive_solver. Qed.
Definition is_mem_read_reqP_cdestr ev := cdestr_simpl false (is_mem_read_reqP_spec ev).
#[global] Existing Instance is_mem_read_reqP_cdestr.
Context `{Pdec : ∀ n rr rres, Decision (P n rr rres)}.
#[global] Instance is_mem_read_reqP_dec ev : Decision (is_mem_read_reqP ev).
Proof using Pdec. destruct ev as [[] ?]; cbn in *; tc_solve. Defined.
End isMemReadReq.
Notation is_mem_read_req := (is_mem_read_reqP (λ _ _ _, True)).
(** *** Successful memory reads *)
Section IsMemRead.
Context (P : ∀ n : N, ReadReq.t n → bv (8 * n) → option bool → Prop).
Implicit Type ev : iEvent.
(** Filters memory read that are successful (that did not get a physical
memory abort *)
Definition is_mem_readP ev : Prop :=
is_mem_read_reqP (λ n rr rres,
match rres with
| inl (rval, otag) => P n rr rval otag
| _ => False end) ev.
#[export] Typeclasses Opaque is_mem_readP.
Definition is_mem_readP_spec ev:
is_mem_readP ev ↔
∃ n rr rval otag, ev = MemRead n rr &→ inl (rval, otag) ∧ P n rr rval otag.
Proof. unfold is_mem_readP. rewrite is_mem_read_reqP_spec. hauto l:on. Qed.
Definition is_mem_readP_cdestr ev := cdestr_simpl false (is_mem_readP_spec ev).
#[global] Existing Instance is_mem_readP_cdestr.
Context `{Pdec: ∀ n rr rval otag, Decision (P n rr rval otag)}.
#[global] Instance is_mem_readP_dec ev: Decision (is_mem_readP ev).
Proof using Pdec. unfold is_mem_readP. solve_decision. Defined.
End IsMemRead.
Notation is_mem_read := (is_mem_readP (λ _ _ _ _, True)).
(** ** Memory writes *)
(** *** Memory write address announce *)
Section isMemWriteAddrAnnounce.
Context
(P : N → pa → accessKind → translation → Prop).
Implicit Type ev : iEvent.
Definition is_mem_write_addr_announceP ev : Prop :=
match ev with
| MemWriteAddrAnnounce n pa acc trans &→ () => P n pa acc trans
| _ => False
end.
Definition is_mem_write_addr_announceP_spec ev:
is_mem_write_addr_announceP ev ↔
∃ n pa acc trans,
ev = MemWriteAddrAnnounce n pa acc trans &→ () ∧ P n pa acc trans.
Proof.
destruct ev as [[] fret];
split; cdestruct |- ?; destruct fret; naive_solver.
Qed.
Typeclasses Opaque is_mem_write_addr_announceP.
Definition is_mem_write_addr_announceP_cdestr ev :=
cdestr_simpl false (is_mem_write_addr_announceP_spec ev).
#[global] Existing Instance is_mem_write_addr_announceP_cdestr.
Context `{Pdec: ∀ n pa acc trans, Decision (P n pa acc trans)}.
#[global] Instance is_mem_write_addr_announceP_dec ev:
Decision (is_mem_write_addr_announceP ev).
Proof using Pdec. destruct ev as [[] ?]; cbn in *; tc_solve. Defined.
End isMemWriteAddrAnnounce.
Notation is_mem_write_addr_announce :=
(is_mem_write_addr_announceP (λ _ _ _ _, True)).
(** *** Memory write requests
This is the general case for both failed and successful memory writes. *)
Section isMemWriteReq.
Context
(P : ∀ n : N, WriteReq.t n → (bool + abort) → Prop).
Implicit Type ev : iEvent.
Definition is_mem_write_reqP ev : Prop :=
match ev with
| MemWrite n wr &→ wres => P n wr wres
| _ => False
end.
Typeclasses Opaque is_mem_write_reqP.
Definition is_mem_write_reqP_spec ev:
is_mem_write_reqP ev ↔ ∃ n wr wres, ev = MemWrite n wr &→ wres ∧ P n wr wres.
Proof. destruct ev as [[] ?]; split; cdestruct |- ?; naive_solver. Qed.
Definition is_mem_write_reqP_cdestr ev := cdestr_simpl false (is_mem_write_reqP_spec ev).
#[global] Existing Instance is_mem_write_reqP_cdestr.
Context `{Pdec: ∀ n wr wres, Decision (P n wr wres)}.
#[global] Instance is_mem_write_reqP_dec ev: Decision (is_mem_write_reqP ev).
Proof using Pdec. destruct ev as [[] ?]; cbn in *; tc_solve. Defined.
End isMemWriteReq.
Notation is_mem_write_req := (is_mem_write_reqP (λ _ _ _, True)).
(** *** Successful memory writes *)
Section isMemWrite.
Context
(P : ∀ n : N, WriteReq.t n → Prop).
Implicit Type ev : iEvent.
(** Filters memory writes that are successful (that did not get a physical
memory abort, or an exclusive failure).*)
Definition is_mem_writeP ev: Prop :=
is_mem_write_reqP (λ n wr wres,
match wres with
| inl true => P n wr
| _ => False end) ev.
Typeclasses Opaque is_mem_writeP.
Definition is_mem_writeP_spec ev:
is_mem_writeP ev ↔
∃ n wr, ev = MemWrite n wr &→ inl true ∧ P n wr.
Proof. unfold is_mem_writeP. rewrite is_mem_write_reqP_spec. hauto l:on. Qed.
Definition is_mem_writeP_cdestr ev := cdestr_simpl false (is_mem_writeP_spec ev).
#[global] Existing Instance is_mem_writeP_cdestr.
Context `{Pdec: ∀ n wr, Decision (P n wr)}.
#[global] Instance is_mem_writeP_dec ev: Decision (is_mem_writeP ev).
Proof using Pdec. unfold is_mem_writeP. solve_decision. Defined.
End isMemWrite.
Notation is_mem_write := (is_mem_writeP (λ _ _, True)).
Definition is_mem_event (ev : iEvent) :=
is_mem_read ev \/ is_mem_write ev.
#[global] Typeclasses Transparent is_mem_event.
(** ** Allow filtering memory events by kind more easily *)
Section MemEventByKind.
Context (P : accessKind → Prop).
Context {Pdec : ∀ acc, Decision (P acc)}.
Implicit Type ev : iEvent.
Definition is_mem_read_kindP :=
is_mem_readP (λ _ rr _ _, P rr.(ReadReq.access_kind)).
#[global] Typeclasses Transparent is_mem_read_kindP.
Definition is_mem_write_kindP :=
is_mem_writeP (λ _ wr, P wr.(WriteReq.access_kind)).
#[global] Typeclasses Transparent is_mem_write_kindP.
Definition is_mem_event_kindP (ev : iEvent) :=
if get_access_kind ev is Some acc then P acc else False.
#[global] Instance is_mem_event_kindP_dec ev:
Decision (is_mem_event_kindP ev).
Proof using Pdec. unfold is_mem_event_kindP. tc_solve. Defined.
End MemEventByKind.
(** ** Barriers *)
Section isBarrier.
Context (P : barrier → Prop).
Implicit Type ev : iEvent.
Definition is_barrierP ev: Prop :=
if ev is Barrier b &→ _ then P b else False.
Typeclasses Opaque is_barrierP.
Definition is_barrierP_spec ev:
is_barrierP ev ↔ ∃ barrier, ev = Barrier barrier &→ () ∧ P barrier.
Proof.
destruct ev as [[] fret];
split; cdestruct |- ?; destruct fret; naive_solver.
Qed.
Context `{Pdec: ∀ b, Decision (P b)}.
#[global] Instance is_barrierP_dec ev: Decision (is_barrierP ev).
Proof using Pdec. unfold_decide. Defined.
End isBarrier.
Notation is_barrier := (is_barrierP (λ _, True)).
(** ** CacheOp *)
Section isCacheop.
Context (P : cache_op → Prop).
Implicit Type ev : iEvent.
Definition is_cacheopP ev: Prop :=
if ev is CacheOp c &→ _ then P c else False.
Typeclasses Opaque is_cacheopP.
Definition is_cacheopP_spec ev:
is_cacheopP ev ↔ ∃ cacheop, ev = CacheOp cacheop &→ () ∧ P cacheop.
Proof.
destruct ev as [[] fret];
split; cdestruct |- ?; destruct fret; naive_solver.
Qed.
Context `{Pdec: ∀ c, Decision (P c)}.
#[global] Instance is_cacheopP_dec ev: Decision (is_cacheopP ev).
Proof using Pdec. unfold_decide. Defined.
End isCacheop.
Notation is_cacheop := (is_cacheopP (λ _, True)).
(** ** Tlbop *)
Section isTlbop.
Context (P : tlb_op → Prop).
Implicit Type ev : iEvent.
Definition is_tlbopP ev: Prop :=
if ev is TlbOp c &→ _ then P c else False.
Typeclasses Opaque is_tlbopP.
Definition is_tlbopP_spec ev:
is_tlbopP ev ↔ ∃ tlbop, ev = TlbOp tlbop &→ () ∧ P tlbop.
Proof.
destruct ev as [[] fret];
split; cdestruct |- ?; destruct fret; naive_solver.
Qed.
Context `{Pdec: ∀ c, Decision (P c)}.
#[global] Instance is_tlbopP_dec ev: Decision (is_tlbopP ev).
Proof using Pdec. unfold is_tlbopP. solve_decision. Defined.
End isTlbop.
Notation is_tlbop := (is_tlbopP (λ _, True)).
Section isTakeException.
Context (P : fault → Prop).
Implicit Type ev : iEvent.
Definition is_take_exceptionP ev: Prop :=
if ev is TakeException c &→ _ then P c else False.
Typeclasses Opaque is_take_exceptionP.
Definition is_take_exceptionP_spec ev:
is_take_exceptionP ev ↔ ∃ take_exception, ev = TakeException take_exception &→ () ∧ P take_exception.
Proof.
destruct ev as [[] fret];
split; cdestruct |- ?; destruct fret; naive_solver.
Qed.
Context `{Pdec: ∀ c, Decision (P c)}.
#[global] Instance is_take_exceptionP_dec ev: Decision (is_take_exceptionP ev).
Proof using Pdec. unfold is_take_exceptionP. solve_decision. Defined.
End isTakeException.
Notation is_take_exception := (is_take_exceptionP (λ _, True)).
Definition is_return_exception ev := ev = ReturnException &→ ().
#[global] Instance is_return_exception_dec ev :
Decision (is_return_exception ev).
Proof. destruct ev as [[]?]; (right + left); abstract (hauto q:on). Defined.
End Interface.
Module Type InterfaceT (A : Arch).
Include Interface A.
End InterfaceT.
Module Type InterfaceWithArch.
Declare Module Arch : Arch.
Declare Module Interface : InterfaceT Arch.
End InterfaceWithArch.