@@ -40,46 +40,7 @@ replacing the model identifier and input with your own:
40
40
input = {" prompt" : " a 19th century portrait of a wombat gentleman" }
41
41
)
42
42
43
- [' https://replicate.com/api/models/stability-ai/stable-diffusion/files/50fcac81-865d-499e-81ac-49de0cb79264/out-0.png' ]
44
- ```
45
-
46
- > [ !TIP]
47
- > You can also use the Replicate client asynchronously by prepending ` async_ ` to the method name.
48
- >
49
- > Here's an example of how to run several predictions concurrently and wait for them all to complete:
50
- >
51
- > ``` python
52
- > import asyncio
53
- > import replicate
54
- >
55
- > # https://replicate.com/stability-ai/sdxl
56
- > model_version = " stability-ai/sdxl:39ed52f2a78e934b3ba6e2a89f5b1c712de7dfea535525255b1aa35c5565e08b"
57
- > prompts = [
58
- > f " A chariot pulled by a team of { count} rainbow unicorns "
59
- > for count in [" two" , " four" , " six" , " eight" ]
60
- > ]
61
- >
62
- > async with asyncio.TaskGroup() as tg:
63
- > tasks = [
64
- > tg.create_task(replicate.async_run(model_version, input = {" prompt" : prompt}))
65
- > for prompt in prompts
66
- > ]
67
- >
68
- > results = await asyncio.gather(* tasks)
69
- > print (results)
70
- > ```
71
-
72
- To run a model that takes a file input you can pass either
73
- a URL to a publicly accessible file on the Internet
74
- or a handle to a file on your local device.
75
-
76
- ```python
77
- >> > output = replicate.run(
78
- " andreasjansson/blip-2:f677695e5e89f8b236e52ecd1d3f01beb44c34606419bcc19345e046d8f786f9" ,
79
- input = { " image" : open (" path/to/mystery.jpg" ) }
80
- )
81
-
82
- " an astronaut riding a horse"
43
+ [< replicate.helpers.FileOutput object at 0x 107179b50> ]
83
44
```
84
45
85
46
` replicate.run ` raises ` ModelError ` if the prediction fails.
@@ -99,6 +60,55 @@ except ModelError as e
99
60
print (" Failed prediction: " + e.prediction.id)
100
61
```
101
62
63
+ > [ !NOTE]
64
+ > By default the Replicate client will hold the connection open for up to 60 seconds while waiting
65
+ > for the prediction to complete. This is designed to optimize getting the model output back to the
66
+ > client as quickly as possible. For models that output files the file data will be inlined into
67
+ > the response as a data-uri.
68
+ >
69
+ > The timeout can be configured by passing ` wait=x ` to ` replicate.run() ` where ` x ` is a timeout
70
+ > in seconds between 1 and 60. To disable the sync mode and the data-uri response you can pass
71
+ > ` wait=False ` to ` replicate.run() ` .
72
+
73
+ ## AsyncIO support
74
+
75
+ You can also use the Replicate client asynchronously by prepending ` async_ ` to the method name.
76
+
77
+ Here's an example of how to run several predictions concurrently and wait for them all to complete:
78
+
79
+ ``` python
80
+ import asyncio
81
+ import replicate
82
+
83
+ # https://replicate.com/stability-ai/sdxl
84
+ model_version = " stability-ai/sdxl:39ed52f2a78e934b3ba6e2a89f5b1c712de7dfea535525255b1aa35c5565e08b"
85
+ prompts = [
86
+ f " A chariot pulled by a team of { count} rainbow unicorns "
87
+ for count in [" two" , " four" , " six" , " eight" ]
88
+ ]
89
+
90
+ async with asyncio.TaskGroup() as tg:
91
+ tasks = [
92
+ tg.create_task(replicate.async_run(model_version, input = {" prompt" : prompt}))
93
+ for prompt in prompts
94
+ ]
95
+
96
+ results = await asyncio.gather(* tasks)
97
+ print (results)
98
+ ```
99
+
100
+ To run a model that takes a file input you can pass either
101
+ a URL to a publicly accessible file on the Internet
102
+ or a handle to a file on your local device.
103
+
104
+ ``` python
105
+ >> > output = replicate.run(
106
+ " andreasjansson/blip-2:f677695e5e89f8b236e52ecd1d3f01beb44c34606419bcc19345e046d8f786f9" ,
107
+ input = { " image" : open (" path/to/mystery.jpg" ) }
108
+ )
109
+
110
+ " an astronaut riding a horse"
111
+ ```
102
112
103
113
## Run a model and stream its output
104
114
@@ -176,7 +186,7 @@ iteration: 30, render:loss: -1.3994140625
176
186
' succeeded'
177
187
178
188
>> > prediction.output
179
- ' https://.../output.png '
189
+ < replicate.helpers.FileOutput object at 0x 107179b50 >
180
190
```
181
191
182
192
## Run a model in the background and get a webhook
@@ -217,8 +227,9 @@ iterator = replicate.run(
217
227
input = {" prompts" : " san francisco sunset" }
218
228
)
219
229
220
- for image in iterator:
221
- display(image)
230
+ for index, image in enumerate (iterator):
231
+ with open (f " file_ { index} .png " , " wb" ) as file :
232
+ file .write(image.read())
222
233
```
223
234
224
235
## Cancel a prediction
@@ -263,20 +274,104 @@ if page1.next:
263
274
264
275
## Load output files
265
276
266
- Output files are returned as HTTPS URLs. You can load an output file as a buffer :
277
+ Output files are returned as ` FileOutput ` objects :
267
278
268
279
``` python
269
280
import replicate
270
- from PIL import Image
271
- from urllib.request import urlretrieve
281
+ from PIL import Image # pip install pillow
272
282
273
- out = replicate.run(
283
+ output = replicate.run(
274
284
" stability-ai/stable-diffusion:27b93a2413e7f36cd83da926f3656280b2931564ff050bf9575f1fdf9bcd7478" ,
275
285
input = {" prompt" : " wavy colorful abstract patterns, oceans" }
276
286
)
277
287
278
- urlretrieve(out[0 ], " /tmp/out.png" )
279
- background = Image.open(" /tmp/out.png" )
288
+ # This has a .read() method that returns the binary data.
289
+ with open (" my_output.png" , " wb" ) as file :
290
+ file .write(output[0 ].read())
291
+
292
+ # It also implements the iterator protocol to stream the data.
293
+ background = Image.open(output[0 ])
294
+ ```
295
+
296
+ ### FileOutput
297
+
298
+ Is a file-like object returned from the ` replicate.run() ` method that makes it easier to work with models
299
+ that output files. It implements ` Iterator ` and ` AsyncIterator ` for reading the file data in chunks as well
300
+ as ` read ` and ` aread() ` to read the entire file into memory.
301
+
302
+ Lastly, the underlying datasource is available on the ` url ` attribute.
303
+
304
+ > [ !NOTE]
305
+ > The ` url ` attribute can vary between a remote URL and a data-uri depending on whether the server has
306
+ > optimized the request. For small files <5mb using the syncronous API data-uris will be returned to
307
+ > remove the need to make subsequent requests for the file data. To disable this pass ` wait=false `
308
+ > to the replicate.run() function.
309
+
310
+ To access the file URL:
311
+
312
+ ``` python
313
+ print (output.url) # => "..." or "https://delivery.replicate.com/..."
314
+ ```
315
+
316
+ To consume the file directly:
317
+
318
+ ``` python
319
+ with open (' output.bin' , ' wb' ) as file :
320
+ file .write(output.read())
321
+ ```
322
+
323
+ Or for very large files they can be streamed:
324
+
325
+ ``` python
326
+ with open (file_path, ' wb' ) as file :
327
+ for chunk in output:
328
+ file .write(chunk)
329
+ ```
330
+
331
+ Each of these methods has an equivalent ` asyncio ` API.
332
+
333
+ ``` python
334
+ async with aiofiles.open(filename, ' w' ) as file :
335
+ await file .write(await output.aread())
336
+
337
+ async with aiofiles.open(filename, ' w' ) as file :
338
+ await for chunk in output:
339
+ await file .write(chunk)
340
+ ```
341
+
342
+ For streaming responses from common frameworks, all support taking ` Iterator ` types:
343
+
344
+ ** Django**
345
+
346
+ ``` python
347
+ @condition (etag_func = None )
348
+ def stream_response (request ):
349
+ output = replicate.run(" black-forest-labs/flux-schnell" , input = {... }, use_file_output = True )
350
+ return HttpResponse(output, content_type = ' image/webp' )
351
+ ```
352
+
353
+ ** FastAPI**
354
+
355
+ ``` python
356
+ @app.get (" /" )
357
+ async def main ():
358
+ output = replicate.run(" black-forest-labs/flux-schnell" , input = {... }, use_file_output = True )
359
+ return StreamingResponse(output)
360
+ ```
361
+
362
+ ** Flask**
363
+
364
+ ``` python
365
+ @app.route (' /stream' )
366
+ def streamed_response ():
367
+ output = replicate.run(" black-forest-labs/flux-schnell" , input = {... }, use_file_output = True )
368
+ return app.response_class(stream_with_context(output))
369
+ ```
370
+
371
+ You can opt out of ` FileOutput ` by passing ` use_file_output=False ` to the ` replicate.run() ` method.
372
+
373
+ ``` python
374
+ const replicate = replicate.run(" acmecorp/acme-model" , use_file_output = False );
280
375
```
281
376
282
377
## List models
0 commit comments