Skip to content
This repository was archived by the owner on Apr 2, 2024. It is now read-only.

Commit aa26a8d

Browse files
author
Sam Penrose
committedJun 5, 2015
PR#37 converted to slides per issue #40
1 parent 2f686df commit aa26a8d

File tree

4 files changed

+104
-0
lines changed

4 files changed

+104
-0
lines changed
 

‎img/countries_and_colors.png

234 KB
Loading

‎img/first_plot.png

34.8 KB
Loading

‎img/gdp_and_life.png

30.6 KB
Loading

‎motivation.Rmd

+104
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,104 @@
1+
---
2+
layout: slides
3+
title: R for reproducible scientific analysis
4+
subtitle: Why Use R?
5+
---
6+
7+
```{r, include=FALSE}
8+
library(ggplot2)
9+
theme_set(theme_bw())
10+
source("tools/chunk-options.R")
11+
library(dplyr)
12+
gapminder <- tbl_df(read.csv("data/gapminder-FiveYearData.csv"))
13+
```
14+
15+
## Why R?
16+
17+
* Powerful statistical analysis
18+
* and powerful visualisation
19+
* integrated elegantly
20+
21+
## What We'll Accomplish
22+
23+
* Get to know R and RStudio
24+
* Analyze a meaningful data set
25+
* Extract insights and deliver them visually
26+
* Leave ready to learn more R independently
27+
28+
## R loves ingesting data
29+
30+
```
31+
gapminder <- read.csv(
32+
"data/gapminder-FiveYearData.csv",
33+
header=TRUE,
34+
sep=',')
35+
```
36+
37+
## Data w/ column names
38+
39+
head(gapminder, 1) # Show me the first row
40+
41+
country year pop continent lifeExp gdpPercap
42+
1 Afghanistan 1952 8425333 Asia 28.801 779.4453
43+
44+
## Quickly graph ...
45+
```
46+
ggplot(
47+
data=gapminder,
48+
aes(x=lifeExp, y=gdpPercap)
49+
) + geom_point()
50+
```
51+
52+
## ... to see what we have
53+
![First plot](img/first_plot.png)
54+
55+
## Let's graph more factors
56+
```
57+
ggplot(
58+
data=gapminder,
59+
aes(x=year, y=lifeExp, by=country, colour=continent)
60+
) + geom_line()
61+
+ geom_point()
62+
```
63+
64+
## Pretty!
65+
![Countries and colors](img/countries_and_colors.png)
66+
67+
## dyplr gives us ...
68+
```{r}
69+
library(dplyr)
70+
cors <- gapminder %>%
71+
group_by(year) %>%
72+
summarise(
73+
gdpPercap.lifeExp = cor(gdpPercap, lifeExp),
74+
gdpPercap.pop = cor(gdpPercap, pop),
75+
pop.lifeExp = cor(pop, lifeExp))
76+
```
77+
78+
## ... pairwise correlations
79+
```
80+
head(cors, 1)
81+
Source: local data frame [1 x 4]
82+
year gdpPercap.lifeExp gdpPercap.pop pop.lifeExp
83+
1 1952 0.2780236 -0.02526041 -0.002724782
84+
```
85+
86+
## Restructuring the table ...
87+
```{r}
88+
library(tidyr)
89+
tidy.cors <- cors %>% gather(
90+
variables, correlation,
91+
gdpPercap.lifeExp, gdpPercap.pop,
92+
pop.lifeExp)
93+
```
94+
## ... a subtle art ...
95+
```
96+
head(tidy.cors, 1)
97+
98+
Source: local data frame [1 x 3]
99+
year variables correlation
100+
1 1952 gdpPercap.lifeExp 0.2780236
101+
```
102+
103+
## ... produces great results
104+
![GDP and Life](img/gdp_and_life.png)

0 commit comments

Comments
 (0)
This repository has been archived.