This guide will walk you through what you can do with Cog by using an example model.
Tip
Using a language model to help you write the code for your new Cog model?
Feed it https://cog.run/llms.txt, which has all of Cog's documentation bundled into a single file. To learn more about this format, check out llmstxt.org.
- macOS or Linux. Cog works on macOS and Linux, but does not currently support Windows.
- Docker. Cog uses Docker to create a container for your model. You'll need to install Docker before you can run Cog.
First, install Cog:
sudo curl -o /usr/local/bin/cog -L https://github.com/replicate/cog/releases/latest/download/cog_`uname -s`_`uname -m`
sudo chmod +x /usr/local/bin/cog
Let's make a directory to work in:
mkdir cog-quickstart
cd cog-quickstart
The simplest thing you can do with Cog is run a command inside a Docker environment.
The first thing you need to do is create a file called cog.yaml
:
build:
python_version: "3.11"
Then, you can run any command inside this environment. For example, enter
cog run python
and you'll get an interactive Python shell:
✓ Building Docker image from cog.yaml... Successfully built 8f54020c8981
Running 'python' in Docker with the current directory mounted as a volume...
───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
Python 3.11.1 (main, Jan 27 2023, 10:52:46)
[GCC 9.3.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>>
(Hit Ctrl-D to exit the Python shell.)
Inside this Docker environment you can do anything – run a Jupyter notebook, your training script, your evaluation script, and so on.
Let's pretend we've trained a model. With Cog, we can define how to run predictions on it in a standard way, so other people can easily run predictions on it without having to hunt around for a prediction script.
First, run this to get some pre-trained model weights:
WEIGHTS_URL=https://storage.googleapis.com/tensorflow/keras-applications/resnet/resnet50_weights_tf_dim_ordering_tf_kernels.h5
curl -O $WEIGHTS_URL
Then, we need to write some code to describe how predictions are run on the model.
Save this to predict.py
:
from typing import Any
from cog import BasePredictor, Input, Path
from tensorflow.keras.applications.resnet50 import ResNet50
from tensorflow.keras.preprocessing import image as keras_image
from tensorflow.keras.applications.resnet50 import preprocess_input, decode_predictions
import numpy as np
class Predictor(BasePredictor):
def setup(self):
"""Load the model into memory to make running multiple predictions efficient"""
self.model = ResNet50(weights='resnet50_weights_tf_dim_ordering_tf_kernels.h5')
# Define the arguments and types the model takes as input
def predict(self, image: Path = Input(description="Image to classify")) -> Any:
"""Run a single prediction on the model"""
# Preprocess the image
img = keras_image.load_img(image, target_size=(224, 224))
x = keras_image.img_to_array(img)
x = np.expand_dims(x, axis=0)
x = preprocess_input(x)
# Run the prediction
preds = self.model.predict(x)
# Return the top 3 predictions
return decode_predictions(preds, top=3)[0]
We also need to point Cog at this, and tell it what Python dependencies to install. Update cog.yaml
to look like this:
build:
python_version: "3.11"
python_packages:
- pillow==9.5.0
- tensorflow==2.12.0
predict: "predict.py:Predictor"
Let's grab an image to test the model with:
IMAGE_URL=https://gist.githubusercontent.com/bfirsh/3c2115692682ae260932a67d93fd94a8/raw/56b19f53f7643bb6c0b822c410c366c3a6244de2/mystery.jpg
curl $IMAGE_URL > input.jpg
Now, let's run the model using Cog:
cog predict -i [email protected]
If you see the following output
[
[
"n02123159",
"tiger_cat",
0.4874822497367859
],
[
"n02123045",
"tabby",
0.23169134557247162
],
[
"n02124075",
"Egyptian_cat",
0.09728282690048218
]
]
then it worked!
Note: The first time you run cog predict
, the build process will be triggered to generate a Docker container that can run your model. The next time you run cog predict
the pre-built container will be used.
We can bake your model's code, the trained weights, and the Docker environment into a Docker image. This image serves predictions with an HTTP server, and can be deployed to anywhere that Docker runs to serve real-time predictions.
cog build -t resnet
# Building Docker image...
# Built resnet:latest
Once you've built the image, you can optionally view the generated dockerfile to get a sense of what Cog is doing under the hood:
cog debug
You can run this image with cog predict
by passing the filename as an argument:
cog predict resnet -i [email protected]
Or, you can run it with Docker directly, and it'll serve an HTTP server:
docker run -d --rm -p 5000:5000 resnet
We can send inputs directly with curl
:
curl http://localhost:5000/predictions -X POST \
-H 'Content-Type: application/json' \
-d '{"input": {"image": "https://gist.githubusercontent.com/bfirsh/3c2115692682ae260932a67d93fd94a8/raw/56b19f53f7643bb6c0b822c410c366c3a6244de2/mystery.jpg"}}'
As a shorthand, you can add the Docker image's name as an extra line in cog.yaml
:
image: "r8.im/replicate/resnet"
Once you've done this, you can use cog push
to build and push the image to a Docker registry:
cog push
# Building r8.im/replicate/resnet...
# Pushing r8.im/replicate/resnet...
# Pushed!
The Docker image is now accessible to anyone or any system that has access to this Docker registry.
Note Model repos often contain large data files, like weights and checkpoints. If you put these files in their own subdirectory and run
cog build
with the--separate-weights
flag, Cog will copy these files into a separate Docker layer, which reduces the time needed to rebuild after making changes to code.# ✅ Yes . ├── checkpoints/ │ └── weights.ckpt ├── predict.py └── cog.yaml # ❌ No . ├── weights.ckpt # <- Don't put weights in root directory ├── predict.py └── cog.yaml # ❌ No . ├── checkpoints/ │ ├── weights.ckpt │ └── load_weights.py # <- Don't put code in weights directory ├── predict.py └── cog.yaml
Those are the basics! Next, you might want to take a look at: