We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
你好 我想请问一下 为什么划分数据集为'train+val', 'train+val+vg' 时,模型的输出都是nowTime: 2024-07-05 16:33:36 Epoch: 10, Loss: 2.6711035106781544, Lr: 0.0001 Elapsed time: 2118, Speed(s/batch): 0.11792277398014418
而没有显示类似于这样的精度Overall Accuracy is: 59.30 other : 51.37 yes/no : 76.85 number : 38.89
The text was updated successfully, but these errors were encountered:
你好 我想请问一下 为什么划分数据集为'train+val', 'train+val+vg' 时,模型的输出都是nowTime: 2024-07-05 16:33:36 Epoch: 10, Loss: 2.6711035106781544, Lr: 0.0001 Elapsed time: 2118, Speed(s/batch): 0.11792277398014418 而没有显示类似于这样的精度Overall Accuracy is: 59.30 other : 51.37 yes/no : 76.85 number : 38.89
使用 train + val 或者 train + val + vg的时候需要把测试结果提交到 eval test集的网站,我们的codebase是基于open-vqa的,其只包含了对val的训练时测试
train + val
train + val + vg
Sorry, something went wrong.
No branches or pull requests
你好 我想请问一下 为什么划分数据集为'train+val', 'train+val+vg' 时,模型的输出都是nowTime: 2024-07-05 16:33:36
Epoch: 10, Loss: 2.6711035106781544, Lr: 0.0001
Elapsed time: 2118, Speed(s/batch): 0.11792277398014418
而没有显示类似于这样的精度Overall Accuracy is: 59.30
other : 51.37 yes/no : 76.85 number : 38.89
The text was updated successfully, but these errors were encountered: