-
Notifications
You must be signed in to change notification settings - Fork 2
/
oneloopneutrinos.tex
538 lines (475 loc) · 21.5 KB
/
oneloopneutrinos.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
\chapter{One-loop neutrino masses}
Here we calculate the one-loop neutrino mases in the mass-basis
\section{Extra particles}
We assume to have $\alpha$-scalar and $n$-fermions in the mass eigenstate basis in Weyl spinor notation
\begin{align}
\mathcal{L}=\left(y_{in\alpha}\nu_{i}\chi_n S_{\alpha}+m_n \chi_n\chi_n +\text{h.c} \right)+\tfrac{1}{2}m_{\alpha}^2\,S_{\alpha}^2\,.
\end{align}
From left to right (clockwise) in Figure~\ref{fig:1lnu}
\begin{figure}
\centering
\includegraphics[scale=0.5]{onelooopneutrino}
\caption{Generic one-loop neutrino mass contribution}
\label{fig:1lnu}
\end{figure}
\begin{align}
-i\Sigma^{\nu}_{ij}(p)=&\int \frac{d4k}{\left( 2\pi \right)^{4}}\left(y_{in\alpha} \right)iS_F(k) \left(y_{jn\alpha}\right)i\Delta_F(p+k) \nonumber\\
=&\frac{y_{i n\alpha}y_{j n\alpha}}{16\pi^2}\int \frac{d^4k}{i\pi^2}\frac{\cancel{k}+m_{\chi_n}}{\left(k^2-m_{\chi_n}^2 \right)\left[\left(p+k\right)^2-m_{S_\alpha}^2\right]}
\end{align}
In the limit $p\to 0$
\begin{align}
\label{eq:mnub0}
M^{\nu}_{ij}=&-\frac{y_{i n\alpha}y_{j n\alpha}}{16\pi^2}m_{\chi_n} B_0 \left( 0;m_{\chi_n}^2,m_{S_{\alpha}}^2 \right) \,.
\end{align}
where $B_0\left
(0;m_{\chi_n}^2,m^2_{S_{\alpha}} \right)$ is the $B_0$ Passarino-Veltman function~\cite{Passarino:1978jh} in dimensional regularization
\begin{align}
\label{eq:mnueigi02}
B_0 \left(0;m_{\chi_n}^2,m^2_{S_{\alpha}} \right)=&\frac{\left( 2\pi \mu \right)^{\epsilon}}{i\pi^2}\int d^dk\frac{1}{\left(k^2-m_{\chi_n}^2\right)\left(k^2-m_{S_\alpha}^2\right)}\,.
\end{align}
where $\mu$ is the subtraction point of dimensional regularization and $d=4-\epsilon$.
By following Romao notes: \url{http://porthos.tecnico.ulisboa.pt/Public/textos/one-loop.pdf}\footnote{Old version, now is a part of "Advanced Quantum Field Theory" \url{http://porthos.ist.utl.pt/Public/textos/tca.pdf}}
it will be shown below that this can be decomposed as
\begin{align}
\label{eq:mnueig}
B_0 \left(0;m_{\chi_n}^2,m^2_{S_{\alpha}} \right)
=&\frac{1}{m_{\chi_n}^2-m_{S_\alpha}^2}\left[ A_0\left(m_{\chi_n}^2\right)-A_0\left(m_{S_\alpha}^2\right) \right],
\end{align}
where
\begin{align}
A_{0}\left(m^{2}\right) &=\frac{(2 \pi \mu)^{\epsilon}}{i \pi^{2}} \int d^{d} k \frac{1}{k^{2}-m^{2}}\,.
\end{align}
To evaluate the integral through the Passarino-Veltman functions, we start with the general integral with two denominators
\begin{align}
\label{eq:pvbo}
B_{0}\left(r_{10}^{2}, m_{0}^{2}, m_{1}^{2}\right)=\frac{(2 \pi \mu)^{\epsilon}}{i \pi^{2}} \int d^{d} k \prod_{i=0}^{1} \frac{1}{\left[\left(k+r_{i}\right)^{2}-m_{i}^{2}\right]}
\end{align}
In particular
\begin{align}
I =&\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left[(k+p)^{2}-m_{1}^{2}+i \epsilon\right]\left[k^{2}-m_{2}^{2}+i \epsilon\right]} \nonumber\\
=&\int_{0}^{1} d x \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left[k^{2}+2 p \cdot k x+p^{2} x-m_{1}^{2} x-m_{2}^{2}(1-x)+i \epsilon\right]^{2}} \nonumber\\
=&\int_{0}^{1} d x \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left[k^{2}+2 P(x) \cdot k-M^{2}(x)+i \epsilon\right]^{2}} \nonumber\\
=&\int_{0}^{1} d x \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left\{[k+P(x)]^{2}-P^{2}(x)-M^{2}(x)+i \epsilon\right\}^{2}}
\end{align}
where
\begin{align}
P(x)=&x p\,,& M^{2}(x)=&-x p^{2}+m_{1}^{2} x+m_{2}^{2}(1-x).
\end{align}
Changing variable $k\to k-P$
\begin{align}
I=\int_{0}^{1} d x \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{1}{\left[k^{2}-C(x)+i \epsilon\right]^{2}}
\end{align}
where
\begin{align}
\label{eq:cx}
C(x)=P^{2}(x)+M^{2}(x)
\end{align}
In general, the integral to be calculated with dimensional regularization is
\begin{align}
I_{r, m}=\int \frac{d^{d} k}{(2 \pi)^{d}} \frac{k^{2^{r}}}{\left[k^{2}-C+i \epsilon\right]^{m}}\,.
\end{align}
Making a Wick rotation, this can be written as
\begin{align}
I_{r, m}=i(-1)^{r-m} \int \frac{d^{d} k_{E}}{(2 \pi)^{d}} \frac{k_{E}^{2^{r}}}{\left[k_{E}^{2}+C\right]^{m}}
\end{align}
where $k_{E}=\left(k_{E}^{0}, \boldsymbol{k}\right)$ is an euclidean vector with
\begin{align}
k^{0}=&i k_{E}^{0}\,,& \text{and} && k_{E}^{2}=&\left(k_{E}^{0}\right)^{2}+|\boldsymbol{k}|^{2}\,.
\end{align}
The integral can be evaluated to give
\begin{align}
I_{r, m}=i C^{r-m+\frac{d}{2}} \frac{(-1)^{r-m}}{(4 \pi)^{\frac{d}{2}}} \frac{\Gamma\left(r+\frac{d}{2}\right)}{\Gamma\left(\frac{d}{2}\right)} \frac{\Gamma\left(m-r-\frac{d}{2}\right)}{\Gamma(m)}\,.
\end{align}
By using $d=4-\epsilon$
\begin{align}
I_{r, m}=i \frac{(-1)^{r-m}}{(4 \pi)^{2}}\left(\frac{4 \pi}{C}\right)^{\frac{\epsilon}{2}} C^{2+r-m} \frac{\Gamma\left(2+r-\frac{\epsilon}{2}\right)}{\Gamma\left(2-\frac{\epsilon}{2}\right)} \frac{\Gamma\left(m-r-2+\frac{\epsilon}{2}\right)}{\Gamma(m)}\,.
\end{align}
We are interested in
\begin{align}
I_{0,2}=\frac{i}{(4 \pi)^{2}}\left(\frac{4 \pi}{C}\right)^{\frac{\epsilon}{2}} \Gamma\left(\frac{\epsilon}{2}\right).
\end{align}
where
\begin{align}
\Gamma\left(\frac{\epsilon}{2}\right)=\frac{2}{\epsilon}+\psi(1)+O(\epsilon)
\end{align}
where
\begin{align}
\psi(z) &=\frac{d}{d z} \ln \Gamma(z) \\ \psi(1) &=-\gamma \,.
\end{align}
So that
\begin{align}
I_{0,2}=\frac{i}{16 \pi^{2}}\left(\Delta_{\epsilon}-\ln C\right)
\end{align}
where
\begin{align}
\Delta_{\epsilon}=\frac{2}{\epsilon}-\gamma+\ln 4 \pi\,,
\end{align}
where $\gamma$ is the Euler-Mascheroni constant.
Replacing back $C(x)$ from eq~\eqref{eq:cx} in \eqref{eq:pvbo}
\begin{align}
\label{eq:gpvbo}
B_{0}\left(p^{2}, m_{0}^{2}, m_{1}^{2}\right)=\Delta_{\epsilon}-\int_{0}^{1} d x \ln \left[\frac{-x(1-x) p^{2}+x m_{1}^{2}+(1-x) m_{0}^{2}}{\mu^{2}}\right]
\end{align}
\begin{verbatim}
In[1]:= Integrate[Log[a x], x]
Out[1]= -x + x Log[a x]
In[2]:= Dt[-x + x Log[a x], x, Constants -> a]
Out[3]= Log[a x]
\end{verbatim}
Taking into account that
\begin{align}
\label{eq:I01}
I_{0,1}=\frac{i}{16 \pi^{2}} C\left(1+\Delta_{\epsilon}-\ln C\right)\,,
\end{align}
we can define
\begin{align}
A_{0}\left(m^{2}\right) &=\frac{(2 \pi \mu)^{\epsilon}}{i \pi^{2}} \int d^{d} k \frac{1}{k^{2}-m^{2}}\,.
\end{align}
such that
\begin{align*}
A_0\left(m^2\right)=m^2 \left[ \Delta_{\epsilon}+1-\ln \left( m^2/\mu^2 \right) \right]
\end{align*}
In this way, from \eqref{eq:gpvbo} we can get
\begin{align}
B_{0}\left(0, m_{0}^{2}, m_{1}^{2}\right)=&\Delta_{\epsilon}+1-\frac{m_{0}^{2} \ln \frac{m_{0}^{2}}{\mu^{2}}-m_{1}^{2} \ln \frac{m_{1}^{2}}{\mu^{2}}}{m_{0}^{2}-m_{1}^{2}} \nonumber\\
=&\frac{A_{0}\left(m_{0}^{2}\right)-A_{0}\left(m_{1}^{2}\right)}{m_{0}^{2}-m_{1}^{2}}\,.
\end{align}
Replacing back in eq.~\eqref{eq:mnueig}, we have
\begin{align}
B_0 \left(0;m_{\chi_n}^2,m^2_{S_{\alpha}} \right)=&
\frac{1}{m_{\chi_n}^2-m_{S_\alpha}^2}\left[m^2_{\chi_n} \left[ \Delta+1-\ln \left( m_{\chi_n}^2/\mu^2 \right) \right] \right]
-m_{S_\alpha}^2 \left[ \Delta+1-\ln \left( m_{S_\alpha}^2/\mu^2 \right) \right] \nonumber\\
=&(\Delta+1)+\frac{m_{S_\alpha}^2\ln \left( m_{S_\alpha}^2/\mu^2 \right)-m_{\chi_n}^2\ln \left( m_{\chi_n}^2/\mu^2 \right)}{m_{\chi_n}^2-m_{S_\alpha}^2} \nonumber\\
=&(\Delta+1)+\frac{m_{S_\alpha}^2 \left[ \ln \left( m_{S_\alpha}^2 \right)-\ln \left( \mu^2 \right) \right]-
m_{\chi_n}^2 \left[ \ln \left( m_{\chi_n}^2 \right)-\ln \left( \mu^2 \right) \right]}{m_{\chi_n}^2-m_{S_\alpha}^2} \nonumber\\
=&\left[\Delta+1+\ln\left( \mu^2 \right) \right]+\frac{m_{S_\alpha}^2\ln \left( m_{S_\alpha}^2 \right)-m_{\chi_n}^2\ln \left( m_{\chi_n}^2 \right)}{m_{\chi_n}^2-m_{S_\alpha}^2} \nonumber\\
=&\operatorname{cte}(\infty)+\frac{m_{S_\alpha}^2\ln \left( m_{S_\alpha}^2 \right)-m_{\chi_n}^2\ln \left( m_{\chi_n}^2 \right)}{m_{\chi_n}^2-m_{S_\alpha}^2} \,.
\end{align}
and replacing back in eq.~\eqref{eq:mnub0}:
\begin{align}
M^{\nu}_{ij}=&-\frac{y_{i n\alpha}y_{j n\alpha}}{16\pi^2}m_{\chi_n} \left[ \operatorname{cte}(\infty)+
f \left( m_{\chi_n},m_{S_{\alpha}}^2 \right) \right] \,,
\end{align}
where
\begin{align}
f \left( m_{\chi_n}^2,m_{S_{\alpha}}^2 \right)=&
\frac{m_{S_{\alpha}}^2\ln \left(m_{S_{\alpha}}^2\right)-m_{\chi_n}^2\ln \left(m_{\chi_n}^2 \right)}{m_{\chi_n}^2-m_{S_{\alpha}}^2}
\end{align}
See \url{./FeynCalc/radiativeseesaw.nb} for an example based in the Radiative seesaw below
To obtain in detail could be useful the Feynman parameters for the one-loop neutrino integral in Fig.~\ref{fig:fp}
% \begin{figure}
% \centering
% \includegraphics[scale=0.8]{parfeyn}
% \caption{Feynman parameters}
% \label{fig:fp}
% \end{figure}
\section{Applications}
\section{Radiative seesaw}
It is based in the inert-doublet scalar dark matter model where in order to have a viable scalar dark matter particle we need a sizeable splitting between the real an imaginary part of the inert doublet
\begin{align}
\eta=\begin{pmatrix}
\eta^+\\
\dfrac{\rho^0+i A^0}{\sqrt{2}}
\end{pmatrix}
\end{align}
\begin{align}
V=& \mu_{1}^{2} H^{\dagger} H+\mu_{2}^{2} \eta^{\dagger} \eta+\lambda_{1}\left(H^{\dagger} H\right)^{2}+ \lambda_{2}\left(\eta^{\dagger} \eta\right)^{2} +\lambda_{3}\left(H^{\dagger} H\right)\left(\eta^{\dagger} \eta\right)+\lambda_{4}\left(H^{\dagger} \eta\right)\left(\eta^{\dagger} H\right) \nonumber\\
& + \lambda_{5}\left[\left(\eta^{\dagger} H\right)^{2}+\text { H.c. }\right]
\end{align}
The terms relevant for the mass terms are
\begin{align}
V\supset& \frac{\mu_1^2}{2} \left( h+v\right)^2+\frac{\lambda_1}{4} \left( h+v \right)^4
+\mu_2^2 \eta^+\eta^- +\frac{\mu_2^2}{2} \rho^{02} +\frac{\mu_2^2}{2} A^{02}
+\frac{\lambda_3}{2} \left( h+v \right)^2 \left[ \eta^+\eta^- + \frac{1}{2}\left( \rho^{02}+A^{02} \right) \right] \nonumber\\
&+ \frac{\lambda_4 v^2}{4} \left( \rho^{02}+A^{02} \right) + \frac{\lambda_5 v^2}{4} \left( \rho^{02}-A^{02} \right)\,.
\end{align}
From here, in addition to the known standard model Higgs mass, we obtain
\begin{align}
m_{\eta^{\pm}}^2=&\mu_2^2+{\lambda_3 v^2}\,, \nonumber\\ %1/2+1/2
m_{\rho}^2=&\mu_2^2+\frac{v^2}{2} \left(\lambda_3+\lambda_4+\lambda_5 \right)\,, \nonumber\\
m_{A}^2=&\mu_2^2+\frac{v^2}{2} \left(\lambda_3+\lambda_4-\lambda_5 \right)\,. \nonumber\\
\end{align}
If we assign zero lepton number to $N_R$ and $-1$ to $\eta$ (see below) the only Lepton number violating term is the one with $\lambda_5$. In this way we expect small neutrino masses for small $\lambda_5$. In the limit $\lambda_5\to $, $m_{\rho}=m_A$ and the neutrinos are massless.
To explain the smallness of $\lambda_5$ we may follow the same idea than in~\cite{Suematsu:2017kcu}
\begin{align}
\lambda_5 \left( \eta^{\dagger}H \right) \to \lambda_5 \left( \eta^{\dagger}H \right) \frac{S}{M}
\end{align}
The diagram of charge flux is displayed in figure~\ref{fig:rss}
\begin{figure}
\centering
\includegraphics[scale=0.5]{rss}
\caption{Radiative seesaw with small $\lambda_5$ (top $S$ can also be $S^{*}$ if required)}
\label{fig:rss}
\end{figure}
The relevant Lagrangian must be consistent with
\begin{align}
l+\eta=&n\,,& 2n=&s\,, & 2h=2\eta\pm s\,.
% l+\eta=&n\,,& 2n=&s\,, & 2h=2\eta+s\,.
% See:
\end{align}
The solution for minus sign in the last equation, corresponding to $S^*$ in the top part of figure~\ref{fig:rss}., with a global $\operatorname{U}(1)_{\text{global}}$~\cite{Suematsu:2017kcu}\footnote{Local by just adding $N_L$ with same charge $-1$} is displayed in table~\ref{tab:suematsu}.
\begin{table}
\centering
\begin{tabular}{c|ll}
Fields&$\operatorname{U}(1)_{\text{global}}$& $\phantom{\operatorname{U}(1)_X}$\\ \hline
$L$ & $l=\phantom{-}0$&$\phantom{l=-1}$\\
$H$ & $h=\phantom{-}0$&$\phantom{h=-1-l=0}$\\
$N_R$ & $n=-1$ &$\phantom{n=-1/2}$\\
$\eta$& $\eta=-1$ &$\phantom{-1/2-l=1/2}$ \\
$S$ & $s=-2$ &$\phantom{s=-1}$ \\
\end{tabular}
\caption{Global solution, see \url{./scotolocal.nb}, to diagram of charge flux in figure~\ref{fig:rss}}
\label{tab:suematsu}
\end{table}
Therefore must include the fermion terms (matrix notation for family indices)
\begin{align}
\mathcal{L}\supset h \left( N_R \right)^{\dagger} L \cdot \eta + y N_R N_R S + \text{h.c}\,.
\end{align}
After the spontaneous braking of the global symmetry we have the relevant terms
\begin{align}
\mathcal{L}\supset \left[ h \left( N_R \right)^{\dagger} L \cdot \eta + M_R N_R N_R +
\widetilde{\lambda}_{5}\left(\eta^{\dagger} H\right)^{2}+\text { h.c } \right]
+\mu_{2}^{2} \eta^{\dagger} \eta+\lambda_{3}\left(H^{\dagger} H\right)\left(\eta^{\dagger} \eta\right)+\lambda_{4}\left(H^{\dagger} \eta\right)\left(\eta^{\dagger} H\right),
\end{align}
where
\begin{align}
M_R=& y \langle S \rangle\,,& \widetilde{\lambda}_5=&\lambda_5 \frac{\langle S \rangle }{M}\,.
\end{align}
If we assign zero lepton number to $N_R$ we can assign $0$ ($+1$)
lepton number to $\eta$ such that the term with coupling $h$
($\widetilde{\lambda}_5$) is violates lepton number. Therefore the
light neutrino masses are proportional to the product of
$y \widetilde{\lambda}_5$. In which follows we will drop the tilde in
$\lambda_5$.
The Lagrangian in the mass basis, relevant for the generation of neutrino masses is
\begin{align}
\mathcal{L}\supset \frac{h}{\sqrt{2}} \left( N_R \right)^{\dagger} \nu_L \left( \rho^0+i A^0 \right)
+ M_R N_R N_R + \frac{1}{2}m_{\rho}^2 \rho^{02}+ \frac{1}{2}m_{A}^2 A^{02}\,.
\end{align}
which generate the two contribution to the neutrino mass displayed in figure~\ref{fig:massbas}
\begin{figure}
\centering
\includegraphics[scale=0.4]{massbas}
\caption{Contribution to neutrino mass in mass basis}
\label{fig:massbas}
\end{figure}
\begin{align}
M^{\nu}_{ij}=&-\frac{h^2}{16\pi^2}M_R \left[
f \left( M_R^2,m_{\rho}^2 \right)-f \left( M_R^2,m_{A}^2 \right) \right].
\end{align}
\section{Singlet-doublet fermions with scalar singlets}
There~\cite{Restrepo:2015ura}
\begin{align}
y_{i n\alpha}=&h_{i\alpha}N_{3n}
\end{align}
and
\begin{align}
M^{\nu}_{ij}=&\sum_{\alpha}\frac{h_{i\alpha}h_{j\alpha}}{16\pi^2}\sum_{n=1}^3 \left( N_{3n} \right)^2m_{\chi_n}
\,f\left( m_{S_\alpha}^2,m_{\chi_n}^2 \right).
\end{align}
\subsection{Zee}
In the Zee model we can work in the Higgs-basis with $\left\langle H_1 \right\rangle=v/\sqrt{2}$, $\left\langle H_2 \right\rangle=0$ \cite{AristizabalSierra:2006ri}. In that basis the scalar potential is
\begin{align}
\label{eq:scalarpotentialinhiggsbas}
V = & \mu^{2}_{1}H_{1}^{\dagger}H_{1}
+ \mu^{2}_{2}H_{2}^{\dagger}H_{2}
- [\mu^{2}_{3}H_{1}^{\dagger}H_{2} + \mbox{H.c.}]
+ \frac{1}{2}\lambda_{1}(H_{1}^{\dagger}H_{1})^{2}
\nonumber\\
& + \frac{1}{2}\lambda_{2}(H_{2}^{\dagger}H_{2})^{2}
+ \lambda_{3}(H_{1}^{\dagger}
H_{1})(H_{2}^{\dagger}H_{2})
+ \lambda_{4}(H_{1}^{\dagger}
H_{2})(H_{2}^{\dagger}H_{1})
\nonumber\\
& + \left\{
\frac{1}{2}\lambda_{5}(H_{1}^{\dagger}H_{2})^{2}
+ [\lambda_{6}(H_{1}^{\dagger}H_{1})
+ \lambda_{7}(H_{2}^{\dagger}H_{2})]
H_{1}^{\dagger}H_{2}
+\mbox{H.c.}
\right\}
\nonumber\\
& + \mu_{h}^{2}|h^{+}|^{2} + \lambda_{h}|h^{+}|^{4}
+ \lambda_{8}|h^{+}|^{2}H_{1}^{\dagger}H_{1}
+ \lambda_{9}|h^{+}|^{2}H_{2}^{\dagger}H_{2}
\nonumber\\
& + \lambda_{10}|h^{+}|^{2}(H_{1}^\dagger H_{2}
+ \mbox{H.c.})
+ \mu\epsilon_{\alpha\beta}H_{1}^{\alpha}
H_{2}^{\beta}h^{-}.
\end{align}
We define
\begin{align}
H_1=&
\begin{pmatrix}
G^{+}\\
\operatorname{Re}\left( H_1^{0} \right)+i G^{0}/\sqrt{2}\\
\end{pmatrix}&
H_2=&
\begin{pmatrix}
H^{+}\\
\operatorname{Re}\left( H_2^{0} \right)+i A^{0}/\sqrt{2}\\
\end{pmatrix}
\end{align}
The minimum equations come from
\begin{align}
\frac{\partial V}{\partial \operatorname{Re}\left( H_1^{0} \right)}=&
\frac{\partial }{\partial \operatorname{Re}\left( H_1^{0} \right)} \left[
\mu^{2}_{1}\left(\operatorname{Re}H_{1}^{0} \right)^2
+\frac{1}{2}\lambda_1 \left(\operatorname{Re}H_{1}^{0} \right)^4+\cdots \right]\nonumber\\
=&2\mu^{2}_{1}\operatorname{Re}H_{1}^{0}
+\frac{1}{2}\lambda_1 4 \left(\operatorname{Re}H_{1}^{0} \right)^3+\cdots
\end{align}
\begin{align}
\frac{\partial V}{\partial \operatorname{Re}\left( H_2^{0} \right)}=&
-\mu^2_32\operatorname{Re}H_1^0+\lambda_6 2 \left(\operatorname{Re}H_1^0 \right)^3+\cdots
\end{align}
From the conditions
\begin{align}
\left. \frac{\partial V}{\partial \operatorname{Re}\left( H_{1,2}^{0} \right)} \right|_{\left\langle H_1 \right\rangle \to v/\sqrt{2},\left\langle H_2 \right\rangle \to 0}=&0\,,
\end{align}
we have
\begin{align}
\mu_1^2+\frac{1}{2} \lambda_1 =&0 &-\mu_3+\frac{1}{2}\lambda_6=&0
\end{align}
or
\begin{align}
\mu_1^2=&-\frac{1}{2} \lambda_1 &\mu_3=&\frac{1}{2}\lambda_6\,.
\end{align}
Replacing back in the potential, we have for the charged scalars that
In the basis $\mathbf{\Phi}^{\dagger}=(G^{-},
H^{-}, h^{-})$
the squared-mass matrix for the charged Higgs states is given by
\begin{align}
\label{eq:scalarM}
\mathcal{L}_{\text{charged}}= \boldsymbol{\Phi}^{\dagger} {\cal M}_{C}^{2}\boldsymbol{\Phi}+\cdots\;,
\end{align}
where
\begin{align}
{\cal M}_{C}^{2}=&
\begin{pmatrix}
0 & 0 & 0 \\
0 & M_{H^{\pm}}^{2} & -\mu v/\sqrt{2} \\
0 & -\mu v/\sqrt{2} & {\cal M}_{33}^{2}
\end{pmatrix},
and
\end{align}
\begin{align}
\label{eq:entriesofmassmatrix}
M_{H^{\pm}}^{2} =& \mu_{2}^{2} +\frac{1}{2}v^{2}\lambda_{3}
\nonumber\\
{\cal M}_{33}^{2} =& \mu_{h}^{2} + v^{2}\lambda_{8}\,.
\end{align}
By defining the mass basis state as $\mathbf{S}=\left( G^-,h_1^.,h_2^- \right)$, then after the rotation
\begin{align}
\mathbf{S}=R \boldsymbol{\Phi}\,,
\end{align}
where
\begin{align}
\label{eq:rotationM}
R =&
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos\varphi & \sin\varphi\\
0 & -\sin\varphi & \cos\varphi
\end{pmatrix}&\,.
\end{align}
Then,
\begin{align}
\mathcal{L}_{\text{charged}}=M_1^2 h_1^+ h_1^-
+M_2^2 h_2^+ h_2^-+\cdots
\end{align}
The relevant terms for neutrino masses in the mass eigenstate basis reads
\begin{align}
\mathcal{L}_{\nu}=&
\Pi'_2\cos\varphi \left( e_R \right)^{\dagger}\nu_L h_1^-
-\Pi'_2\sin\varphi \left( e_R \right)^{\dagger}\nu_L h_2^-
+f_{ji} \left( e_L \right)_j\left(\nu_L \right)_i \sin\varphi h_1^{+}
+f_{ji} \left( e_L \right)_j\left(\nu_L \right)_i \cos\varphi h_2^{+} \nonumber\\
&+\widehat{M}_l \left( e_R \right)^{\dagger}e_L+\text{h.c}
+M_1^2 h_1^+ h_1^-
+M_2^2 h_2^+ h_2^-
\end{align}
Therefore
\begin{align}
M_{ij}^{\nu}\propto
\left( \Pi'_2 \right)_{ik}\cos\varphi \widehat{M}_{kk} f_{jk}\sin\varphi
\end{align}
In that case $n$ corresponds to the usual leptons labeled with $i,j,k,\ldots$, and $\alpha=1,2$
\begin{align}
\mathcal{L}=&\overline{\nu_{Lj}}O_{jk}e_{Rk}R_{1\alpha}h_{\alpha}^{+}+ \nonumber\\
&{\nu_{Li}}^{\text{T}}C \left( 2 f_{ik} \right)e_{Lk}R_{2\alpha}h_{\alpha}^{+}+\nonumber\\
&m_k \overline{e_{Lk}} e_{Rk}+\text{h.c}\,,
\end{align}
Therefore
\begin{align}
y_{i k\alpha}=&O_{i k}R_{1\alpha} \nonumber\\
y_{j k\alpha}=&2f_{i k}R_{\alpha 1} \nonumber\\
\end{align}
where
\begin{align}
\mathbf{R}=
\begin{pmatrix}
\cos\varphi & -\sin\varphi\\
\sin\varphi & \cos\varphi\\
\end{pmatrix}
\end{align}
\begin{align}
M^{\nu}_{ij}=&-\sum_k \sum_{\alpha}
\frac{2O_{ik}R_{1\alpha}f_{jk} R_{2\alpha}}{16\pi^2}m_{k}\left[ \operatorname{cte}(\infty)+
f \left( m_{\chi_n}^2,m_{S_{\alpha}}^2 \right) \right] \nonumber\\
=&-\sum_k
\frac{O_{ik}f_{jk} }{8\pi^2}m_{k}\left[ R_{11}R_{21}\operatorname{cte}(\infty)+
R_{11}R_{21}f \left( m_k^2,M_1^2 \right)
+R_{12}R_{22}\operatorname{cte}(\infty)+
R_{12}R_{22}f \left( m_k^2,M_2^2 \right) \right] \nonumber\\
=&-\sum_k \frac{O_{ik}f_{jk} }{8\pi^2}m_{k}\cos\varphi\sin\varphi
\left[f \left( m_k^2,M_1^2 \right)-f \left(m_k^2,M_2^2 \right) \right] \nonumber\\
\approx&-\sum_k \frac{O_{ik}f_{jk} }{16\pi^2}m_{k}\sin 2\varphi
\left[f \left( 0,M_1^2 \right)-f \left(0,M_2^2 \right) \right] \nonumber\\
=&-\sum_k \frac{O_{ik}f_{jk} }{16\pi^2}m_{k}\sin2\varphi
\left[\frac{M_1^2M_2^2\ln \left(M_1^2\right)-M_1^2M_2^2\ln \left(M_2^2\right)}{M_1^2M_2^2} \right] \nonumber\\
=&\sum_k \frac{f_{jk}m_kO_{ik} \sin2\varphi }{(4\pi)^2}
\ln \left( \frac{M_2^2}{M_1^2}\right),
\end{align}
To compare with \cite{AristizabalSierra:2006ri}. There is factor 2?
\begin{align}
M^{\nu}_{ij} =&-\frac{\sin2\varphi}{\left(4\pi\right)^2}\sum_k \left( f_{ik}m_kO_{jk} +f_{jk}m_kO_{ik} \right)
\left[f \left( m_k^2,M_1^2 \right)-f \left(m_k^2,M_2^2 \right) \right]
\end{align}
In the generic basis, The important factor is
\begin{align}
\label{eq:gz}
f_{ik}m_kO_{jk} +f_{jk}m_kO_{ik}=&
f_{ik}m_k \left( -\sqrt{2}\frac{\tan\beta}{v}m_k+\frac{1}{\cos\beta}{\Pi_2}_{jk} \right)
+f_{jk}m_k\left( -\sqrt{2}\frac{\tan\beta}{v}m_k+\frac{1}{\cos\beta}{\Pi_2}_{ik} \right) \nonumber\\
=&
-\sqrt{2}\frac{\tan\beta}{v}\left(f_{ik}m_k^2+m_k^2f_{jk}\right)
+\frac{1}{\cos\beta}\left( f_{ik}m_k{\Pi_2}_{jk}+{\Pi_2}_{ik}m_kf_{jk} \right)
\end{align}
Seem to be that there is a mistake in \cite{hep-ph/0307172}w wiht $\tan\beta$.
\subsection{Minimal Zee}
According to \cite{hep-ph/0307172}, the famous Zee-Wolfenstein matrix by settin $\Pi_2=0$ in eq.~\eqref{eq:gz}
This case corresponds to the limit $\Pi_2=0$ of ~\cite{AristizabalSierra:2006ri}
\begin{align}
\mathcal{L}=&-\sqrt{2}\frac{\tan\beta}{v}\overline{\nu_{Lj}}m_j e_{Rj}R_{1\alpha}h_{\alpha}^{+}+ \nonumber\\
&{\nu_{Li}}^{\text{T}}C \left( 2 f_{ik} \right)e_{Lk}R_{2\alpha}h_{\alpha}^{+}+\text{h.c}\,,
\end{align}
Therefore
\begin{align}
y_{i k\alpha}=& -\sqrt{2}\frac{\tan\beta}{v}m_k \delta_{ik}R_{1\alpha} \nonumber\\
y_{j k\alpha}=&2f_{i k}R_{\alpha 1} \nonumber\\
\end{align}
\begin{align}
M^{\nu}_{ij}
=&\sum_k \frac{f_{jk}m_k \delta_{ik} \sin2\varphi }{(4\pi)^2}
\ln \left( \frac{M_2^2}{M_1^2}\right) \nonumber\\
=& \frac{f_{ji}m_i\sin2\varphi }{(4\pi)^2}
\ln \left( \frac{M_2^2}{M_1^2}\right).
\end{align}
which is non-zero only for $i\ne j$.
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "beyond"
%%% End: