-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest_llm3.py
147 lines (126 loc) · 6.37 KB
/
test_llm3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
## a streamlit app to query mongodb database using natural language
import streamlit as st
from pymongo import MongoClient
import pandas as pd
from dotenv import load_dotenv
import os
import google.generativeai as genai
import json
import re
# Load environment variables
load_dotenv()
genai.configure(api_key=os.environ['GOOGLE_API_KEY'])
# Function to get response from Gemini API
def get_response(question, prompt):
model = genai.GenerativeModel("gemini-pro")
response = model.generate_content([prompt[0], question])
# Post-process the response to ensure valid JSON
query_str = response.text.strip()
st.write(f"Raw response from Gemini API: {query_str}")
if not query_str:
raise ValueError("The generated query string is empty.")
# Cleaning up the query string to make it valid JSON
query_str = query_str.replace("{{", "{").replace("}}", "}")
try:
# Attempt to parse the JSON to catch any errors
query_dict = json.loads(query_str)
except json.JSONDecodeError:
# Fix common issues such as missing quotes around keys
query_str = query_str.replace("'", '"')
query_str = query_str.replace(": ", '": "').replace(", ", '", "').replace("{ ", '{"').replace(" }", '"}')
try:
query_dict = json.loads(query_str) # Attempt to parse again
except json.JSONDecodeError as e:
raise ValueError(f"please define your question properly.")
return json.dumps(query_dict) # Return the valid JSON string
# Function to execute the MongoDB query
def execute_query(host, port, database, collection, query):
try:
# Creating a pymongo client
client = MongoClient(host, int(port))
# Getting the database instance
db = client[database]
# Getting the collection
coll = db[collection]
# Convert the query to use case-insensitive regex for string fields
query = {k: {"$regex": f"^{v}$", "$options": "i"} if isinstance(v, str) else v for k, v in query.items()}
st.write(f"Executing MongoDB Query: {query}")
# Executing the query
cursor = coll.find(query)
# Converting cursor to a list of dictionaries
result = list(cursor)
# Extracting column names
if result:
columns = result[0].keys()
else:
columns = []
return result, columns
except Exception as e:
return f"Error: {e}", []
# Function to fetch collection schema
def fetch_collection_schema(host, port, database, collection):
try:
client = MongoClient(host, int(port))
db = client[database]
coll = db[collection]
# Get sample documents to infer schema
sample_doc = coll.find_one()
if sample_doc:
columns = list(sample_doc.keys())
else:
columns = []
return columns
except Exception as e:
return f"Error: {e}"
# Function to generate prompt based on schema
def generate_prompt(collection, columns):
prompt = f"You are an expert in converting questions to MongoDB queries in multiple languages. The MongoDB collection '{collection}' has the following fields:\n"
prompt += ', '.join(columns) + "\n\n"
prompt += "For example, if the question in English is: 'Show all records' then the MongoDB query will be something like this: {{}}.\n"
prompt += "Ensure that the MongoDB query is in valid JSON format with double quotes around keys and values. Don't change any field value, keep them all same, like dont add any extra letter,punctuation mark or ' in any field value.\n"
prompt += "Also, you must take care of neccessary conversion of uppercase and lowercase in feild values entered by user upon searching for them in database, like if user entered : 'show all puma records' and in databse 'Puma' is present then make neccessary changes in the query to be generated.\n"
prompt += " If the question is in another language, first translate it to English and then convert it into its following MongoDB query ensuring that the query is completely correct. Also, the MongoDB code should not have ``` in beginning or end and sql word in output."
return prompt
# Streamlit app layout
st.title("Natural Language to MongoDB Query Executor")
# Taking user inputs
host = st.text_input("Host", value="localhost")
port = st.text_input("Port", value="27017")
database = st.text_input("Database")
collection = st.text_input("Collection")
question = st.text_area("Natural Language Query")
if st.button("Execute"):
if host and port and database and collection and question:
columns = fetch_collection_schema(host, port, database, collection)
if isinstance(columns, str):
st.error(columns)
else:
prompt = generate_prompt(collection, columns)
# st.write(f"Generated Prompt: {prompt}")
# Get MongoDB query from Gemini API
try:
mongo_query = get_response(question, [prompt])
st.write(f"Generated MongoDB Query: {mongo_query}")
# Convert the generated query from string to dictionary
query_dict = json.loads(mongo_query)
# Execute the MongoDB query
result, columns = execute_query(host, port, database, collection, query_dict)
if isinstance(result, str):
st.error(result)
else:
# Converting the result to a DataFrame for better display
df = pd.DataFrame(result, columns=columns)
st.dataframe(df) # Displaying the result in a tabular format
st.write(f"Result Count: {len(result)}") # Display the number of results
# Adding download button for CSV file
csv = df.to_csv(index=False).encode('utf-8')
st.download_button(
label="Download data as CSV",
data=csv,
file_name='query_results.csv',
mime='text/csv',
)
except (ValueError, json.JSONDecodeError) as e:
st.error(f"Error processing the query: {e}")
else:
st.error("Please provide all the details.")