forked from nphoff/saxpy
-
Notifications
You must be signed in to change notification settings - Fork 0
/
saxpy.py
175 lines (157 loc) · 7.49 KB
/
saxpy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
#!/usr/bin/env python
import os
import numpy as np
import math
class SAX(object):
"""
This class is for computing common things with the Symbolic
Aggregate approXimation method. In short, this translates
a series of data to a string, which can then be compared with other
such strings using a lookup table.
"""
def __init__(self, wordSize = 8, alphabetSize = 7, epsilon = 1e-6):
if alphabetSize < 3 or alphabetSize > 20:
raise DictionarySizeIsNotSupported()
self.aOffset = ord('a')
self.wordSize = wordSize
self.alphabetSize = alphabetSize
self.eps = epsilon
self.breakpoints = {'3' : [-0.43, 0.43],
'4' : [-0.67, 0, 0.67],
'5' : [-0.84, -0.25, 0.25, 0.84],
'6' : [-0.97, -0.43, 0, 0.43, 0.97],
'7' : [-1.07, -0.57, -0.18, 0.18, 0.57, 1.07],
'8' : [-1.15, -0.67, -0.32, 0, 0.32, 0.67, 1.15],
'9' : [-1.22, -0.76, -0.43, -0.14, 0.14, 0.43, 0.76, 1.22],
'10': [-1.28, -0.84, -0.52, -0.25, 0, 0.25, 0.52, 0.84, 1.28],
'11': [-1.34, -0.91, -0.6, -0.35, -0.11, 0.11, 0.35, 0.6, 0.91, 1.34],
'12': [-1.38, -0.97, -0.67, -0.43, -0.21, 0, 0.21, 0.43, 0.67, 0.97, 1.38],
'13': [-1.43, -1.02, -0.74, -0.5, -0.29, -0.1, 0.1, 0.29, 0.5, 0.74, 1.02, 1.43],
'14': [-1.47, -1.07, -0.79, -0.57, -0.37, -0.18, 0, 0.18, 0.37, 0.57, 0.79, 1.07, 1.47],
'15': [-1.5, -1.11, -0.84, -0.62, -0.43, -0.25, -0.08, 0.08, 0.25, 0.43, 0.62, 0.84, 1.11, 1.5],
'16': [-1.53, -1.15, -0.89, -0.67, -0.49, -0.32, -0.16, 0, 0.16, 0.32, 0.49, 0.67, 0.89, 1.15, 1.53],
'17': [-1.56, -1.19, -0.93, -0.72, -0.54, -0.38, -0.22, -0.07, 0.07, 0.22, 0.38, 0.54, 0.72, 0.93, 1.19, 1.56],
'18': [-1.59, -1.22, -0.97, -0.76, -0.59, -0.43, -0.28, -0.14, 0, 0.14, 0.28, 0.43, 0.59, 0.76, 0.97, 1.22, 1.59],
'19': [-1.62, -1.25, -1, -0.8, -0.63, -0.48, -0.34, -0.2, -0.07, 0.07, 0.2, 0.34, 0.48, 0.63, 0.8, 1, 1.25, 1.62],
'20': [-1.64, -1.28, -1.04, -0.84, -0.67, -0.52, -0.39, -0.25, -0.13, 0, 0.13, 0.25, 0.39, 0.52, 0.67, 0.84, 1.04, 1.28, 1.64]
}
self.beta = self.breakpoints[str(self.alphabetSize)]
self.build_letter_compare_dict()
self.scalingFactor = 1
def to_letter_rep(self, x):
"""
Function takes a series of data, x, and transforms it to a string representation
"""
(paaX, indices) = self.to_PAA(self.normalize(x))
self.scalingFactor = np.sqrt((len(x) * 1.0) / (self.wordSize * 1.0))
return (self.alphabetize(paaX), indices)
def normalize(self, x):
"""
Function will normalize an array (give it a mean of 0, and a
standard deviation of 1) unless it's standard deviation is below
epsilon, in which case it returns an array of zeros the length
of the original array.
"""
X = np.asanyarray(x)
if X.std() < self.eps:
return [0 for entry in X]
return (X-X.mean())/X.std()
def to_PAA(self, x):
"""
Funciton performs Piecewise Aggregate Approximation on data set, reducing
the dimension of the dataset x to w discrete levels. returns the reduced
dimension data set, as well as the indicies corresponding to the original
data for each reduced dimension
"""
n = len(x)
stepFloat = n/float(self.wordSize)
step = int(math.ceil(stepFloat))
frameStart = 0
approximation = []
indices = []
i = 0
while frameStart <= n-step:
thisFrame = np.array(x[frameStart:int(frameStart + step)])
approximation.append(np.mean(thisFrame))
indices.append((frameStart, int(frameStart + step)))
i += 1
frameStart = int(i*stepFloat)
return (np.array(approximation), indices)
def alphabetize(self,paaX):
"""
Converts the Piecewise Aggregate Approximation of x to a series of letters.
"""
alphabetizedX = ''
for i in range(0, len(paaX)):
letterFound = False
for j in range(0, len(self.beta)):
if paaX[i] < self.beta[j]:
alphabetizedX += chr(self.aOffset + j)
letterFound = True
break
if not letterFound:
alphabetizedX += chr(self.aOffset + len(self.beta))
return alphabetizedX
def compare_strings(self, sA, sB):
"""
Compares two strings based on individual letter distance
Requires that both strings are the same length
"""
if len(sA) != len(sB):
raise StringsAreDifferentLength()
list_letters_a = [x for x in sA]
list_letters_b = [x for x in sB]
mindist = 0.0
for i in range(0, len(list_letters_a)):
mindist += self.compare_letters(list_letters_a[i], list_letters_b[i])**2
mindist = self.scalingFactor* np.sqrt(mindist)
return mindist
def compare_letters(self, la, lb):
"""
Compare two letters based on letter distance return distance between
"""
return self.compareDict[la+lb]
def build_letter_compare_dict(self):
"""
Builds up the lookup table to determine numeric distance between two letters
given an alphabet size. Entries for both 'ab' and 'ba' will be created
and will have identical values.
"""
number_rep = range(0,self.alphabetSize)
letters = [chr(x + self.aOffset) for x in number_rep]
self.compareDict = {}
for i in range(0, len(letters)):
for j in range(0, len(letters)):
if np.abs(number_rep[i]-number_rep[j]) <=1:
self.compareDict[letters[i]+letters[j]] = 0
else:
high_num = np.max([number_rep[i], number_rep[j]])-1
low_num = np.min([number_rep[i], number_rep[j]])
self.compareDict[letters[i]+letters[j]] = self.beta[high_num] - self.beta[low_num]
def sliding_window(self, x, numSubsequences = None, overlappingFraction = None):
if not numSubsequences:
numSubsequences = 20
self.windowSize = int(len(x)/numSubsequences)
if not overlappingFraction:
overlappingFraction = 0.9
overlap = self.windowSize*overlappingFraction
moveSize = int(self.windowSize - overlap)
if moveSize < 1:
raise OverlapSpecifiedIsNotSmallerThanWindowSize()
ptr = 0
n = len(x)
windowIndices = []
stringRep = []
while ptr < n-self.windowSize+1:
thisSubRange = x[ptr:ptr+self.windowSize]
(thisStringRep,indices) = self.to_letter_rep(thisSubRange)
stringRep.append(thisStringRep)
windowIndices.append((ptr, ptr+self.windowSize))
ptr += moveSize
return (stringRep,windowIndices)
def batch_compare(self, xStrings, refString):
return [self.compare_strings(x, refString) for x in xStrings]
def set_scaling_factor(self, scalingFactor):
self.scalingFactor = scalingFactor
def set_window_size(self, windowSize):
self.windowSize = windowSize