@@ -47,7 +47,7 @@ <h2><span class="glyphicon glyphicon-certificate"></span>Learning Objectives</h2
47
47
black,< span class ="fl "> 5.0</ span > ,< span class ="ot "> FALSE</ span >
48
48
tabby,< span class ="fl "> 3.2</ span > ,< span class ="ot "> TRUE</ span > </ code > </ pre >
49
49
< p > We can load this into R via the following:</ p >
50
- < pre class ="sourceCode r "> < code class ="sourceCode r "> cats <-< span class ="st "> </ span > < span class ="kw "> read.csv</ span > (< span class ="dt "> file =</ span > < span class ="st "> "data/ feline-data.csv"</ span > )
50
+ < pre class ="sourceCode r "> < code class ="sourceCode r "> cats <-< span class ="st "> </ span > < span class ="kw "> read.csv</ span > (< span class ="dt "> file =</ span > < span class ="st "> "feline-data.csv"</ span > )
51
51
cats</ code > </ pre >
52
52
< pre class ="output "> < code > coat weight likes_string
53
53
1 calico 2.1 TRUE
@@ -89,7 +89,7 @@ <h2 id="data-types">Data Types</h2>
89
89
< p > Note the < code > L</ code > suffix to insist that a number is an integer. No matter how complicated our analyses become, all data in R is interpreted as one of these basic data types. This strictness has some really important consequences. Go back to your text editor and add add this line to feline-data.csv:</ p >
90
90
< pre class ="sourceCode r "> < code class ="sourceCode r "> tabby,< span class ="fl "> 2.3</ span > or < span class ="fl "> 2.4</ span > ,< span class ="ot "> TRUE</ span > </ code > </ pre >
91
91
< p > Reload your cats data like before, and check what type of data we find in the < code > weight</ code > column:</ p >
92
- < pre class ="sourceCode r "> < code class ="sourceCode r "> cats <-< span class ="st "> </ span > < span class ="kw "> read.csv</ span > (< span class ="dt "> file=</ span > < span class ="st "> "data/ feline-data.csv"</ span > )
92
+ < pre class ="sourceCode r "> < code class ="sourceCode r "> cats <-< span class ="st "> </ span > < span class ="kw "> read.csv</ span > (< span class ="dt "> file=</ span > < span class ="st "> "feline-data.csv"</ span > )
93
93
< span class ="kw "> typeof</ span > (cats$weight[< span class ="dv "> 1</ span > ])</ code > </ pre >
94
94
< pre class ="output "> < code > [1] "double"
95
95
</ code > </ pre >
@@ -104,7 +104,7 @@ <h2 id="data-types">Data Types</h2>
104
104
black,5.0,FALSE
105
105
tabby,3.2,TRUE</ code > </ pre >
106
106
< p > And back in RStudio:</ p >
107
- < pre > < code > cats <- read.csv(file="data/ feline-data.csv")</ code > </ pre >
107
+ < pre > < code > cats <- read.csv(file="feline-data.csv")</ code > </ pre >
108
108
< h2 id ="vectors-type-coercion "> Vectors & Type Coercion</ h2 >
109
109
< p > To better understand the behavior we just saw, let’s meet another of the data structures: the < em > vector</ em > .</ p >
110
110
< pre class ="sourceCode r "> < code class ="sourceCode r "> my_vector <-< span class ="st "> </ span > < span class ="kw "> vector</ span > (< span class ="dt "> length=</ span > < span class ="dv "> 3</ span > )
@@ -168,9 +168,9 @@ <h2><span class="glyphicon glyphicon-pencil"></span>Discussion 1</h2>
168
168
ab_vector</ code > </ pre >
169
169
< pre class ="output "> < code > [1] "a" "b"
170
170
</ code > </ pre >
171
- < pre class ="sourceCode r "> < code class ="sourceCode r "> concat_example <-< span class ="st "> </ span > < span class ="kw "> c</ span > (ab_vector, < span class ="st "> 'SWC '</ span > )
171
+ < pre class ="sourceCode r "> < code class ="sourceCode r "> concat_example <-< span class ="st "> </ span > < span class ="kw "> c</ span > (ab_vector, < span class ="st "> 'RES '</ span > )
172
172
concat_example</ code > </ pre >
173
- < pre class ="output "> < code > [1] "a" "b" "SWC "
173
+ < pre class ="output "> < code > [1] "a" "b" "RES "
174
174
</ code > </ pre >
175
175
< p > You can also make series of numbers:</ p >
176
176
< pre class ="sourceCode r "> < code class ="sourceCode r "> mySeries <-< span class ="st "> </ span > < span class ="dv "> 1</ span > :< span class ="dv "> 10</ span >
@@ -216,7 +216,7 @@ <h2><span class="glyphicon glyphicon-pencil"></span>Discussion 1</h2>
216
216
< h2 > < span class ="glyphicon glyphicon-pencil "> </ span > Challenge 1</ h2 >
217
217
</ div >
218
218
< div class ="panel-body ">
219
- < p > Start by making a vector with the numbers 11 to 20. Then use the functions we just learned to extract the 3rd through 5th element in that vector into a new vector; name the elements in that new vector ‘S ’, ‘W ’, ‘C ’.</ p >
219
+ < p > Start by making a vector with the numbers 11 to 20. Then use the functions we just learned to extract the 3rd through 5th element in that vector into a new vector; name the elements in that new vector ‘R ’, ‘E ’, ‘S ’.</ p >
220
220
</ div >
221
221
</ section >
222
222
< h2 id ="factors "> Factors</ h2 >
@@ -399,15 +399,15 @@ <h2><span class="glyphicon glyphicon-pencil"></span>Solution to Challenge 1</h2>
399
399
< div class ="panel-body ">
400
400
< pre class ="sourceCode r "> < code class ="sourceCode r "> x <-< span class ="st "> </ span > < span class ="kw "> c</ span > (< span class ="dv "> 11</ span > :< span class ="dv "> 20</ span > )
401
401
subset <-< span class ="st "> </ span > x[< span class ="dv "> 3</ span > :< span class ="dv "> 5</ span > ]
402
- < span class ="kw "> names</ span > (subset) <-< span class ="st "> </ span > < span class ="kw "> c</ span > (< span class ="st "> 'S '</ span > , < span class ="st "> 'W '</ span > , < span class ="st "> 'C '</ span > )</ code > </ pre >
402
+ < span class ="kw "> names</ span > (subset) <-< span class ="st "> </ span > < span class ="kw "> c</ span > (< span class ="st "> 'R '</ span > , < span class ="st "> 'E '</ span > , < span class ="st "> 'S '</ span > )</ code > </ pre >
403
403
</ div >
404
404
</ section >
405
405
< section class ="challenge panel panel-success ">
406
406
< div class ="panel-heading ">
407
407
< h2 > < span class ="glyphicon glyphicon-pencil "> </ span > Solution to Challenge 2</ h2 >
408
408
</ div >
409
409
< div class ="panel-body ">
410
- < pre class ="sourceCode r "> < code class ="sourceCode r "> cats <-< span class ="st "> </ span > < span class ="kw "> read.csv</ span > (< span class ="dt "> file=</ span > < span class ="st "> "data/ feline-data.csv"</ span > , < span class ="dt "> stringsAsFactors=</ span > < span class ="ot "> FALSE</ span > )
410
+ < pre class ="sourceCode r "> < code class ="sourceCode r "> cats <-< span class ="st "> </ span > < span class ="kw "> read.csv</ span > (< span class ="dt "> file=</ span > < span class ="st "> "feline-data.csv"</ span > , < span class ="dt "> stringsAsFactors=</ span > < span class ="ot "> FALSE</ span > )
411
411
< span class ="kw "> str</ span > (cats$coat)</ code > </ pre >
412
412
< pre class ="output "> < code > chr [1:3] "calico" "black" "tabby"
413
413
</ code > </ pre >
0 commit comments